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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF
FRACTIONAL HAMILTONIAN SYSTEMS WITH SEPARATED VARIABLES

MOHSEN TIMOUMI

Department of Mathematics, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia

Abstract. In this paper, we study the existence and multiplicity of solutions of a class of fractional Hamiltonian
systems with variable separated type nonlinear terms{

tDα
∞(−∞Dα

t u)(t)+L(t)u(t) = a(t)∇G(u(t)), t ∈ R,
u ∈ Hα(R),

where L satisfies a new condition and the potential G satisfies a superquadratic condition weaker than the well-
known Ambrosetti-Rabinowitz condition. Moreover, under a new mixed condition, we establish a compact em-
bedding theorem.
Keywords. Fractional Hamiltonian systems; Multiple solutions; Separated variables; Variational methods.

1. INTRODUCTION

In this paper, we are interested in the existence and multiplicity of solutions of a class of
fractional Hamiltonian systems of the following form

(FH S )

{
tDα

∞(−∞Dα
t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R,

u ∈ Hα(R),

where −∞Dα
t and tDα

∞ are left and right Liouville-Weyl fractional derivatives of order 1
2 < α < 1

on the whole axis respectively, L ∈ C(R,RN2
) is a symmetric matrix valued function unnec-

essary coercive, and W : R×RN −→ R is a continuous function, differentiable in the second
variable with continuous derivative ∂W

∂x (t,x) = ∇W (t,x).
The existence and multiplicity of solutions of fractional differential equations were estab-

lished by the tools of nonlinear analysis, such as fixed point theory [1, 16], topological degree
theory [7], comparison methods [9], and so on. Over the last four decades, the critical point
theory has become a basic tool for studying the existence of solutions of differential and partial
differential equations with variational methods; see, e.g., [14, 18] and the references therein.
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Inspired by the classical works in [14, 18], for the first time, the authors [8] demonstrated that
the critical point theory and variational methods are an effective approach to tackle the existence
of solutions for the following fractional boundary value problem{

tDα
T (0Dα

t u)(t) = ∇W (t,u(t)), t ∈ [0,T ],
u(0) = u(T ),

and obtained the existence of at least one nontrivial solution.
In 2013, Torres [25] used the so-called Ambrosetti-Rabinowitz ((A R) in short) condition

and the Mountain Pass Theorem to obtain the existence of at least one nontrivial solution for
problem (FH S ):

(A R) There exists a constant µ > 2 such that

0 < µW (t,x)≤ ∇W (t,x) · x, ∀t ∈ R, ∀x ∈ RN \{0} .
Here and in the following, ”.” denotes the standard inner product in RN and |.| is the induced
norm.

Since then, the existence and multiplicity of solutions of (FH S ) were studied extensively;
see, e.g., [3, 4, 5, 6, 12, 13, 15, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32] and the references
listed therein. As we know, condition (A R) is important to achieve mountain pass geometry
structure of the energy functional and demonstrates the boundedness of the Palais-Smale se-
quence. There are many potentials which are superquadratic as |x| −→ ∞, but do not satisfy the
(A R)−condition. In recent years, authors have paid much attention to weak this condition. In
2014, Chen [4] considered the following generalized superquadratic condition

(1.1) W̃ (t,x) = 1
2∇W (t,x) ·x−W (t,x)≥ 0 and there exist constants c0,r0 > 0 and σ > 1 such

that
|W (t,x)|σ ≤ c0 |x|2σ W̃ (t,x), ∀(t,x) ∈ R×RN , |x| ≥ r0.

Instead of (1.1), the authors [4] considered also the superquadratic condition
(1.2) There exist constants µ > 2 and ρ > 0 such that

µW (t,x)≤ ∇W (t,x) · x+ρ |x|2 , ∀(t,x) ∈ R×RN .

In 2018, the author [23] considered the following generalized superquadratic condition
(1.3) There exist constant c0,r0 > 0 and ν ∈ [0,2] such that

|W (t,x)| ≤ c0 |x|2−ν W̃ (t,x), ∀(t,x) ∈ R×RN , |x| ≥ r0.

Besides, in [21], the author considered the following condition
(1.4) There is σ ≥ 1 such that

W̃ (t,sx)≤ σW̃ (t,x), ∀(s, t,x) ∈ [0,1]×R×RN .

Conditions (1.1)-(1.4) can be seen as the generalization or supplements of (A R)−condition.
In [30], Yuan and Zhang considered the classical Hamiltonian system

(H S ) ü(t)−L(t)u(t)+∇W (t,u(t)) = 0

with variable separated type nonlinear terms W (t,x) = a(t)G(x), where a ∈ C(R,R∗+) and
G ∈ C1(RN ,R). They studied the existence and multiplicity of homoclinic solutions of sys-
tem (H S ) under suitable assumptions. In particular, they assumed that a satisfies condition
lim|t|→∞ a(t) = 0, and G satisfies (A R)−condition. In recent years, Wu et al. [27] consid-
ered the fractional Hamiltonian system (FH S ) with variable separated type nonlinear terms
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W (t,x) = a(t)G(x), where a ∈ C(R,R+) and G ∈ C1(RN ,R). They studied the existence and
multiplicity of solutions of system (FH S ) under suitable assumptions among which the fol-
lowing two conditions

(1.5)
a(t)
l(t)
−→ 0 as |t| −→ ∞, where l(t) = inf

|ξ |=1
L(t)ξ ·ξ .

