

Journal of Nonlinear Functional Analysis Available online at http://jnfa.mathres.org



# EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF FRACTIONAL HAMILTONIAN SYSTEMS WITH SEPARATED VARIABLES

#### MOHSEN TIMOUMI

Department of Mathematics, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia

**Abstract.** In this paper, we study the existence and multiplicity of solutions of a class of fractional Hamiltonian systems with variable separated type nonlinear terms

$$\begin{cases} {}_{t}D^{\alpha}_{\infty}({}_{-\infty}D^{\alpha}_{t}u)(t) + L(t)u(t) = a(t)\nabla G(u(t)), \ t \in \mathbb{R}, \\ u \in H^{\alpha}(\mathbb{R}), \end{cases}$$

where L satisfies a new condition and the potential G satisfies a superquadratic condition weaker than the wellknown Ambrosetti-Rabinowitz condition. Moreover, under a new mixed condition, we establish a compact embedding theorem.

Keywords. Fractional Hamiltonian systems; Multiple solutions; Separated variables; Variational methods.

### 1. INTRODUCTION

In this paper, we are interested in the existence and multiplicity of solutions of a class of fractional Hamiltonian systems of the following form

$$(\mathscr{FHS}) \qquad \begin{cases} {}_{t}D^{\alpha}_{\infty}({}_{-\infty}D^{\alpha}_{t}u)(t) + L(t)u(t) = \nabla W(t,u(t)), \ t \in \mathbb{R}, \\ u \in H^{\alpha}(\mathbb{R}), \end{cases}$$

where  $_{-\infty}D_t^{\alpha}$  and  $_tD_{\infty}^{\alpha}$  are left and right Liouville-Weyl fractional derivatives of order  $\frac{1}{2} < \alpha < 1$ on the whole axis respectively,  $L \in C(\mathbb{R}, \mathbb{R}^{N^2})$  is a symmetric matrix valued function unnecessary coercive, and  $W : \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$  is a continuous function, differentiable in the second variable with continuous derivative  $\frac{\partial W}{\partial x}(t, x) = \nabla W(t, x)$ .

The existence and multiplicity of solutions of fractional differential equations were established by the tools of nonlinear analysis, such as fixed point theory [1, 16], topological degree theory [7], comparison methods [9], and so on. Over the last four decades, the critical point theory has become a basic tool for studying the existence of solutions of differential and partial differential equations with variational methods; see, e.g., [14, 18] and the references therein.

E-mail address: m\_timoumi@yahoo.com

Received April 15, 2023; Accepted July 12, 2023.

Inspired by the classical works in [14, 18], for the first time, the authors [8] demonstrated that the critical point theory and variational methods are an effective approach to tackle the existence of solutions for the following fractional boundary value problem

$$\begin{cases} {}_t D_T^{\alpha}({}_0D_t^{\alpha}u)(t) = \nabla W(t,u(t)), \ t \in [0,T], \\ u(0) = u(T), \end{cases}$$

and obtained the existence of at least one nontrivial solution.

In 2013, Torres [25] used the so-called Ambrosetti-Rabinowitz (( $\mathscr{AR}$ ) in short) condition and the Mountain Pass Theorem to obtain the existence of at least one nontrivial solution for problem ( $\mathscr{FHS}$ ):

 $(\mathscr{A}\mathscr{R})$  There exists a constant  $\mu > 2$  such that

$$0 < \mu W(t, x) \le \nabla W(t, x) \cdot x, \ \forall t \in \mathbb{R}, \ \forall x \in \mathbb{R}^N \setminus \{0\}$$

Here and in the following, "." denotes the standard inner product in  $\mathbb{R}^N$  and |.| is the induced norm.

Since then, the existence and multiplicity of solutions of  $(\mathcal{FHS})$  were studied extensively; see, e.g., [3, 4, 5, 6, 12, 13, 15, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32] and the references listed therein. As we know, condition  $(\mathscr{AR})$  is important to achieve mountain pass geometry structure of the energy functional and demonstrates the boundedness of the Palais-Smale sequence. There are many potentials which are superquadratic as  $|x| \longrightarrow \infty$ , but do not satisfy the  $(\mathscr{AR})$ -condition. In recent years, authors have paid much attention to weak this condition. In 2014, Chen [4] considered the following generalized superquadratic condition

(1.1)  $\widetilde{W}(t,x) = \frac{1}{2}\nabla W(t,x) \cdot x - W(t,x) \ge 0$  and there exist constants  $c_0, r_0 > 0$  and  $\sigma > 1$  such that

$$|W(t,x)|^{\sigma} \leq c_0 |x|^{2\sigma} \widetilde{W}(t,x), \ \forall (t,x) \in \mathbb{R} \times \mathbb{R}^N, \ |x| \geq r_0.$$

Instead of (1.1), the authors [4] considered also the superquadratic condition

(1.2) There exist constants  $\mu > 2$  and  $\rho > 0$  such that

$$\mu W(t,x) \leq \nabla W(t,x) \cdot x + \rho |x|^2, \ \forall (t,x) \in \mathbb{R} \times \mathbb{R}^N.$$

In 2018, the author [23] considered the following generalized superquadratic condition (1.3) There exist constant  $c_0, r_0 > 0$  and  $v \in [0, 2]$  such that

$$|W(t,x)| \leq c_0 |x|^{2-\nu} \widetilde{W}(t,x), \ \forall (t,x) \in \mathbb{R} \times \mathbb{R}^N, \ |x| \geq r_0.$$

Besides, in [21], the author considered the following condition

(1.4) There is  $\sigma \ge 1$  such that

$$\widetilde{W}(t,sx) \leq \sigma \widetilde{W}(t,x), \ \forall (s,t,x) \in [0,1] \times \mathbb{R} \times \mathbb{R}^{N}.$$

Conditions (1.1)-(1.4) can be seen as the generalization or supplements of  $(\mathscr{AR})$ -condition. In [30], Yuan and Zhang considered the classical Hamiltonian system

$$\ddot{\mathcal{H}}(\mathcal{H}) \qquad \qquad \ddot{u}(t) - L(t)u(t) + \nabla W(t,u(t)) = 0$$

with variable separated type nonlinear terms W(t,x) = a(t)G(x), where  $a \in C(\mathbb{R}, \mathbb{R}^*_+)$  and  $G \in C^1(\mathbb{R}^N, \mathbb{R})$ . They studied the existence and multiplicity of homoclinic solutions of system  $(\mathscr{H}\mathscr{S})$  under suitable assumptions. In particular, they assumed that *a* satisfies condition  $\lim_{|t|\to\infty} a(t) = 0$ , and *G* satisfies  $(\mathscr{A}\mathscr{R})$ -condition. In recent years, Wu et al. [27] considered the fractional Hamiltonian system  $(\mathscr{F}\mathscr{H}\mathscr{S})$  with variable separated type nonlinear terms

W(t,x) = a(t)G(x), where  $a \in C(\mathbb{R},\mathbb{R}_+)$  and  $G \in C^1(\mathbb{R}^N,\mathbb{R})$ . They studied the existence and multiplicity of solutions of system  $(\mathscr{FHS})$  under suitable assumptions among which the following two conditions

(1.5) 
$$\frac{a(t)}{l(t)} \longrightarrow 0 \text{ as } |t| \longrightarrow \infty, \text{ where } l(t) = \inf_{|\xi|=1} L(t)\xi \cdot \xi.$$

(1.6) There are  $\mu > 0$  and  $d_1, \rho_{\infty} > 0$  satisfying

$$\nabla G(x) \cdot x - \mu G(x) \ge -d_1 |x|^2, \ \forall |x| \ge \rho_{\infty}.$$

Condition (1.6) is a generalization of  $(\mathscr{AR})$ -condition.

