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ON THE RELAXED PROJECTION METHOD FOR THE SFPMOS

LIN XUE, HUANHUAN CUI∗

Department of Mathematics, Luoyang Normal University, Luoyang 471934, China

Abstract. This paper presents our investigation into the split feasibility problem with multiple output sets (SF-
PMOS), under the assumption that the corresponding convex subsets are level subsets of convex functionals. To
approximate the solutions of this problem, we propose a method that combines relaxed projection with a recently
proposed technique. Our approach involves establishing a weak convergence theorem for the fixed stepsize, fol-
lowed by constructing a variable stepsize that is independent of the norm of the linear operator involved. We
also modify these methods to ensure strong convergence. As an application, we develop a new relaxed projection
algorithm for solving the split feasibility problem.
Keywords. Multiple output sets; Relaxed projection; Split Feasibility problem; Variable stepsize.

1. INTRODUCTION

Since its inception in 1994, the split feasibility problem (SFP) [5] has been under the spotlight
due to its real applications in signal processing and image reconstruction [2]. In particular, it
has significant progress in intensity-modulated radiation therapy [4]. The SFP involves finding
a vector x̂ that satisfies two related conditions: it belongs to a nonempty, closed, and convex
subset C of a Hilbert space H0, and its image under a linear bounded operator A belongs to
another nonempty, closed, and convex subset Q of a Hilbert space H1. While the original
formulation of the SFP was in finite-dimensional Euclidean spaces, more recent studies focused
on the problem in infinite-dimensional Hilbert spaces [10, 16, 22, 23], and even in the setting of
Banach spaces [8, 15]. In this paper, we address the SFP in infinite-dimensional Hilbert spaces
for the sake of generality.

Assuming that the SFP is consistent, meaning that its solution set is nonempty, iterative
methods can be used to solve the problem. One of the most powerful and efficient tools for
solving the SFP is the CQ algorithm, which was first proposed by Byrne [3] and has been
further studied by numerous researchers; see, e.g., [7, 11, 12, 13] The CQ algorithm generates
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a sequence {xn} recursively in the following formula:

xn+1 = PC(xn− τA∗(I−PQ)Axn),

where PC and PQ are the metric projections onto sets C and Q, and τ is the stepsize chosen
in a specific interval. For recent research on the CQ algorithm and its variants, one refer to
[26, 27, 17, 18, 24].

However, the CQ algorithm requires that the convex sets C and Q are simple in the sense of
projection, which means that their projections onto the respective convex subsets are easy to
calculate. In practice, there are numerous sets that do not satisfy this condition, such as level
sets of convex functionals. We now focus on the case where C and Q are level sets of convex
functionals, which are defined as

C = {x ∈ H0 : c(x)≤ 0};
Q = {y ∈ H1 : q(y)≤ 0},

where c : H0→R and q : H1→R are convex and lower semicontinuous functionals. We assume
that ∂c and ∂q are bounded operators, which means that they bounded on bounded sets.

The calculation of a projection onto a level subset is generally difficult. However, Fukushima
[9] proposed a method for calculating the projection onto a level set of a convex functionals by
computing a sequence of projections onto half-spaces that contain the original level set. This
idea was further developed by Yang [26], who introduced a relaxed CQ algorithm:

xn+1 = PCn(xn− τA∗(I−PQn)Axn),

where Cn and Qn are given as

Cn = {x ∈ H0 : c(xn)≤ 〈ξn,xn− x〉},
Qn = {y ∈ H1 : q(Axn)≤ 〈ζn,Axn− y〉},

where ξn ∈ ∂c(xn) and ζn ∈ ∂q(Axn). The relaxed CQ algorithm involves a recursive formula
that uses the metric projections onto half-spaces Cn and Qn, which have closed forms and are
computationally feasible.

In the literature, there are various generalizations of the SFP, one of which is the split feasi-
bility problem with multiple output sets (SFPMOS). The SFPMOS involves finding a special
vector which satisfies a set of constraints involving multiple closed and convex subsets. More
precisely, it requires finding x† ∈ H0 such that

x† ∈C∩

(
N⋂

i=1

A−1
i (Qi)

)
, (1.1)

where A−1
i (Qi) = {x ∈ H0 : Aix ∈ Qi} for each i = 1,2, . . . ,N. Reich and Tuyen [14] proposed

an iterative method for solving this problem, which involves a recursive formula:

xn+1 = PC

[
xn− τ

N

∑
i=1

A∗i
(
I−PQi

)
Aixn

]
.

It has been proved to have the weak convergence under the following condition:

0 < τ <
2

N max1≤i≤N ‖Ai‖2 .
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In addition, they further modified the method as follows to obtain an iterative method with
strong convergence. For any initial guess y0, their modified method produces yn according to
the recursion process:

yn+1 = γn f (yn)+(1− γn)PC

[
yn− τ

N

∑
i=1

A∗i
(
I−PQi

)
Aiyn

]
, (1.2)

where {γn} ⊆ (0,1) and f is a contraction. Under certain weak conditions, it has been proven
that method (1.2) converges strongly to a solution. However, Wang [19] recently improved the
step size condition as follows

0 < τ <
2

∑1≤i≤N ‖Ai‖2 .