(1.6) There are µ > 0 and d1,ρ∞ > 0 satisfying

∇G(x) · x−µG(x)≥−d1 |x|2 , ∀|x| ≥ ρ∞.

Condition (1.6) is a generalization of (A R)−condition.
In this paper, inspired by the above results, we focus on the existence and multiplicity of so-

lutions of the fractional Hamiltonian system (FH S ) with variable separation nonlinear terms
W (t,x) = a(t)G(x), where a ∈C(R,R∗+), L satisfies a new condition, and G ∈C1(RN ,R) sat-
isfies some kind of superquadratic conditions weaker than well-known Ambresetti-Rabinowitz
condition. Precisely, we consider the following assumptions

(L1) L∈C(R,RN2
) is a symmetric matrix for all t ∈R, and there exists a constant l0 > 0 such

that
L(t)x · x≥ l0 |x|2 , ∀(t,x) ∈ R×RN ;

(L2) There is a constant d > 0 verifying

a(t)≤ dl(t), ∀t ∈ R;

(L3) There exits a constant r0 > 0 satisfying

lim
|s|−→∞

meas
({

t ∈ [s− r0,s+ r0]/
l(t)
a(t)

< b
})

= 0, ∀b > 0;

(G1) G(0) = 0, and ∇G(x) = o(|x|) as |x| −→ 0;

(G2) lim
|x|−→∞

G(x)

|x|2
=+∞;

(G3) G̃(t,x) =
1
2

∇G(x) · x−G(x)≥ 0, ∀x ∈ RN ;

(G4) lim
|x|−→∞

G̃(x)
G(x)

|x|2 =+∞.

Our first results are the following:

Theorem 1.1. If (L1)−(L3) and (G1)−(G4) hold, then fractional Hamiltonian system (FH S )
has at least one nontrivial solution.

Theorem 1.2. Assume that (L1)− (L3) and (G1)− (G4) are satisfied and G is even. Then
fractional Hamiltonian system (FH S ) possesses infinitely many nontrivial solutions.
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Remark 1.3. Consider the following example

G(x) = |x|s +(s−2) |x|s−ε sin2(
|x|ε

ε
),

where s> 2 and ε ∈]0,s−2[. It is easy to check that G satisfies conditions (G1)−(G4), however
G satisfies neither condition (A R) nor its generalization (1.6).

Next, consider the assumptions
(G5) There are d0 > 0 and ν > 2 satisfying

|G(x)| ≤ d0(|x|2 + |x|ν), ∀x ∈ RN ;

(G6) There is a constant σ ≥ 1 satisfying

G̃(sx)≤ σG̃(x), ∀(s,x) ∈ [0,1]×RN .

Now, we give our second results

Theorem 1.4. Assume that (L1)− (L3), (G1), (G2), (G5), and (G6) are satisfied. Then frac-
tional Hamiltonian system (FH S ) admits at least one nontrivial solution.

Theorem 1.5. Assume that (L1)− (L3), (G1), (G2) (G5), and (G6) are satisfied and G is even.
Then fractional Hamiltonian system (FH S ) possesses infinitely many nontrivial solutions.

Remark 1.6. Let G(x) = |x|2 ln(e+ |x|)− 1
2 |x|

2 + e |x|− e2(ln(e+ |x|)−1). It is easy to check
that (G1), (G2), (G5), and (G6) hold. However, G satisfies neither condition (A R) nor its
generalization (1.6).

Remark 1.7. Let G(x) = |x|2 ln(1+ |x|2). Then we easily demonstrate that conditions (G1),
(G2), (G5), and (G6) hold. However, G does not satisfy (A R)−condition.

The remaining of this paper is organized as follows. In Section 2, we introduce some prelim-
inary results and prove an interesting compact embedding theorem. Section 3 is reserved to the
proof of our main results.

2. PRELIMINARIES

2.1. Liouville-Weyl fractional calculus. The Liouville-Weyl fractional integrals of order 0 <
α < 1 on the whole axis R are defined as (see [10, 11, 17])

(2.1) −∞Iα
t u(t) =

1
Γ(α)

∫ t

−∞

(t− x)α−1u(x)dx,

and

(2.2) tIα
∞ u(t) =

1
Γ(α)

∫
∞

t
(x− t)α−1u(x)dx.

The Liouville-Weyl fractional derivatives of order 0 < α < 1 on the whole axis R are defined as
the left-inverse operators of the corresponding Liouville-Weyl fractional integrals (see [10, 11,
17])

(2.3) −∞Dα
t u(t) =

d
dt
(−∞I1−α

t u)(t),
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and

(2.4) tDα
∞u(t) =− d

dt
(tI1−α

∞ u)(t).

The definitions of (2.3) and (2.4) may be written in an alternative form as follows

(2.5) −∞Dα
t u(t) =

1
Γ(1−α)

∫
∞

0

u(t)−u(t− x)
xα+1 dx,

and

(2.6) tDα
∞u(t) =

1
Γ(1−α)

∫
∞

0

u(t)−u(t + x)
xα+1 dx.