In this paper, inspired by the above results, we focus on the existence and multiplicity of solutions of the fractional Hamiltonian system  $(\mathscr{FHS})$  with variable separation nonlinear terms W(t,x) = a(t)G(x), where  $a \in C(\mathbb{R}, \mathbb{R}^*_+)$ , *L* satisfies a new condition, and  $G \in C^1(\mathbb{R}^N, \mathbb{R})$  satisfies some kind of superquadratic conditions weaker than well-known Ambresetti-Rabinowitz condition. Precisely, we consider the following assumptions

 $(L_1) L \in C(\mathbb{R}, \mathbb{R}^{N^2})$  is a symmetric matrix for all  $t \in \mathbb{R}$ , and there exists a constant  $l_0 > 0$  such that

$$L(t)x \cdot x \ge l_0 |x|^2, \ \forall (t,x) \in \mathbb{R} \times \mathbb{R}^N;$$

 $(L_2)$  There is a constant d > 0 verifying

$$a(t) \leq dl(t), \forall t \in \mathbb{R};$$

(*L*<sub>3</sub>) There exits a constant  $r_0 > 0$  satisfying

$$\lim_{|s| \to \infty} meas\left(\left\{t \in [s - r_0, s + r_0] / \frac{l(t)}{a(t)} < b\right\}\right) = 0, \ \forall b > 0;$$

(G<sub>1</sub>) 
$$G(0) = 0$$
, and  $\nabla G(x) = o(|x|)$  as  $|x| \longrightarrow 0$ ;

(G<sub>2</sub>) 
$$\lim_{|x| \to \infty} \frac{G(x)}{|x|^2} = +\infty;$$

(G<sub>3</sub>) 
$$\widetilde{G}(t,x) = \frac{1}{2} \nabla G(x) \cdot x - G(x) \ge 0, \ \forall x \in \mathbb{R}^N;$$

(G<sub>4</sub>) 
$$\lim_{|x| \to \infty} \frac{\widetilde{G}(x)}{G(x)} |x|^2 = +\infty.$$

Our first results are the following:

**Theorem 1.1.** If  $(L_1) - (L_3)$  and  $(G_1) - (G_4)$  hold, then fractional Hamiltonian system ( $\mathscr{FHS}$ ) has at least one nontrivial solution.

**Theorem 1.2.** Assume that  $(L_1) - (L_3)$  and  $(G_1) - (G_4)$  are satisfied and G is even. Then fractional Hamiltonian system ( $\mathcal{FHS}$ ) possesses infinitely many nontrivial solutions.

**Remark 1.3.** Consider the following example

$$G(x) = |x|^{s} + (s-2) |x|^{s-\varepsilon} \sin^{2}(\frac{|x|^{\varepsilon}}{\varepsilon}),$$

where s > 2 and  $\varepsilon \in ]0, s-2[$ . It is easy to check that *G* satisfies conditions  $(G_1) - (G_4)$ , however *G* satisfies neither condition  $(\mathscr{A}\mathscr{R})$  nor its generalization (1.6).

Next, consider the assumptions

 $(G_5)$  There are  $d_0 > 0$  and v > 2 satisfying

$$|G(x)| \le d_0(|x|^2 + |x|^{\nu}), \ \forall x \in \mathbb{R}^N;$$

 $(G_6)$  There is a constant  $\sigma \ge 1$  satisfying

$$\widetilde{G}(sx) \leq \sigma \widetilde{G}(x), \ \forall (s,x) \in [0,1] imes \mathbb{R}^N$$

Now, we give our second results

**Theorem 1.4.** Assume that  $(L_1) - (L_3)$ ,  $(G_1)$ ,  $(G_2)$ ,  $(G_5)$ , and  $(G_6)$  are satisfied. Then fractional Hamiltonian system ( $\mathcal{FHS}$ ) admits at least one nontrivial solution.

**Theorem 1.5.** Assume that  $(L_1) - (L_3)$ ,  $(G_1)$ ,  $(G_2)$   $(G_5)$ , and  $(G_6)$  are satisfied and G is even. Then fractional Hamiltonian system  $(\mathcal{FHS})$  possesses infinitely many nontrivial solutions.

**Remark 1.6.** Let  $G(x) = |x|^2 ln(e+|x|) - \frac{1}{2}|x|^2 + e|x| - e^2(ln(e+|x|) - 1)$ . It is easy to check that  $(G_1)$ ,  $(G_2)$ ,  $(G_5)$ , and  $(G_6)$  hold. However, G satisfies neither condition  $(\mathscr{AR})$  nor its generalization (1.6).

**Remark 1.7.** Let  $G(x) = |x|^2 ln(1+|x|^2)$ . Then we easily demonstrate that conditions  $(G_1)$ ,  $(G_2)$ ,  $(G_5)$ , and  $(G_6)$  hold. However, G does not satisfy  $(\mathscr{A}\mathscr{R})$ -condition.

The remaining of this paper is organized as follows. In Section 2, we introduce some preliminary results and prove an interesting compact embedding theorem. Section 3 is reserved to the proof of our main results.

#### 2. PRELIMINARIES

2.1. Liouville-Weyl fractional calculus. The Liouville-Weyl fractional integrals of order  $0 < \alpha < 1$  on the whole axis  $\mathbb{R}$  are defined as (see [10, 11, 17])

(2.1) 
$$_{-\infty}I_t^{\alpha}u(t) = \frac{1}{\Gamma(\alpha)}\int_{-\infty}^t (t-x)^{\alpha-1}u(x)dx$$

and

(2.2) 
$${}_{t}I_{\infty}^{\alpha}u(t) = \frac{1}{\Gamma(\alpha)}\int_{t}^{\infty}(x-t)^{\alpha-1}u(x)dx.$$

The Liouville-Weyl fractional derivatives of order  $0 < \alpha < 1$  on the whole axis  $\mathbb{R}$  are defined as the left-inverse operators of the corresponding Liouville-Weyl fractional integrals (see [10, 11, 17])

(2.3) 
$${}_{-\infty}D_t^{\alpha}u(t) = \frac{d}{dt}({}_{-\infty}I_t^{1-\alpha}u)(t),$$

and

(2.4) 
$${}_{t}D^{\alpha}_{\infty}u(t) = -\frac{d}{dt}({}_{t}I^{1-\alpha}_{\infty}u)(t)$$

The definitions of (2.3) and (2.4) may be written in an alternative form as follows

(2.5) 
$$_{-\infty}D_t^{\alpha}u(t) = \frac{1}{\Gamma(1-\alpha)}\int_0^{\infty}\frac{u(t) - u(t-x)}{x^{\alpha+1}}dx,$$

and

(2.6) 
$${}_{t}D^{\alpha}_{\infty}u(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{u(t) - u(t+x)}{x^{\alpha+1}} dx.$$

2.2. Fractional derivative space. For  $\alpha > 0$ , define the semi-norm

$$|u|_{I^{\alpha}_{-\infty}} = \|_{-\infty} D^{\alpha}_{t} u\|_{L^{2}}$$

and the norm

$$\|u\|_{I^{\alpha}_{-\infty}} = (\|u\|_{L^2} + |u|^2_{I^{\alpha}_{-\infty}})^{\frac{1}{2}},$$

and let

$$I^{\alpha}_{-\infty} = \overline{C^{\infty}_{0}(\mathbb{R})}^{\|.\||_{I^{\alpha}_{-\infty}}},$$

where

$$C_0^{\infty}(\mathbb{R}) = \left\{ u \in C^{\infty}(\mathbb{R}, \mathbb{R}^N) / \lim_{|t| \longrightarrow \infty} u(t) = 0. \right\}.$$

Now, we can define the fractional Sobolev space  $H^{\alpha}(\mathbb{R})$  using the Fourier transform  $\widehat{u}(s) =$  $\int_{-\infty}^{\infty} e^{-ist} u(t) dt$ . Choose  $0 < \alpha < 1$ , define the semi-norm

$$|u|_{\alpha} = \left\| |s|^{\alpha} \, \widehat{u} \right\|_{L^2}$$

and the norm

$$||u||_{\alpha} = (||u||_{L^2} + |u|_{\alpha}^2)^{\frac{1}{2}},$$

and let

$$H^{\alpha}(\mathbb{R}) = \overline{C_0^{\infty}(\mathbb{R})}^{\|.\|_{\alpha}}.$$

Moreover, we notice that a function  $u \in L^2(\mathbb{R})$  belongs to  $I_{-\infty}^{\alpha}$  if and only if

$$|s|^{\alpha} \widehat{u} \in L^2(\mathbb{R}).$$

Especially, we have

$$|u|_{I^{\alpha}_{-\infty}} = \left\| |s|^{\alpha} \,\widehat{u} \right\|_{L^2}.$$

Therefore,  $I^{\alpha}_{-\infty}$  and  $H^{\alpha}(\mathbb{R})$  are isomorphic with equivalent semi-norms and norms. Let  $C(\mathbb{R})$  denote the space of continuous functions from  $\mathbb{R}$  into  $\mathbb{R}^N$ . The following Sobolev lemma is be useful.

**Lemma 2.1.** [25, Theorem 2.1] If  $\alpha > \frac{1}{2}$ , then  $H^{\alpha}(\mathbb{R}) \subset C(\mathbb{R})$ , and there exists a constant  $C_{\alpha}$ such that

(2.7) 
$$\|u\|_{L^{\infty}} = \sup_{t \in \mathbb{R}} |u(t)| \le C_{\alpha} \|u\|_{\alpha}, \forall u \in H^{\alpha}(\mathbb{R}).$$

Let

$$X^{\alpha} = \left\{ u \in H^{\alpha}(\mathbb{R}) / \int_{\mathbb{R}} \left[ \left| -\infty D_t^{\alpha} u(t) \right|^2 + L(t) u(t) \cdot u(t) \right] dt < \infty \right\},$$

then  $X^{\alpha}$  is a reflexive and separable Hilbert space with the inner product

$$\langle u, v \rangle_{X^{\alpha}} = \int_{\mathbb{R}} \left[ -\infty D_t^{\alpha} u(t) \cdot -\infty D_t^{\alpha} v(t) + L(t) u(t) \cdot v(t) \right] dt$$

and the corresponding norm  $||u||_{X^{\alpha}}^2 = \langle u, u \rangle_{X^{\alpha}}$ . Evidently,  $X^{\alpha}$  is continuously embedded into  $H^{\alpha}(\mathbb{R})$ . For  $p \in [2, \infty[$ , define

$$L^p_a(\mathbb{R}) = \left\{ u : \mathbb{R} \longrightarrow \mathbb{R}^N \text{ measurable} / \int_{\mathbb{R}} a(t) |u(t)|^p < \infty \right\}$$

equipped with norm  $\|.\|_{L^p_a} = \left(\int_{\mathbb{R}} a(t) |u(t)|^p\right)^{\frac{1}{p}}$ . By  $(L_2)$ , we have for  $u \in X^{\alpha}$ 

$$\begin{split} \int_{\mathbb{R}} a(t) |u(t)|^2 dt &\leq d \int_{\mathbb{R}} l(t) |u(t)|^2 dt \leq d \int_{\mathbb{R}} L(t) u(t) \cdot u(t) dt \\ &\leq d \int_{\mathbb{R}} [|_{-\infty} D_t^{\alpha} u(t)|^2 + L(t) u(t) \cdot u(t)] dt \\ &= \eta_2^2 ||u||_{X^{\alpha}}^2, \end{split}$$

where  $\eta_2 = \sqrt{d}$ . For  $p \in ]2, \infty[$  and  $u \in X^{\alpha}$ , we have

$$\int_{\mathbb{R}} a(t) |u(t)|^{p} dt \leq ||u||_{L^{\infty}}^{p-2} \int_{\mathbb{R}} a(t) |u(t)|^{2} dt \leq C_{\alpha}^{p-2} ||u||_{X^{\alpha}}^{p-2} ||u||_{L^{2}_{a}}^{2} \leq \eta_{p}^{p} ||u||_{X^{\alpha}}^{p},$$

where  $\eta_p^p = dC_{\alpha}^{p-2}$ . Hence, for all  $p \in [2,\infty]$ ,  $X^{\alpha}$  is continuously embedded in  $L_a^p(\mathbb{R})$  and there exists a constant  $\eta_p > 0$  such that

(2.8) 
$$\|u\|_{L^p_a} \leq \eta_p \, \|u\|_{X^\alpha}, \, \forall u \in X^\alpha.$$

**Lemma 2.2.** Under conditions  $(L_1) - (L_3)$ , for all  $p \in [2, \infty[$ , embedding  $X^{\alpha} \hookrightarrow L^p_a(\mathbb{R})$  is compact.

*Proof.* Let  $\{u_n\} \subset X^{\alpha}$  be a bounded sequence. Then there exists  $M_0 > 0$  such that

$$||u_n||_{X^{\alpha}} \leq M_0, \forall n \in \mathbb{N}.$$

Taking a subsequence if necessary, we can assume that  $u_n \rightharpoonup u_0$  in  $X^{\alpha}$ . Setting  $v_n = u_n - u_0$ , one has  $v_n \rightharpoonup 0$  in  $X^{\alpha}$ .

Next, we prove that  $v_n \to 0$  in  $L^2_a(\mathbb{R})$ . Choose  $\{s_i\} \subset \mathbb{R}$  such that  $\mathbb{R} = \bigcup_{i=1}^{\infty} I_{r_0}(s_i)$  and each  $t \in \mathbb{R}$  is contained by two such intervals  $I_{r_0}(s_i) = [s_i - r_0, s_i + r_0]$  at most. For b, r > 0, set

$$A(b,r) = \left\{ t \in I_r^c(0) : \frac{l(t)}{a(t)} < b \right\}$$

and

$$B(b,r) = \left\{ t \in I_r^c(0) : \frac{l(t)}{a(t)} \ge b \right\}.$$

We have

$$\int_{B(b,r)} a(t) |v_n(t)|^2 dt \leq \frac{1}{b} \int_{B(b,r)} l(t) |v_n(t)|^2 dt \leq \frac{1}{b} ||v_n||_{X^{\alpha}}^2 \leq \frac{4M_0^2}{b}.$$

~

Letting  $\varepsilon > 0$ , one has that there exists a constant  $b_{\varepsilon} > 0$  such that

(2.10) 
$$\int_{B(b_{\varepsilon},r)} a(t) |v_n(t)|^2 dt < \frac{\varepsilon}{4}, \ \forall n \in \mathbb{N}, \ \forall r > 0$$

Now, let  $\beta_r = \sup_{i \in \mathbb{N}} meas_a(A(b_{\varepsilon}, r) \cap I_{r_0}(s_i))$ . By (2.8) and Hölder's inequality, we obtain

$$\begin{split} &\int_{A(b_{\varepsilon},r)} a(t) |v_{n}(t)|^{2} dt \\ &= \int_{A(b_{\varepsilon},r) \cap \cup_{i=1}^{\infty} I_{r_{0}}(s_{i})} a(t) |v_{n}(t)|^{2} dt \\ &\leq \sum_{i=1}^{\infty} \int_{A(b_{\varepsilon},r) \cap I_{r_{0}}(s_{i})} a(t) |v_{n}(t)|^{2} dt \\ &\leq \sum_{i=1}^{\infty} (\int_{A(b_{\varepsilon},r) \cap I_{r_{0}}(s_{i})} a(t) dt)^{\frac{1}{2}} (\int_{A(b_{\varepsilon},r) \cap I_{r_{0}}(s_{i})} a(t) |v_{n}(t)|^{4} dt)^{\frac{1}{2}} \\ &\leq \sum_{i=1}^{\infty} (meas_{a}(A(b_{\varepsilon},r) \bigcap I_{r_{0}}(s_{i}))^{\frac{1}{2}} [(\int_{A(b_{\varepsilon},r) \cap I_{r_{0}}(s_{i})} a(t) |v_{n}(t)|^{4} dt)^{\frac{1}{4}}]^{2} \\ &\leq \beta_{r}^{\frac{1}{2}} \sum_{i=1}^{\infty} [(\int_{A(b_{\varepsilon},r) \cap I_{r_{0}}(s_{i})} a(t) |v_{n}(t)|^{4} dt)^{\frac{1}{4}}]^{2} \\ &\leq \beta_{r}^{\frac{1}{2}} \eta_{4}^{2} \sum_{i=1}^{\infty} \int_{A(b_{\varepsilon},r) \cap B_{r_{0}}(s_{i})} [|_{-t} D_{\infty}^{\alpha} v_{n}(t)|^{2} + L(t) v_{n}(t) \cdot v_{n}(t)] dt \\ &\leq 2\eta_{4}^{2} \beta_{r}^{\frac{1}{2}} \|v_{n}\|_{X^{\alpha}}^{2} \leq 8\eta_{4}^{2} \beta_{r}^{\frac{1}{2}} M_{0}^{2}. \end{split}$$