2.2. Fractional derivative space. For α > 0, define the semi-norm

|u|Iα
−∞

= ‖−∞Dα
t u‖L2

and the norm
‖u‖Iα

−∞
= (‖u‖L2 + |u|2Iα

−∞
)

1
2 ,

and let
Iα
−∞ =C∞

0 (R)
‖.‖|Iα

−∞ ,

where

C∞
0 (R) =

{
u ∈C∞(R,RN)/ lim

|t|−→∞

u(t) = 0.
}
.

Now, we can define the fractional Sobolev space Hα(R) using the Fourier transform û(s) =∫
∞

−∞
e−istu(t)dt. Choose 0 < α < 1, define the semi-norm

|u|
α
=
∥∥|s|α û

∥∥
L2

and the norm
‖u‖

α
= (‖u‖L2 + |u|2α)

1
2 ,

and let
Hα(R) =C∞

0 (R)
‖.‖α .

Moreover, we notice that a function u ∈ L2(R) belongs to Iα
−∞ if and only if

|s|α û ∈ L2(R).

Especially, we have
|u|Iα

−∞
=
∥∥|s|α û

∥∥
L2 .

Therefore, Iα
−∞ and Hα(R) are isomorphic with equivalent semi-norms and norms.

Let C(R) denote the space of continuous functions from R into RN . The following Sobolev
lemma is be useful.

Lemma 2.1. [25, Theorem 2.1] If α > 1
2 , then Hα(R) ⊂C(R), and there exists a constant Cα

such that

(2.7) ‖u‖L∞ = sup
t∈R
|u(t)| ≤Cα ‖u‖α

,∀u ∈ Hα(R).
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Let

Xα =

{
u ∈ Hα(R)/

∫
R
[|−∞Dα

t u(t)|2 +L(t)u(t) ·u(t)]dt < ∞

}
,

then Xα is a reflexive and separable Hilbert space with the inner product

< u,v >Xα=
∫
R
[−∞Dα

t u(t) ·−∞ Dα
t v(t)+L(t)u(t) · v(t)]dt

and the corresponding norm ‖u‖2
Xα =< u,u >Xα . Evidently, Xα is continuously embedded into

Hα(R). For p ∈ [2,∞[, define

Lp
a(R) =

{
u : R−→ RN measurable/

∫
R

a(t) |u(t)|p < ∞

}
equipped with norm ‖.‖Lp

a
=
(∫

R a(t) |u(t)|p
) 1

p . By (L2), we have for u ∈ Xα∫
R

a(t) |u(t)|2 dt ≤ d
∫
R

l(t) |u(t)|2 dt ≤ d
∫
R

L(t)u(t) ·u(t)dt

≤ d
∫
R
[|−∞Dα

t u(t)|2 +L(t)u(t) ·u(t)]dt

= η
2
2 ‖u‖

2
Xα ,

where η2 =
√

d. For p ∈]2,∞[ and u ∈ Xα , we have∫
R

a(t) |u(t)|p dt ≤ ‖u‖p−2
L∞

∫
R

a(t) |u(t)|2 dt ≤Cp−2
α ‖u‖p−2

Xα ‖u‖2
L2

a
≤ η

p
p ‖u‖

p
Xα ,

where η
p
p = dCp−2

α . Hence, for all p ∈ [2,∞], Xα is continuously embedded in Lp
a(R) and there

exists a constant ηp > 0 such that

(2.8) ‖u‖Lp
a
≤ ηp ‖u‖Xα , ∀u ∈ Xα .

Lemma 2.2. Under conditions (L1)− (L3), for all p ∈ [2,∞[, embedding Xα ↪→ Lp
a(R) is com-

pact.

Proof. Let {un} ⊂ Xα be a bounded sequence. Then there exists M0 > 0 such that

‖un‖Xα ≤M0,∀n ∈ N.

Taking a subsequence if necessary, we can assume that un ⇀ u0 in Xα . Setting vn = un− u0,
one has vn ⇀ 0 in Xα .

Next, we prove that vn→ 0 in L2
a(R). Choose {si} ⊂ R such that R = ∪∞

i=1Ir0(si) and each
t ∈ R is contained by two such intervals Ir0(si) = [si− r0,si + r0] at most. For b,r > 0, set

A(b,r) =
{

t ∈ Ic
r (0) :

l(t)
a(t)

< b
}

and

B(b,r) =
{

t ∈ Ic
r (0) :

l(t)
a(t)
≥ b
}
.

We have ∫
B(b,r)

a(t) |vn(t)|2 dt ≤ 1
b

∫
B(b,r)

l(t) |vn(t)|2 dt ≤ 1
b
‖vn‖2

Xα ≤
4M2

0
b

.
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Letting ε > 0, one has that there exists a constant bε > 0 such that

(2.10)
∫

B(bε ,r)
a(t) |vn(t)|2 dt <

ε

4
, ∀n ∈ N, ∀r > 0.