By  $(L_3)$ , there is a constant  $r_{\varepsilon} > 0$  satisfying

(2.11) 
$$\int_{A(b_{\varepsilon},r_{\varepsilon})} a(t) |v_n(t)|^2 dt < \frac{\varepsilon}{4}, \, \forall n \in \mathbb{N}.$$

Combining (2.10) and (2.11) yields

(2.12) 
$$\int_{I_{r_{\varepsilon}}^{c}(0)} a(t) |v_{n}(t)|^{2} dt = \int_{A(b_{\varepsilon}, r_{\varepsilon})} a(t) |v_{n}(t)|^{2} dt + \int_{B(b_{\varepsilon}, r_{\varepsilon})} a(t) |v_{n}(t)|^{2} dt$$
$$< \frac{\varepsilon}{2}, \ \forall n \in \mathbb{N}.$$

On the other hand, the Sobelev's compact embedding theorem implies that  $v_n \to 0$  in  $L^2_a(I_{r_{\varepsilon}}(0))$ . Hence, there exists a constant  $n_0 \in \mathbb{N}$  such that

(2.13) 
$$\int_{I_{r_{\varepsilon}}(0)} a(t) |v_n(t)|^2 dt < \frac{\varepsilon}{2}, \ \forall n \ge n_0,$$

which with (2.12) implies that  $v_n \longrightarrow 0$  in  $L^2_a(\mathbb{R})$ . For  $p \in ]2, \infty[$ , we have

$$\int_{\mathbb{R}} a(t) |v_n(t)|^p dt \le ||v_n||_{L^{\infty}}^{p-2} \int_{\mathbb{R}} a(t) |v_n(t)|^2 dt$$
$$\le C_{\alpha}^{p-2} ||v_n||_{X^{\alpha}}^{p-2} ||v_n||_{L^2_{\alpha}}^2$$
$$\le C_{\alpha}^{p-2} (2M_0)^{p-2} ||v_n||_{L^2_{\alpha}}^2.$$

Hence  $v_n \longrightarrow 0$  as  $n \longrightarrow \infty$ , and embedding  $X^{\alpha} \hookrightarrow L^p_a(\mathbb{R})$  is compact.

The following critical point lemmas is needed in the proof of our results.

**Definition 2.3.** Let X be a Banach space with norm  $\|.\|$ . We say that  $f \in C^1(X, \mathbb{R})$  satisfies a) (PS)-condition if any sequence  $(u_n) \subset X$  satisfying

$$(f(u_n))$$
 is bounded and  $f'(u_n) \longrightarrow 0$  as  $n \longrightarrow \infty$ 

has a convergent subsequence,

b) (*C*)-condition if any sequence  $(u_n) \subset X$  satisfying

$$(f(u_n))$$
 is bounded and  $||f'(u_n)|| (1+||u_n||) \longrightarrow 0$  as  $n \longrightarrow \infty$ 

possesses a convergent subsequence.

**Lemma 2.4.** [18] Let X be a real Banach space, and let  $f \in C^1(X, \mathbb{R})$  satisfy (PS)-condition. Suppose that f(0) = 0 and

(i) there are  $\rho, \alpha > 0$ , such that  $f_{|\partial B_{\rho}} \ge \alpha$ , where  $B_{\rho} = \{u \in X / ||u|| < \rho\}$ ,

(ii) there is an  $e \in X \setminus \overline{B}_{\rho}$  such that f(e) < 0.

Then f has a critical value  $c \ge \alpha$ . Moreover c can be characterized as

$$c = \inf_{\boldsymbol{\gamma} \in \Gamma} \max_{t \in [0,1]} f(\boldsymbol{\gamma}(t)),$$

where

$$\Gamma = \{\gamma \in C([0,1],X) : \gamma(0) = 0, \gamma(1) = e\}.$$

**Lemma 2.5.** [18] Let X be an infinite dimensional Banach space,  $X = Y \oplus Z$ , where Y is finite dimensional space, and let  $f \in C^1(X, \mathbb{R})$  satisfy (PS)-condition. Assume that f(0) = 0, f is even, and

(a) There exist constants  $\rho, \alpha > 0$  such that  $f_{|\partial B_{\rho} \cap Z} \ge \alpha$ ;

(b) For any finite dimensional subspace  $\widetilde{X} \subset X$ , there is  $r = r(\widetilde{X}) > 0$  such that  $f(u) \leq 0$  on  $\widetilde{X} \setminus B_r$ .

Then f possesses an unbounded sequence of critical values.

**Remark 2.6.** As in [2], a deformation lemma can be proved with (C)-condition replacing (PS)-condition, and it turns out that Lemmas 2.4 and 2.5 still hold true with (C)-condition instead of (PS)-condition.

### 3. PROOF OF THEOREM 1.1 AND THEOREM 1.2

Define the energy functional f associated to the fractional Hamiltonian system  $(\mathcal{FHP})$ 

$$f(u) = \frac{1}{2} \int_{\mathbb{R}} \left[ \left| -\infty D_t^{\alpha} u(t) \right|^2 + L(t)u(t) \cdot u(t) \right] dt - \int_{\mathbb{R}} W(t, u) dt, \ u \in X^{\alpha}$$

defined on the space  $X^{\alpha}$  introduced in Section 2. It is known that, under assumption  $(G_1)$ ,  $f \in C^1(X^{\alpha}, \mathbb{R})$  and, for all  $u, v \in X^{\alpha}$ ,

$$f'(u)v = \int_{\mathbb{R}} \left[ -\infty D_t^{\alpha} u(t) \cdot -\infty D_t^{\alpha} v(t) + L(t)u(t) \cdot v(t) \right] dt - \int_{\mathbb{R}} \nabla W(t, u) \cdot v(t) dt$$
$$= \frac{1}{2} \langle u, v \rangle_{X^{\alpha}} - \int_{\mathbb{R}} \alpha(t) \nabla G(u(t)) \cdot v(t) dt.$$

Moreover, the critical points of f on  $X^{\alpha}$  are solutions to  $(\mathscr{FHS})$ . We shall prove that problem  $(\mathscr{FHS})$  has mountain pass type solutions. For this purpose, we apply Lemmas 2.4 and 2.5 to functional f on  $X^{\alpha}$ . We claim that, under  $(G_1)$  and  $(G_3)$ ,

$$(3.1) G(x) \ge 0, \ \forall x \in \mathbb{R}.$$

In fact, for  $x \in \mathbb{R}^N \setminus \{0\}$ , set  $\varphi(s) = \frac{G(sx)}{s^2}$  for s > 0. By  $(G_3)$ , we have, for  $s \in ]0, \infty[$ ,  $\varphi'(s) = \frac{2}{s^3} [\frac{1}{2} \nabla G(sx) \cdot sx - G(sx)] \ge 0$ ,

which means that  $\varphi$  is non-decreasing in  $]0,\infty[$ . Now, we have by  $(G_1)$  and the Hopital's property

$$\lim_{s \to 0} |\varphi(s)| = \lim_{s \to 0} \frac{|G(sx)|}{s^2} = \lim_{s \to 0} \frac{|\nabla G(sx) \cdot x|}{2s} \le \lim_{s \to 0} \frac{1}{2} \frac{|\nabla G(sx)|}{|sx|} |x|^2 = 0.$$

Hence, we have  $\varphi(s) \ge 0$  for all  $s \in ]0, \infty[$ . In particular  $\varphi(1) \ge 0$ , which is (3.1).

**Lemma 3.1.** Under conditions  $(L_1) - (L_3)$  and  $(G_1)$ , there are constants  $\rho, \nu > 0$  satisfying  $f_{|\partial B_{\rho}(0)} \geq \nu$ .

*Proof.* By  $(G_1)$ , there is r > 0 verifying

(3.2) 
$$|G(x)| \le \frac{1}{4d} |x|^2, \ \forall |x| \le r.$$

Set  $\rho = \frac{r}{\eta_{\infty}}$  and  $\nu = \frac{\rho^2}{4}$ . By (3.2) and  $(L_2)$ , we have, for  $||u||_{X^{\alpha}} = \rho$ ,

(3.3)  
$$f(u) = \frac{1}{2} ||u||_{X^{\alpha}}^{2} - \int_{\mathbb{R}} a(t)G(u(t))dt$$
$$\geq \frac{1}{2} ||u||_{X^{\alpha}}^{2} - \frac{1}{4d} \int_{\mathbb{R}} a(t) |u(t)|^{2} dt$$
$$\geq \frac{1}{2} ||u||_{X^{\alpha}}^{2} - \frac{1}{4} \int_{\mathbb{R}} l(t) |u(t)|^{2} dt$$
$$\geq \frac{1}{4} ||u||_{X^{\alpha}}^{2} = \mathbf{v}.$$

The proof of Lemma 3.1 is completed.

**Lemma 3.2.** Assume that  $(L_1) - (L_3)$  and  $(G_1)$  are satisfied. Then  $\nabla G(u_n) \longrightarrow \nabla G(u)$  in  $L^2_a(\mathbb{R})$  if  $u_n \rightharpoonup u$  in  $X^{\alpha}$ .

*Proof.* Let  $u_n \rightharpoonup u$  in  $X^{\alpha}$ . Then there exists K > 0 such that

(3.4) 
$$\sup_{n\in\mathbb{N}} \|u_n\|_{X^{\alpha}} \leq K \text{ and } \|u_n\|_{L^{\infty}} \leq K, \forall n\in\mathbb{N}.$$

We claim that  $\nabla G(u_n) \longrightarrow \nabla G(u)$  in  $L^2_a(\mathbb{R})$ . Otherwise, by Lemma 2.2, there is a subsequence  $(u_{n_k})$  satisfying

(3.5) 
$$u_{n_k} \longrightarrow u \text{ in } L^2_a(\mathbb{R}) \text{ and } u_{n_k}(t) \longrightarrow u(t) \text{ a.e.}$$

and

(3.6) 
$$\int_{\mathbb{R}} a(t) |\nabla G(u_{n_k}(t)) - \nabla G(u(t))| dt \ge \varepsilon_0, \ \forall k \in \mathbb{N}$$

for some  $\varepsilon_0 > 0$ . By (3.5) and going to a subsequence if necessary, we can assume that  $\sum_{k=1}^{\infty} ||u_{n_k} - u||_{L^2_a} < \infty$ . Let  $v(t) = \sum_{k=1}^{\infty} |u_{n_k}(t) - u(t)|$  for all  $t \in \mathbb{R}$ . Then  $v \in L^2_a(\mathbb{R})$ . From  $(G_1)$  and (3.4), we can find a constant  $K_1 > 0$  such that

$$(3.7) |\nabla G(u_{n_k}(t))| \le K_1 |u_{n_k}(t)| \text{ and } |\nabla G(u(t))| \le K_1 |u(t)|, \ \forall k \in \mathbb{N},$$

which implies

$$\begin{aligned} |\nabla G(u_{n_k}(t)) - \nabla G(u(t))|^2 &\leq K_1^2 [|u_n(t)| + |u(t)|]^2 \\ &\leq K_1^2 [|u_n(t) - u(t)| + 2 |u(t)|]^2 \\ &\leq 8K_1^2 [|v(t)| + |u(t)|]^2 = h(t). \end{aligned}$$

Since  $h \in L^2_a(\mathbb{R})$ , then the Lebesgue's dominated convergence theorem implies

$$\lim_{k \to \infty} \int_{\mathbb{R}} a(t) |\nabla G(u_{n_k}(t)) - \nabla G(u(t))|^2 dt = \int_{\mathbb{R}} a(t) \lim_{k \to \infty} |\nabla G(u_{n_k}(t)) - \nabla G(u(t))|^2 dt = 0,$$

which contradict (3.6). Hence the claim above is true and the proof of Lemma 3.2 is completed.  $\Box$ 

**Lemma 3.3.** Under assumptions  $(L_1) - (L_3)$ ,  $(G_1)$ ,  $(G_2)$ , and  $(G_4)$ , f verifies the (C)-condition. *Proof.* Let  $\{u_n\} \subset X^{\alpha}$  be a (C)-sequence of f, that is,  $(f(u_n))$  is bounded and  $||f'(u_n)|| (1 + ||u_n||) \longrightarrow 0$  as  $n \longrightarrow \infty$ ,. Then there exists a constant  $c_1 > 0$  such that

(3.8) 
$$|f(u_n)| \le c_1 \text{ and } ||f'(u_n)|| (1 + ||u_n||_{X^{\alpha}}) \le c_1, \forall n \in \mathbb{N}.$$

We claim that  $(u_n)$  is bounded. Otherwise, we assume that  $||u_n||_{X^{\alpha}} \to \infty$  as  $n \to \infty$ . Setting  $v_n = \frac{u_n}{\|u_n\|_{X^{\alpha}}}$ , one has  $\|v_n\|_{X^{\alpha}} = 1$ , which implies that there is a subsequence of  $(v_n)$ , still denoted by  $(v_n)$ , such that  $v_n \rightharpoonup v_0$  in  $X^{\alpha}$ . We have

$$\left| \int_{\mathbb{R}} \frac{a(t)G(u_n(t))}{\|u_n\|^2} dt - \frac{1}{2} \right| = \frac{|-f(u_n)|}{\|u_n\|^2} \le \frac{c_1}{\|u_n\|^2},$$

which implies that

(3.9) 
$$\int_{\mathbb{R}} \frac{a(t)G(u_n(t))}{\|u_n\|^2} dt \longrightarrow \frac{1}{2} \text{ as } n \longrightarrow \infty.$$

We will discuss two cases.

Case 1:  $v_0 \neq 0$ .

Let  $\Lambda = \{t \in \mathbb{R}/v_0(t) \neq 0\}$ . Then we can see that  $meas_a(\Lambda) > 0$ . So there exists a constant R > 0 such that  $meas_a(\Omega) > 0$ , where  $\Omega = \Lambda \cap B_R(0)$ . Since  $||u_n||_{X^{\alpha}} \longrightarrow \infty$  as  $n \longrightarrow \infty$ , we have  $|u_n(t)| = |v_n(t)| ||u_n||_{X^{\alpha}} \longrightarrow +\infty$  as  $n \longrightarrow \infty$  for a.e  $t \in \Omega$ . By  $(G_2)$ , (3.1), and Fatou's lemma, we have

$$\begin{split} \liminf_{n \to \infty} \int_{\mathbb{R}} \frac{a(t)G(u_n(t))}{\|u_n\|^2} dt \geq \liminf_{n \to \infty} \int_{\Omega} \frac{a(t)G(u_n(t))}{\|u_n\|^2} dt \\ \geq \int_{\Omega} \liminf_{n \to \infty} \frac{a(t)G(u_n(t))}{|u_n(t)|^2} |v_n(t)|^2 dt \\ = +\infty \end{split}$$

which can contradicts (3.9). Hence  $(u_n)$  is bounded.

Case 2:  $v_0 = 0$ .