Now, let βr = supi∈Nmeasa(A(bε ,r)
⋂

Ir0(si). By (2.8) and Hölder’s inequality, we obtain∫
A(bε ,r)

a(t) |vn(t)|2 dt

=
∫

A(bε ,r)∩∪∞
i=1Ir0(si)

a(t) |vn(t)|2 dt

≤
∞

∑
i=1

∫
A(bε ,r)∩Ir0(si)

a(t) |vn(t)|2 dt

≤
∞

∑
i=1

(
∫

A(bε ,r)∩Ir0(si)
a(t)dt)

1
2 (
∫

A(bε ,r)∩Ir0(si)
a(t) |vn(t)|4 dt)

1
2

≤
∞

∑
i=1

(measa(A(bε ,r)
⋂

Ir0(si))
1
2 [(
∫

A(bε ,r)∩Ir0(si)
a(t) |vn(t)|4 dt)

1
4 ]2

≤ β
1
2

r

∞

∑
i=1

[(
∫

A(bε ,r)∩Ir0(si)
a(t) |vn(t)|4 dt)

1
4 ]2

≤ β
1
2

r η
2
4

∞

∑
i=1

∫
A(bε ,r)∩Br0(si)

[|−tDα
∞vn(t)|2 +L(t)vn(t) · vn(t)]dt

≤ 2η
2
4 β

1
2

r ‖vn‖2
Xα ≤ 8η

2
4 β

1
2

r M2
0 .

By (L3), there is a constant rε > 0 satisfying

(2.11)
∫

A(bε ,rε )
a(t) |vn(t)|2 dt <

ε

4
, ∀n ∈ N.

Combining (2.10) and (2.11) yields

(2.12)

∫
Ic
rε
(0)

a(t) |vn(t)|2 dt =
∫

A(bε ,rε )
a(t) |vn(t)|2 dt +

∫
B(bε ,rε )

a(t) |vn(t)|2 dt

<
ε

2
, ∀n ∈ N.

On the other hand, the Sobelev’s compact embedding theorem implies that vn→ 0 in L2
a(Irε

(0)).
Hence, there exists a constant n0 ∈ N such that

(2.13)
∫

Irε (0)
a(t) |vn(t)|2 dt <

ε

2
, ∀n≥ n0,

which with (2.12) implies that vn −→ 0 in L2
a(R). For p ∈]2,∞[, we have∫

R
a(t) |vn(t)|p dt ≤ ‖vn‖p−2

L∞

∫
R

a(t) |vn(t)|2 dt

≤Cp−2
α ‖vn‖p−2

Xα ‖vn‖2
L2

a

≤Cp−2
α (2M0)

p−2 ‖vn‖2
L2

a
.

Hence vn −→ 0 as n−→ ∞, and embedding Xα ↪→ Lp
a(R) is compact. �
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The following critical point lemmas is needed in the proof of our results.

Definition 2.3. Let X be a Banach space with norm ‖.‖. We say that f ∈C1(X ,R) satisfies
a) (PS)−condition if any sequence (un)⊂ X satisfying

( f (un)) is bounded and f ′(un)−→ 0 as n−→ ∞

has a convergent subsequence,
b) (C)−condition if any sequence (un)⊂ X satisfying

( f (un)) is bounded and
∥∥ f ′(un)

∥∥(1+‖un‖)−→ 0 as n−→ ∞

possesses a convergent subsequence.

Lemma 2.4. [18] Let X be a real Banach space, and let f ∈C1(X ,R) satisfy (PS)-condition.
Suppose that f (0) = 0 and

(i) there are ρ,α > 0, such that f|∂Bρ
≥ α , where Bρ = {u ∈ X/‖u‖< ρ},

(ii) there is an e ∈ X \Bρ such that f (e)< 0.
Then f has a critical value c≥ α . Moreover c can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

f (γ(t)),

where
Γ = {γ ∈C([0,1],X) : γ(0) = 0,γ(1) = e} .

Lemma 2.5. [18] Let X be an infinite dimensional Banach space, X = Y ⊕Z, where Y is finite
dimensional space, and let f ∈ C1(X ,R) satisfy (PS)−condition. Assume that f (0) = 0, f is
even, and

(a) There exist constants ρ,α > 0 such that f|∂Bρ∩Z ≥ α;
(b) For any finite dimensional subspace X̃ ⊂ X, there is r = r(X̃)> 0 such that f (u)≤ 0 on

X̃ \Br.
Then f possesses an unbounded sequence of critical values.

Remark 2.6. As in [2], a deformation lemma can be proved with (C)−condition replacing
(PS)−condition, and it turns out that Lemmas 2.4 and 2.5 still hold true with (C)−condition
instead of (PS)−condition.

3. PROOF OF THEOREM 1.1 AND THEOREM 1.2

Define the energy functional f associated to the fractional Hamiltonian system (FH S )

f (u) =
1
2

∫
R
[|−∞Dα

t u(t)|2 +L(t)u(t) ·u(t)]dt−
∫
R

W (t,u)dt, u ∈ Xα

defined on the space Xα introduced in Section 2. It is known that, under assumption (G1),
f ∈C1(Xα ,R) and, for all u,v ∈ Xα ,

f ′(u)v =
∫
R
[−∞Dα

t u(t) ·−∞ Dα
t v(t)+L(t)u(t) · v(t)]dt−

∫
R

∇W (t,u) · v(t)dt

=
1
2
< u,v >Xα −

∫
R

α(t)∇G(u(t)) · v(t)dt.
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Moreover, the critical points of f on Xα are solutions to (FH S ). We shall prove that problem
(FH S ) has mountain pass type solutions. For this purpose, we apply Lemmas 2.4 and 2.5 to
functional f on Xα . We claim that, under (G1) and (G3),

(3.1) G(x)≥ 0, ∀x ∈ R.