By  $(G_1)$ , there exists a constant r > 0 such that

$$(3.10) 0 \le G(x) \le |x|^2, \ \forall |x| \le r.$$

By  $(G_4)$ , for any M > 0, there exists R > r such that

(3.11) 
$$\frac{G(x)}{G(x)}|x|^2 \ge M, \ \forall |x| \ge R.$$

Combining (3.10) and (3.11) yields

$$\begin{split} 0 &\leq \int_{\mathbb{R}} \frac{a(t)G(u_{n}(t))}{\|u_{n}\|^{2}} dt \leq \int_{\{t \in \mathbb{R}/|u_{n}| \leq r\}} \frac{a(t)G(u_{n}(t))}{|u_{n}(t)|^{2}} |v_{n}(t)|^{2} dt \\ &+ \int_{\{t \in \mathbb{R}/r < |u_{n}| \leq R\}} \frac{a(t)G(u_{n}(t))}{\|u_{n}\|^{2}} dt + \int_{\{t \in \mathbb{R}/|u_{n}| \geq R\}} \frac{a(t)G(u_{n}(t))}{|u_{n}(t)|^{2}} |v_{n}(t)|^{2} dt \\ &\leq \int_{\{t \in \mathbb{R}/|u_{n}| \leq r\}} a(t) |v_{n}(t)|^{2} dt + \int_{\{t \in \mathbb{R}/r < |u_{n}| \leq R\}} \frac{a(t)G(u_{n}(t))}{r^{2} \|u_{n}\|^{2}} |u_{n}(t)|^{2} dt \\ &+ \|v_{n}\|_{L^{\infty}} \int_{\{t \in \mathbb{R}/|u_{n}| \geq R\}} \frac{a(t)G(u_{n}(t))}{|u_{n}(t)|^{2}} dt \\ &\leq \|v_{n}\|_{L^{2}_{a}}^{2} + \frac{1}{r^{2}} \max_{|x| \leq r} G(x) \int_{\{t \in \mathbb{R}/r < |u_{n}| \leq R\}} a(t) |v_{n}(t)|^{2} dt \\ &+ \frac{1}{M} \|v_{n}\|_{L^{\infty}} \int_{\{t \in \mathbb{R}/|u_{n}| \geq R\}} a(t) [\frac{1}{2} \nabla G(u_{n}(t)) \cdot u_{n}(t) - G(u_{n}(t))] dt \\ &\leq (1 + \frac{1}{r^{2}} \max_{|x| \leq r} G(x)) \|v_{n}\|_{L^{2}_{a}}^{2} + \frac{1}{2M} \|v_{n}\|_{L^{\infty}} [f(u_{n}) - \frac{1}{2}f'(u_{n})u_{n}] \\ &\leq (1 + \frac{1}{r^{2}} \max_{|x| \leq r} G(x)) \|v_{n}\|_{L^{2}_{a}}^{2} + \frac{3c_{1}}{2M} \|v_{n}\|_{L^{\infty}}. \end{split}$$

By arbitrariness of M and Lemma 2.2, we obtain

.

$$\int_{\mathbb{R}} \frac{a(t)G(u_n(t))}{\|u_n\|^2} dt < \frac{1}{3}$$

for *n* large enough, which contradicts (3.9). Hence  $(u_n)$  is bounded in  $X^{\alpha}$ . Up to a subsequence if necessary, we can assume that  $u_n \rightharpoonup u$  in  $X^{\alpha}$ , which yields

$$(f'(u_n) - f'(u))(u_n - u) \longrightarrow 0 \text{ as } n \longrightarrow \infty,$$

and it follows from Hölder's inequality and Lemma 3.2 that

$$\left| \int_{\mathbb{R}} a(t) (\nabla G(u_n(t)) - \nabla G(u(t))) \cdot (u_n(t) - u(t)) dt \right|$$
  
 
$$\leq \|\nabla G(u_n) - \nabla G(u)\|_{L^2_a} \|u_n - u\|_{L^2_a} \longrightarrow 0 \text{ as } n \to \infty.$$

Hence, we deduce that

$$\|u_n - u\|_{X^{\alpha}}^2 = (f'(u_n) - f'(u))(u_n - u) + \int_{\mathbb{R}} a(t)(\nabla G(u_n(t)) - \nabla G(u(t))) \cdot (u_n(t) - u(t))dt \longrightarrow 0$$
  
as  $n \longrightarrow \infty$ . The proof of Lemma 3.3 is completed.

as  $n \longrightarrow \infty$ . The proof of Lemma 3.3 is completed.

## **Proof of Theorem 1.1.**

**Lemma 3.4.** Suppose that  $(L_1) - (L_3)$  and  $(G_2)$  hold. Then there exists  $e \in X^{\alpha}$  such that  $||e||_{X^{\alpha}} > \rho$  and  $f(e) \leq 0$ , where  $\rho$  is defined in Lemma 3.1.

*Proof.* Set  $e_0 \in C_0^{\infty}(]-1,1[)$  with  $||e_0||_{X^{\alpha}} = 1$ . For  $M > (2\int_{-1}^1 a(t) |e_0(t)|^2 dt)^{-1}$ , it follows from  $(G_2)$  that there exists a constant R > 0 such that

(3.12) 
$$G(x) \ge M |x|^2, \ \forall |x| \ge R.$$

Let  $D = \frac{1}{M} \max_{|x| \le R} G(x)$ . Then (3.12) implies

(3.13) 
$$G(x) \ge M(|x|^2 - D), \forall |x| \ge R.$$

By (3.13), for every  $\xi \in \mathbb{R}$ , we have

$$\begin{split} f(\xi e_0) &= \frac{\xi^2}{2} \|e_0\|_{X^{\alpha}}^2 - \int_{-1}^1 a(t) G(\xi e_0(t)) dt \\ &\leq \frac{\xi^2}{2} - \int_{-1}^1 a(t) M(\xi^2 |e_0(t)|^2 - D) dt \\ &\leq \frac{\xi^2}{2} - M\xi^2 \int_{-1}^1 a(t) |e_0(t)|^2 dt + MD \int_{-1}^1 a(t) dt \\ &\leq \frac{\xi^2}{2} (1 - 2M \int_{-1}^1 a(t) |e_0(t)|^2 dt) + MD \int_{-1}^1 a(t) dt, \end{split}$$

which implies that

$$f(\xi e_0) \longrightarrow -\infty as |\xi| \longrightarrow +\infty.$$

Hence there exists  $\xi_0 \in \mathbb{R}$  such that  $\|\xi_0 e_0\|_{X^{\alpha}} > \rho$  and  $f(\xi_0 e_0) < 0$ . Letting  $e(t) = \xi_0(t)e_0(t)$ , we finish the proof of Lemma 3.4.

By Lemmas 2.4, 3.1-3.4, and the fact f(0) = 0, we see that f possesses at least one nontrivial critical point u satisfying  $f(u) \ge \alpha$ . Since  $f(0) = 0 < \alpha$ , then u is a nontrivial solution of  $(\mathcal{FHS})$ .

### **Proof of Theorem 1.2.**

**Lemma 3.5.** Assume that  $(L_1) - (L_3)$ ,  $(G_1)$ , and  $(G_4)$  are satisfied. Then, for each finitedimensional subspace  $\widetilde{X} \subset X^{\alpha}$ , there exists a constant  $r = r(\widetilde{X}) > 0$  such that  $f \leq 0$  on  $\widetilde{X} \setminus B_r(0)$ .

*Proof.* Let  $\widetilde{X} \subset X^{\alpha}$  be a finite-dimensional subspace. We claim that there is a constant  $\varepsilon_0 > 0$  such that

(3.14) 
$$meas_a(\{t \in \mathbb{R}/|u(t)| \ge \varepsilon_0 ||u||_{X^{\alpha}}\}) < \varepsilon_0, \ \forall u \in \widetilde{X} \setminus \{0\}.$$

If not, for any  $n \in \mathbb{N}$ , there is  $u_n \in \widetilde{X} \setminus \{0\}$  such that

$$meas_a\left(\left\{t \in \mathbb{R}/|u_n(t)| \geq \frac{1}{n} ||u_n||_{X^{\alpha}}\right\}\right) < \frac{1}{n}.$$

Let  $v_n = \frac{u_n}{\|u_n\|}$ . Then  $\|v_n\|_{X^{\alpha}} = 1$  and

(3.15) 
$$meas_a\left(\left\{t \in \mathbb{R}/|v_n(t)| \ge \frac{1}{n}\right\}\right) \le \frac{1}{n}, \ \forall n \in \mathbb{N}$$

Since  $\widetilde{X}$  is finite-dimensional, then taking a subsequence if necessary, we may assume that  $v_n \rightharpoonup v_0$  in  $\widetilde{X}$  for some  $v_0 \in \widetilde{X}$ . Clearly  $||v_0||_{X^{\alpha}} = 1$ . Note that, up to a subsequence, Lemma 2.2 implies that

(3.16) 
$$\int_{\mathbb{R}} a(t) |v_n - v_0|^2 \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

We claim that there is a constant  $\delta_0 > 0$  satisfying

(3.17) 
$$meas_a(\{t \in \mathbb{R}, |v_0(t)| \ge \delta_0\}) \ge \delta_0.$$

If not, for each fixed  $n \in \mathbb{N}$  and m > n, we have

$$meas_a\left(\left\{t \in \mathbb{R}, |v_0(t)| \ge \frac{1}{n}\right\}\right) \le meas_a\left(\left\{t \in \mathbb{R}, |v_0(t)| \ge \frac{1}{m}\right\}\right) \le \frac{1}{m}$$

Letting  $m \longrightarrow \infty$ , we have  $meas_a(\{t \in \mathbb{R}, |v_0(t)| \ge \frac{1}{n}\}) = 0$ . Consequently,

$$meas_{a}(\{t \in \mathbb{R}/v_{0}(t) \neq 0\}) = meas_{a}\left(\bigcup_{n=1}^{\infty} \left\{t \in \mathbb{R}, |v_{0}(t)| \geq \frac{1}{n}\right\}\right)$$
$$\leq \sum_{n=1}^{\infty} meas_{a}\left(\left\{t \in \mathbb{R}, |v_{0}(t)| \geq \frac{1}{n}\right\}\right) = 0$$

which implies that  $v_0 = 0$  and contradicts  $||v_0||_{X^{\alpha}} = 1$ . Then (3.17) holds. For any  $n \in \mathbb{N}$ , let

$$\Lambda_0 = \left\{ t \in \mathbb{R}/ |v_0(t)| \ge \delta_0 \right\}, \ \Lambda_n = \left\{ t \in \mathbb{R}/ |v_n(t)| < \frac{1}{n} \right\}$$

Then, for *n* large enough, we have from (3.15) and (3.17) that

$$meas_a(\Lambda_0 \cap \Lambda_n) \ge meas_a(\Lambda_0) - meas_a(\Lambda_n^c) \ge \delta_0 - \frac{1}{n} \ge \frac{\delta_0}{2}.$$

Therefore, for n large enough, one obtains

$$\begin{split} \int_{\mathbb{R}} a(t) |v_n - v_0|^2 dt &\geq \int_{\Lambda_0 \cap \Lambda_n} a(t) |v_n - v_0|^2 dt \\ &\geq \frac{1}{2} \int_{\Lambda_0 \cap \Lambda_n} a(t) |v_0|^2 dt - \int_{\Lambda_0 \cap \Lambda_n} a(t) |v_n|^2 dt \\ &\geq (\frac{\delta_0^2}{2} - \frac{1}{n^2}) meas_a(\Lambda_0 \cap \Lambda_n) \\ &\geq (\frac{\delta_0^2}{2} - \frac{1}{n^2}) \frac{\delta_0}{2} \geq \frac{\delta_0^3}{8}, \end{split}$$

which contradicts (3.16). Hence (3.14) holds. For  $u \in \widetilde{X} \setminus \{0\}$ , set

$$\Lambda_{\varepsilon_0}(u) = \{t \in \mathbb{R}/|u(t)| \ge \varepsilon_0 \, \|u\|_{X^{\alpha}}\}.$$

Since  $meas_a(\Lambda_{\varepsilon_0}(u)) \ge \varepsilon_0$ ,  $\forall u \in \widetilde{X} \setminus \{0\}$ , there exists  $\rho > 0$  satisfying

(3.18) 
$$meas_a(\Lambda_{\varepsilon_0}(u) \bigcap B_{\rho}(0)) \geq \frac{\varepsilon_0}{2}, \, \forall u \in \widetilde{X} \setminus \{0\}.$$

By  $(G_2)$ , there exists R > 0 such that

(3.19) 
$$G(u(t)) \ge \frac{2}{\varepsilon_0^3} |u(t)|^2 \ge \frac{2}{\varepsilon_0} ||u||^2$$

for all  $u \in \widetilde{X} \setminus \{0\}$  and  $t \in \Omega_{\varepsilon_0}(u) = \Lambda_{\varepsilon_0}(u) \cap B_{\rho}(0)$  with  $||u||_{X^{\alpha}} \ge R$ . Then, for any  $u \in \widetilde{X} \setminus B_R(0)$ , it follows from (3.1), (3.18), and (3.19) that

$$\begin{split} f(u) &= \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \int_{\mathbb{R}} a(t)G(u(t))dt \\ &= \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \int_{\Omega_{\varepsilon_{0}}(u)} a(t)G(u(t))dt - \int_{\mathbb{R}\setminus\Omega_{\varepsilon_{0}}(u)} a(t)G(u(t))dt \\ &\leq \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \int_{\Omega_{\varepsilon_{0}}(u)} a(t)G(u(t))dt \\ &\leq \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \frac{2}{\varepsilon_{0}^{3}} \int_{\Omega_{\varepsilon_{0}}(u)} a(t) \|u(t)\|^{2} dt \\ &\leq \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \frac{2}{\varepsilon_{0}} \int_{\Omega_{\varepsilon_{0}}(u)} a(t) \|u\|_{X^{\alpha}}^{2} dt \\ &\leq \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \frac{2}{\varepsilon_{0}} meas_{a}(\Omega_{\varepsilon_{0}}(u)) \|u\|_{X^{\alpha}}^{2} \\ &\leq \frac{1}{2} \|u\|_{X^{\alpha}}^{2} - \|u\|_{X^{\alpha}}^{2} = -\frac{1}{2} \|u\|_{X^{\alpha}}^{2} \,. \end{split}$$

Thus there exists r > R such that  $f_{|\tilde{X} \setminus B_r(0)} \leq 0$ .

The functional f is even and f(0) = 0, so Lemmas 3.1, 3.3, and 3.5 imply that f satisfies all the conditions of Lemma 2.5. Consequently, f possesses an unbounded sequence of critical values which proves Theorem 1.2.

## 4. Proof of Theorem 1.3 and Theorem 1.4

**Lemma 4.1.** Assume that  $(L_1) - (L_3)$ ,  $(G_1)$ ,  $(G_2)$ ,  $(G_5)$ , and  $(G_6)$  are satisfied. Then f verifies (C)-sequence.

*Proof.* Let  $(u_n) \subset X^{\alpha}$  be a (C)-sequence. Then there is  $c_1 > 0$  satisfying

(4.1) 
$$|f(u_n)| \le c_1 \text{ and } ||f'(u_n)|| (1+||u_n||_{X^{\alpha}}) \le c_1, \forall n \in \mathbb{N}.$$

We claim that  $(u_n)$  is bounded. Assume indirectly that  $(u_n)$  is unbounded. Taking a subsequence if necessary, we may assume that

(4.2) 
$$||u_n||_{X^{\alpha}} \longrightarrow +\infty \text{ and } v_n = \frac{u_n}{||u_n||_{X^{\alpha}}} \rightharpoonup v_0 \text{ as } n \longrightarrow \infty.$$

By Lemma 2.2 and (4.2), without loss of generality, we have

(4.3) 
$$v_n \longrightarrow v_0 \text{ both in } L^2_a(\mathbb{R}) \text{ and } L^v_a(\mathbb{R}) \text{ and } v_n(t) \longrightarrow v_0(t) \text{ a.e. } t \in \mathbb{R}$$

as  $n \longrightarrow \infty$ .