In fact, for x ∈ RN \{0}, set ϕ(s) = G(sx)
s2 for s > 0. By (G3), we have, for s ∈]0,∞[,

ϕ
′(s) =

2
s3 [

1
2

∇G(sx) · sx−G(sx)]≥ 0,

which means that ϕ is non-decreasing in ]0,∞[. Now, we have by (G1) and the Hopital’s prop-
erty

lim
s−→0
|ϕ(s)|= lim

s−→0

|G(sx)|
s2 = lim

s−→0

|∇G(sx) · x|
2s

≤ lim
s−→0

1
2
|∇G(sx)|
|sx|

|x|2 = 0.

Hence, we have ϕ(s)≥ 0 for all s ∈]0,∞[. In particular ϕ(1)≥ 0, which is (3.1).

Lemma 3.1. Under conditions (L1)− (L3) and (G1), there are constants ρ,ν > 0 satisfying
f|∂Bρ (0) ≥ ν .

Proof. By (G1), there is r > 0 verifying

(3.2) |G(x)| ≤ 1
4d
|x|2 , ∀|x| ≤ r.

Set ρ = r
η∞

and ν = ρ2

4 . By (3.2) and (L2), we have, for ‖u‖Xα = ρ ,

(3.3)

f (u) =
1
2
‖u‖2

Xα −
∫
R

a(t)G(u(t))dt

≥ 1
2
‖u‖2

Xα −
1

4d

∫
R

a(t) |u(t)|2 dt

≥ 1
2
‖u‖2

Xα −
1
4

∫
R

l(t) |u(t)|2 dt

≥ 1
4
‖u‖2

Xα = ν .

The proof of Lemma 3.1 is completed. �

Lemma 3.2. Assume that (L1)−(L3) and (G1) are satisfied. Then ∇G(un)−→∇G(u) in L2
a(R)

if un ⇀ u in Xα .

Proof. Let un ⇀ u in Xα . Then there exists K > 0 such that

(3.4) sup
n∈N
‖un‖Xα ≤ K and ‖un‖L∞ ≤ K, ∀n ∈ N.

We claim that ∇G(un)−→ ∇G(u) in L2
a(R). Otherwise, by Lemma 2.2, there is a subsequence

(unk) satisfying

(3.5) unk −→ u in L2
a(R) and unk(t)−→ u(t) a.e.

and

(3.6)
∫
R

a(t) |∇G(unk(t))−∇G(u(t))|dt ≥ ε0, ∀k ∈ N



10 M. TIMOUMI

for some ε0 > 0. By (3.5) and going to a subsequence if necessary, we can assume that
∑

∞
k=1 ‖unk−u‖L2

a
< ∞. Let v(t) = ∑

∞
k=1 |unk(t)−u(t)| for all t ∈ R. Then v ∈ L2

a(R). From
(G1) and (3.4), we can find a constant K1 > 0 such that

(3.7) |∇G(unk(t))| ≤ K1 |unk(t)| and |∇G(u(t))| ≤ K1 |u(t)| , ∀k ∈ N,
which implies

|∇G(unk(t))−∇G(u(t))|2 ≤ K2
1 [|un(t)|+ |u(t)|]2

≤ K2
1 [|un(t)−u(t)|+2 |u(t)|]2

≤ 8K2
1 [|v(t)|+ |u(t)|]2 = h(t).

Since h ∈ L2
a(R), then the Lebesgue’s dominated convergence theorem implies

lim
k−→∞

∫
R

a(t) |∇G(unk(t))−∇G(u(t))|2 dt =
∫
R

a(t) lim
k−→∞

|∇G(unk(t))−∇G(u(t))|2 dt = 0,

which contradict (3.6). Hence the claim above is true and the proof of Lemma 3.2 is completed.
�

Lemma 3.3. Under assumptions (L1)−(L3), (G1), (G2), and (G4), f verifies the (C)-condition.

Proof. Let {un} ⊂ Xα be a (C)-sequence of f , that is, ( f (un)) is bounded and ‖ f ′(un)‖(1+
‖un‖)−→ 0 as n−→ ∞,. Then there exists a constant c1 > 0 such that

(3.8) | f (un)| ≤ c1 and
∥∥ f ′(un)

∥∥(1+‖un‖Xα )≤ c1,∀n ∈ N.
We claim that (un) is bounded. Otherwise, we assume that ‖un‖Xα −→ ∞ as n −→ ∞. Setting
vn =

un
‖un‖Xα

, one has ‖vn‖Xα = 1, which implies that there is a subsequence of (vn), still denoted
by (vn), such that vn ⇀ v0 in Xα . We have∣∣∣∣∣

∫
R

a(t)G(un(t))

‖un‖2 dt− 1
2

∣∣∣∣∣= |− f (un)|
‖un‖2 ≤ c1

‖un‖2 ,

which implies that

(3.9)
∫
R

a(t)G(un(t))

‖un‖2 dt −→ 1
2

as n−→ ∞.

We will discuss two cases.
Case 1: v0 6= 0.
Let Λ = {t ∈ R/v0(t) 6= 0}. Then we can see that measa(Λ) > 0. So there exists a constant

R > 0 such that measa(Ω)> 0, where Ω = Λ∩BR(0). Since ‖un‖Xα −→∞ as n−→∞, we have
|un(t)| = |vn(t)|‖un‖Xα −→ +∞ as n −→ ∞ for a.e t ∈ Ω. By (G2), (3.1), and Fatou’s lemma,
we have

liminf
n−→∞

∫
R

a(t)G(un(t))

‖un‖2 dt ≥ liminf
n−→∞

∫
Ω

a(t)G(un(t))

‖un‖2 dt

≥
∫

Ω

liminf
n−→∞

a(t)G(un(t))

|un(t)|2
|vn(t)|2 dt

=+∞,

which can contradicts (3.9). Hence (un) is bounded.
Case 2: v0 = 0.
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By (G1), there exists a constant r > 0 such that

(3.10) 0≤ G(x)≤ |x|2 , ∀|x| ≤ r.

By (G4), for any M > 0, there exists R > r such that

(3.11)
G̃(x)
G(x)

|x|2 ≥M, ∀|x| ≥ R.

Combining (3.10) and (3.11) yields

0≤
∫
R

a(t)G(un(t))

‖un‖2 dt ≤
∫
{t∈R/|un|≤r}

a(t)G(un(t))

|un(t)|2
|vn(t)|2 dt

+
∫
{t∈R/r<|un|≤R}

a(t)G(un(t))

‖un‖2 dt +
∫
{t∈R/|un|≥R}

a(t)G(un(t))

|un(t)|2
|vn(t)|2 dt

≤
∫
{t∈R/|un|≤r}

a(t) |vn(t)|2 dt +
∫
{t∈R/r<|un|≤R}

a(t)G(un(t))

r2 ‖un‖2 |un(t)|2 dt

+‖vn‖L∞

∫
{t∈R/|un|≥R}

a(t)G(un(t))

|un(t)|2
dt

≤ ‖vn‖2
L2

a
+

1
r2 max
|x|≤r

G(x)
∫
{t∈R/r<|un|≤R}

a(t) |vn(t)|2 dt

+
1
M
‖vn‖L∞

∫
{t∈R/|un|≥R}

a(t)[
1
2

∇G(un(t)) ·un(t)−G(un(t))]dt

≤ (1+
1
r2 max
|x|≤r

G(x))‖vn‖2
L2

a
+

1
M
‖vn‖L∞ [ f (un)−

1
2

f ′(un)un]

≤ (1+
1
r2 max
|x|≤r

G(x))‖vn‖2
L2

a
+

3c1

2M
‖vn‖L∞ .

By arbitrariness of M and Lemma 2.2, we obtain∫
R

a(t)G(un(t))

‖un‖2 dt <
1
3

for n large enough, which contradicts (3.9). Hence (un) is bounded in Xα . Up to a subsequence
if necessary, we can assume that un ⇀ u in Xα , which yields

( f ′(un)− f ′(u))(un−u)−→ 0 as n−→ ∞,

and it follows from Hölder’s inequality and Lemma 3.2 that∣∣∣∣∫R a(t)(∇G(un(t))−∇G(u(t))) · (un(t)−u(t))dt
∣∣∣∣

≤ ‖∇G(un)−∇G(u)‖L2
a
‖un−u‖L2

a
−→ 0 as n→ ∞.

Hence, we deduce that

‖un−u‖2
Xα = ( f ′(un)− f ′(u))(un−u)+

∫
R

a(t)(∇G(un(t))−∇G(u(t))) ·(un(t)−u(t))dt −→ 0

as n−→ ∞. The proof of Lemma 3.3 is completed. �

Proof of Theorem 1.1.
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Lemma 3.4. Suppose that (L1)− (L3) and (G2) hold. Then there exists e ∈ Xα such that
‖e‖Xα > ρ and f (e)≤ 0, where ρ is defined in Lemma 3.1.

Proof. Set e0 ∈C∞
0 (]−1,1[) with ‖e0‖Xα = 1. For M > (2

∫ 1
−1 a(t) |e0(t)|2 dt)−1, it follows from

(G2) that there exists a constant R > 0 such that

(3.12) G(x)≥M |x|2 , ∀|x| ≥ R.

Let D = 1
M max|x|≤RG(x). Then (3.12) implies

(3.13) G(x)≥M(|x|2−D), ∀|x| ≥ R.