Case 1.  $v_0 \neq 0$  occurs. The proof is similar to the case 1 in the proof of Lemma 3.3. Case 2.  $v_0 = 0$  occurs. Let  $(s_n) \subset [0, 1]$  be a sequence such that

$$f(s_nu_n) = \max_{s\in[0,1]} f(su_n).$$

By  $(G_5)$  and (4.3), we obtain

$$\left| \int_{\mathbb{R}} a(t) G(4\sqrt{\sigma c_1} v_n(t)) dt \right|$$
  

$$\leq d_0 \Big[ 16\sigma c_1 \int_{\mathbb{R}} a(t) |v_n(t)|^2 dt + (4\sqrt{\sigma c_1})^{\nu} \int_{\mathbb{R}} a(t) |v_n(t)|^{\nu} dt \Big] \longrightarrow 0 \text{ as } n \longrightarrow \infty,$$

which implies

(4.4) 
$$\int_{\mathbb{R}} a(t)G(4\sqrt{\sigma c_1}v_n(t))dt \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

By the definition of  $s_n$  and (4.4), for *n* large enough, we have

(4.5)  
$$f(s_n u_n) \ge f(\frac{4\sqrt{\sigma c_1}}{\|u_n\|^2}u_n) = f(4\sqrt{\sigma c_1}v_n)$$
$$= 8\sigma c_1 - \int_{\mathbb{R}} a(t)G(4\sqrt{\sigma c_1}v_n(t))dt \ge 4\sigma c_1$$

Since f(0) = 0 and  $|f(u_n)| \le c_1$ , then  $s_n \in ]0, 1[$ . Hence, one has

(4.6) 
$$||s_n u_n||^2 - \int_{\mathbb{R}} a(t) \nabla G(s_n u_n) \cdot s_n u_n dt = f'(s_n u_n) s_n u_n = s_n \frac{d}{ds} (f(s_n u_n)_{|s=s_n} = 0.$$

It follows from (4.6) and  $(G_6)$  that

$$\begin{split} \int_{\mathbb{R}} a(t) [\frac{1}{2} \nabla G(u_n) \cdot u_n - G(u_n)] dt &= \int_{\mathbb{R}} a(t) \widetilde{G}(u_n(t)) dt \\ &\geq \frac{1}{\sigma} \int_{\mathbb{R}} a(t) \widetilde{G}(s_n u_n) dt \\ &= \frac{1}{\sigma} \int_{\mathbb{R}} a(t) [\frac{1}{2} \nabla G(s_n u_n) \cdot s_n u_n - G(s_n u_n)] dt \\ &= \frac{1}{\sigma} [\frac{1}{2} ||s_n u_n||_{X^{\alpha}}^2 - \int_{\mathbb{R}} a(t) G(s_n u_n) dt \\ &= \frac{1}{\sigma} f(s_n u_n), \end{split}$$

which together with (4.5) implies that

(4.7) 
$$\int_{\mathbb{R}} a(t) \left[\frac{1}{2} \nabla G(u_n) u_n - G(u_n)\right] dt \ge 4c_1,$$

for *n* large enough. However, we can deduce from (4.1) that

$$\left| \int_{\mathbb{R}} a(t) \left[ \frac{1}{2} \nabla G(u_n) u_n - G(u_n) \right] dt \right| = \frac{1}{2} \left| 2f(u_n) - f'(u_n) u_n \right| \le \frac{3}{2} c_1,$$

for all  $n \in \mathbb{N}$ , which contradicts (4.7). Hence  $(u_n)$  is bounded in  $X^{\alpha}$ . Similar to the proof of Lemma 3.3, we can prove that f satisfies (C)-condition. The proof of Lemma 4.1 is completed.

**Proof of Theorem 1.3.** The condition f(0) = 0 and Lemmas 3.1, 3.4, and 4.1 imply that functional f verifies all the conditions of Lemma 2.4. Therefore, Lemma 2.4 implies that f possesses a critical point u satisfying  $f(u) \ge \alpha > 0$ . Hence problem  $(\mathscr{FHS})$  possesses a nontrivial solution.

**Proof of Theorem 1.4.** Since f is even, then condition f(0) = 0 and Lemmas 3.1, 3.5, and 4.1 imply that functional f verifies all the conditions of Lemma 2.5. Therefore, Lemma 2.5 implies that f has an unbounded sequence of critical values. Hence problem  $(\mathcal{FHP})$  has infinitely many nontrivial solutions.

## Acknowledgements

The author would like to thank very much the editors and the referees for carefully reading the manuscript and giving valuable suggestions.

#### REFERENCES

- Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005) 495-505.
- [2] T. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983) 981-1012.
- [3] G. Chai, W. Liu, Existence and multiplicity of solutions for fractional Hamiltonian systems, Boundary Value Prob. 2019 (2019) 71.
- [4] F. Chen, X. He, X.H. Tang, Infinitely many solutions for a class of fractional Hamiltonian systems via critical point theory, Math. Meth. Appl. Sci. 39 (2016) 1005-1019.
- [5] G.A.M. Cruz, C.E.T. Ledesma, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivatives, Fract. Calc. Appl. Anal. 18 (2015) 875-890.
- [6] Z. Guo, Q. Zhang, Existence of solutions to fractional Hamiltonian systems with local superquadratic conditions, Electron. J. Differential Equations 2020 (2020), No. 29.
- [7] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74 (2011) 1987-1994.
- [8] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bif. Chaos 22 (2012) 1-17.
- [9] W. Jiang, The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74 (2011) 1987-1994.
- [10] A.A. Kilbas, O.I. Marichev, G. Samko, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Switzerland 1997.
- [11] A.A. Kilbas, H.M. Srivastawa, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies; Vol. 204, Singapore 2005.
- [12] C.E.T. Ledesma, Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R. J. Fractional Calc, Appl. 7 (2016) 74-87.
- [13] Y. Li, B. Dai, Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schrödinger equation, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 112 (2018) 957–967.
- [14] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer, New York, 1989. doi: 10.1007/978-1-4757-2061-7.
- [15] N. Nyamoradi, Y. Zhou, B. Ahmad, A. Alsaedi, Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl. 174 (2017) 223–237.
- [16] V. Obukhovskii, G. Petrosyan, C.-F. Wen, V. Bocharov, On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces, J. Nonlinear Var. Anal. 6 (2022) 185-197.
- [17] I. Pollubny, Fractional Differential Equations, Academic Press, 1999.
- [18] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In: CBMS Reg. Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, R.I, 1985.
- [19] K. Tang, Multiple homoclinic solutions for a class of fractional Hamiltonian systems, Progress in Fractional Differentiation and Applications 2 (2016) 265-276.
- [20] M. Timoumi: Ground state solutions for a class of superquadratic fractional Hamiltonian systems, J. Elliptic Parabol. Equ. 7 (2021) 171–197.

- [21] M. Timoumi, Infinitely many solutions for a class of superquadratic fractional Hamiltonian systems, Fract. Differ. Calc. 8 (2018) 309-326.
- [22] M. Timoumi, Infinitely many solutions for two classes of fractional Hamiltonian systems, Commun. Optim. Thory 2021 (2021) Article ID 6.
- [23] M. Timoumi, Multiple solutions for a class of superquadratic fractional Hamiltonian systems, Universal J. Math. Appl. 1 (2018) 186-195.
- [24] M. Timoumi, Multiple solutions for fractional Hamiltonian systems locally defined near the origin, Fractional Differential Calculus, 10 (2020) 189–212.
- [25] C. Torres, Existence of solutions for fractional Hamiltonian systems, Electron. J. Differential Equations 2013 (2013), 259.
- [26] C. Torres, Ground state solution for differential equations with left and right fractional derivatives, Math. Meth. Appl. Sci. 38 (2015) 5063-5077.
- [27] D.L. Wu, C. Li, P. Yuan, Multiplicity solutions for a class of fractional Hamiltonian systems with concaveconvex potentials, Mediterr. J. Math. 15 (2018) 35.
- [28] X. Wu, Z. Zhang, Solutions for perturbed fractional Hamiltonian systems without coercive conditions, Bound. Value Probl. 2015 (2015) 149.
- [29] F. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electr. J. differential equations 2016 (2016) 40.
- [30] R. Yuan, Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results Math. 61 (2012) 195-208.
- [31] Z. Zhang, R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Meth. Appl. Sci. 37 (2014) 2934-2945.
- [32] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Meth. Appl. Sci. 37 (2014) 1873-1887.