By (3.13), for every ξ ∈ R, we have

f (ξ e0) =
ξ 2

2
‖e0‖2

Xα −
∫ 1

−1
a(t)G(ξ e0(t))dt

≤ ξ 2

2
−
∫ 1

−1
a(t)M(ξ 2 |e0(t)|2−D)dt

≤ ξ 2

2
−Mξ

2
∫ 1

−1
a(t) |e0(t)|2 dt +MD

∫ 1

−1
a(t)dt

≤ ξ 2

2
(1−2M

∫ 1

−1
a(t) |e0(t)|2 dt)+MD

∫ 1

−1
a(t)dt,

which implies that
f (ξ e0)−→−∞ as |ξ | −→+∞.

Hence there exists ξ0 ∈ R such that ‖ξ0e0‖Xα > ρ and f (ξ0e0) < 0. Letting e(t) = ξ0(t)e0(t),
we finish the proof of Lemma 3.4. �

By Lemmas 2.4, 3.1-3.4, and the fact f (0) = 0, we see that f possesses at least one nontrivial
critical point u satisfying f (u) ≥ α . Since f (0) = 0 < α , then u is a nontrivial solution of
(FH S ).

Proof of Theorem 1.2.

Lemma 3.5. Assume that (L1)− (L3), (G1), and (G4) are satisfied. Then, for each finite-
dimensional subspace X̃ ⊂Xα , there exists a constant r = r(X̃)> 0 such that f ≤ 0 on X̃ \Br(0).

Proof. Let X̃ ⊂ Xα be a finite-dimensional subspace. We claim that there is a constant ε0 > 0
such that

(3.14) measa({t ∈ R/ |u(t)| ≥ ε0 ‖u‖Xα})< ε0, ∀u ∈ X̃ \{0} .

If not, for any n ∈ N, there is un ∈ X̃ \{0} such that

measa

({
t ∈ R/ |un(t)| ≥

1
n
‖un‖Xα

})
<

1
n
.

Let vn =
un
‖un‖ . Then ‖vn‖Xα = 1 and

(3.15) measa

({
t ∈ R/ |vn(t)| ≥

1
n

})
≤ 1

n
, ∀n ∈ N.
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Since X̃ is finite-dimensional, then taking a subsequence if necessary, we may assume that
vn ⇀ v0 in X̃ for some v0 ∈ X̃ . Clearly ‖v0‖Xα = 1. Note that, up to a subsequence, Lemma 2.2
implies that

(3.16)
∫
R

a(t) |vn− v0|2 −→ 0 as n−→ ∞.

We claim that there is a constant δ0 > 0 satisfying

(3.17) measa({t ∈ R, |v0(t)| ≥ δ0})≥ δ0.

If not, for each fixed n ∈ N and m > n, we have

measa

({
t ∈ R, |v0(t)| ≥

1
n

})
≤ measa

({
t ∈ R, |v0(t)| ≥

1
m

})
≤ 1

m
.

Letting m−→ ∞, we have measa(
{

t ∈ R, |v0(t)| ≥ 1
n

}
) = 0. Consequently,

measa({t ∈ R/v0(t) 6= 0}) = measa

( ∞⋃
n=1

{
t ∈ R, |v0(t)| ≥

1
n

})
≤

∞

∑
n=1

measa

({
t ∈ R, |v0(t)| ≥

1
n

})
= 0

which implies that v0 = 0 and contradicts ‖v0‖Xα = 1. Then (3.17) holds. For any n ∈ N, let

Λ0 = {t ∈ R/ |v0(t)| ≥ δ0} , Λn =

{
t ∈ R/ |vn(t)|<

1
n

}
.

Then, for n large enough, we have from (3.15) and (3.17) that

measa (Λ0∩Λn)≥ measa(Λ0)−measa(Λ
c
n)≥ δ0−

1
n
≥ δ0

2
.

Therefore, for n large enough, one obtains∫
R

a(t) |vn− v0|2 dt ≥
∫

Λ0∩Λn

a(t) |vn− v0|2 dt

≥ 1
2

∫
Λ0∩Λn

a(t) |v0|2 dt−
∫

Λ0∩Λn

a(t) |vn|2 dt

≥ (
δ 2

0
2
− 1

n2 )measa(Λ0∩Λn)

≥ (
δ 2

0
2
− 1

n2 )
δ0

2
≥

δ 3
0
8
,

which contradicts (3.16). Hence (3.14) holds. For u ∈ X̃ \{0}, set

Λε0(u) = {t ∈ R/ |u(t)| ≥ ε0 ‖u‖Xα} .

Since measa(Λε0(u))≥ ε0, ∀u ∈ X̃ \{0}, there exists ρ > 0 satisfying

(3.18) measa(Λε0(u)
⋂

Bρ(0))≥
ε0

2
, ∀u ∈ X̃ \{0} .

By (G2), there exists R > 0 such that

(3.19) G(u(t))≥ 2
ε3

0
|u(t)|2 ≥ 2

ε0
‖u‖2
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for all u∈ X̃ \{0} and t ∈Ωε0(u)=Λε0(u)
⋂

Bρ(0) with ‖u‖Xα ≥R. Then, for any u∈ X̃ \BR(0),
it follows from (3.1), (3.18), and (3.19) that

f (u) =
1
2
‖u‖2

Xα −
∫
R

a(t)G(u(t))dt

=
1
2
‖u‖2

Xα −
∫

Ωε0(u)
a(t)G(u(t))dt−

∫
R\Ωε0(u)

a(t)G(u(t))dt

≤ 1
2
‖u‖2

Xα −
∫

Ωε0(u)
a(t)G(u(t))dt

≤ 1
2
‖u‖2

Xα −
2
ε3

0

∫
Ωε0(u)

a(t) |u(t)|2 dt

≤ 1
2
‖u‖2

Xα −
2
ε0

∫
Ωε0(u)

a(t)‖u‖2
Xα dt

≤ 1
2
‖u‖2

Xα −
2
ε0

measa(Ωε0(u))‖u‖
2
Xα

≤ 1
2
‖u‖2

Xα −‖u‖2
Xα =−1

2
‖u‖2

Xα .

Thus there exists r > R such that f|X̃\Br(0) ≤ 0. �

The functional f is even and f (0) = 0, so Lemmas 3.1, 3.3, and 3.5 imply that f satisfies
all the conditions of Lemma 2.5. Consequently, f possesses an unbounded sequence of critical
values which proves Theorem 1.2.

4. PROOF OF THEOREM 1.3 AND THEOREM 1.4

Lemma 4.1. Assume that (L1)− (L3), (G1), (G2), (G5), and (G6) are satisfied. Then f verifies
(C)−sequence.

Proof. Let (un)⊂ Xα be a (C)−sequence. Then there is c1 > 0 satisfying

(4.1) | f (un)| ≤ c1 and
∥∥ f ′(un)

∥∥(1+‖un‖Xα )≤ c1, ∀n ∈ N.

We claim that (un) is bounded. Assume indirectly that (un) is unbounded. Taking a subsequence
if necessary, we may assume that

(4.2) ‖un‖Xα −→+∞ and vn =
un

‖un‖Xα

⇀ v0 as n−→ ∞.

By Lemma 2.2 and (4.2), without loss of generality, we have

(4.3) vn −→ v0 both in L2
a(R) and Lν

a (R) and vn(t)−→ v0(t) a.e. t ∈ R

as n−→ ∞.
Case 1. v0 6= 0 occurs. The proof is similar to the case 1 in the proof of Lemma 3.3.
Case 2. v0 = 0 occurs. Let (sn)⊂ [0,1] be a sequence such that

f (snun) = max
s∈[0,1]

f (sun).



EXISTENCE AND MULTIPLICITY OF SOLUTIONS 15

By (G5) and (4.3), we obtain∣∣∣∣∫R a(t)G(4
√

σc1vn(t))dt
∣∣∣∣

≤ d0

[
16σc1

∫
R

a(t) |vn(t)|2 dt +(4
√

σc1)
ν

∫
R

a(t) |vn(t)|ν dt
]
−→ 0 as n−→ ∞,

which implies

(4.4)
∫
R

a(t)G(4
√

σc1vn(t))dt −→ 0 as n−→ ∞.

By the definition of sn and (4.4), for n large enough, we have

(4.5)
f (snun)≥ f (

4
√

σc1

‖un‖2 un) = f (4
√

σc1vn)

= 8σc1−
∫
R

a(t)G(4
√

σc1vn(t))dt ≥ 4σc1.

Since f (0) = 0 and | f (un)| ≤ c1, then sn ∈]0,1[. Hence, one has

(4.6) ‖snun‖2−
∫
R

a(t)∇G(snun) · snundt = f ′(snun)snun = sn
d
ds

( f (sun)|s=sn = 0.

It follows from (4.6) and (G6) that∫
R

a(t)[
1
2

∇G(un) ·un−G(un)]dt =
∫
R

a(t)G̃(un(t))dt

≥ 1
σ

∫
R

a(t)G̃(snun)dt

=
1
σ

∫
R

a(t)[
1
2

∇G(snun) · snun−G(snun)]dt

=
1
σ
[
1
2
‖snun‖2

Xα −
∫
R

a(t)G(snun)dt

=
1
σ

f (snun),

which together with (4.5) implies that

(4.7)
∫
R

a(t)[
1
2

∇G(un)un−G(un)]dt ≥ 4c1,

for n large enough. However, we can deduce from (4.1) that∣∣∣∣∫R a(t)[
1
2

∇G(un)un−G(un)]dt
∣∣∣∣= 1

2

∣∣2 f (un)− f ′(un)un
∣∣≤ 3

2
c1,

for all n ∈ N, which contradicts (4.7). Hence (un) is bounded in Xα . Similar to the proof of
Lemma 3.3, we can prove that f satisfies (C)−condition. The proof of Lemma 4.1 is completed.

�

Proof of Theorem 1.3. The condition f (0) = 0 and Lemmas 3.1, 3.4, and 4.1 imply that
functional f verifies all the conditions of Lemma 2.4. Therefore, Lemma 2.4 implies that f
possesses a critical point u satisfying f (u) ≥ α > 0. Hence problem (FH S ) possesses a
nontrivial solution.
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Proof of Theorem 1.4. Since f is even, then condition f (0) = 0 and Lemmas 3.1, 3.5, and
4.1 imply that functional f verifies all the conditions of Lemma 2.5. Therefore, Lemma 2.5
implies that f has an unbounded sequence of critical values. Hence problem (FH S ) has
infinitely many nontrivial solutions.
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