It is worth noting that the above algorithms are only applicable to simple convex sets. To
expand the research scope of the SFPMOS, we consider the case where the convex sets Qi are
level sets of convex functionals:

Qi = {y ∈ Hi : qi(y)≤ 0}, i = 0,1,2, . . . ,N, (1.3)

where qi : Hi → R are convex and lower semicontinuous functionals. We assume that all the
functionals qi are subdifferentiable and that their subdifferential operators are bounded. This
allows us to extend the algorithms to more complex convex sets.

After conducting the aforementioned works, we will continue our investigation into the SF-
PMOS, provided that the corresponding convex subsets fulfill conditions (1.3). To approximate
the solution to this problem, we utilize the concept of relaxed projections, along with a recently
proposed method. Our approach involves first establishing a weak convergence theorem for the
fixed stepsize, followed by constructing a variable stepsize that is not dependent on the norm
of linear operators. Additionally, we modify these methods to ensure strong convergence. Ul-
timately, we apply these techniques to develop a new relaxed projection algorithm to solve the
split feasibility problem.

2. PRELIMINARIES

In this paper, one uses the notation Λ = {0,1,2 . . . ,N} to denote a set, and Hi to represent
a Hilbert space for each i ∈ Λ. One also uses I to denote the identity operator. If f : H0→ R
is a differentiable functional, one refers to the gradient of f as ∇ f . When one has a sequence
{xn} in H0, one uses ωw(xn) and ω(xn) to denote the set of cluster points in the weak and strong
topology, respectively. One says that ”xn→ x” if {xn} converges strongly to x, and ”xn ⇀ x” if
{xn} converges weakly to x.

Consider an operator T : H0→ H0. Recall that T is nonexpansive if ‖T x−Ty‖ ≤ ‖x−y‖ for
all x,y∈H0. One says that T is firmly nonexpansive if, for all x,y∈H0, the following inequality
holds:

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖2.

The above inequality is one of several characterizations of firmly nonexpansive mappings,
which can be found in [1].

Lemma 2.1. The following statements are equivalent.
(i) T is firmly nonexpansive,

(ii) I−T is firmly nonexpansive,
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(iii) ‖T x−Ty‖2 ≤ 〈x− y,T x−Ty〉,∀x,y ∈ H0.

Recall that a function f : H0 → R is convex if it satisfies the following inequality for all
λ ∈ (0,1) and x,y ∈ H0:

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).

A differentiable function f is convex if and only if the following relation holds:

f (z)≥ f (x)+ 〈∇ f (x),z− x〉, ∀z ∈ H0.

One says that an element g ∈ H0 is a subgradient of f at x if the following inequality holds,
for all z ∈ H0, f (z)≥ f (x)+ 〈g,z− x〉. If f has at least one subgradient at x, then one says that
f is subdifferentiable at x. The set of subgradients of f at x is called the subdifferential of f
at x, denoted by ∂ f (x). A function f is called subdifferentiable if it is subdifferentiable at all
x∈H0. If f is convex and differentiable, then its gradient and subgradient coincide. Moving on,
one says that a function f : H0→ R is lower semi-continuous (w-lsc) at x if xn→ x implies the
following inequality: f (x) ≤ liminfn→∞ f (xn). One says that f is lsc on H0 if it is lsc at every
point x ∈ H0. Moreover, one says that a function f : H0→ R is weakly lower semi-continuous
(w-lsc) at x if xn ⇀ x implies the following inequality: f (x) ≤ liminfn→∞ f (xn). One says that
f is w-lsc on H0 if it is w-lsc at every point x ∈ H0. For convex functionals, the w-lsc and lsc
are the same.

Let us now consider a nonempty, closed, and convex subset C ⊆ H0. One typical example of
firmly nonexpansive mappings is the metric projection PC from H0 onto C, which is defined as
follows:

PCx = argmin
y∈C

‖x− y‖,x ∈ H0.

In other words, PCx is the point in C that is closest to x in terms of Euclidean distance.

Lemma 2.2. Let x ∈ H0. Then y = PCx if and only if y ∈C, and

〈x− y,z− y〉 ≤ 0,∀z ∈C. (2.1)

The concept of Féjer-monotonicity is crucial for the subsequent analysis in this paper. Let us
recall the definition: A sequence {xn} ⊆ H0 is said to be Fejér monotone with regard to C if it
satisfies the following inequality, for all n≥ 0 and z ∈C, ‖xn+1− z‖ ≤ ‖xn− z‖. In other words,
the distance between xn+1 and any point in C is always smaller than or equal to the distance
between xn and the same point in C.

The following lemmas are significant in the subsequent convergence analysis.

Lemma 2.3. [1] Suppose that {xn} is Fejér monotone with regard to C. Then, {xn} converges
weakly to an element in C if and only if each weak cluster point of {xn} belongs to C.

Lemma 2.4. [25] Suppose that {an} is a sequence of nonnegative real numbers satisfying the
inequality for all n≥ 0: an+1 ≤ (1−αn)an+αnδn, where {αn} is a sequence in (0,1) and {δn}
is a sequence in R. Then, the sequence {an} converges to 0 if the following conditions hold:

∞

∑
n=0

αn = ∞, lim
n→∞

δn ≤ 0.
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3. FIXED STEPSIZES

In 2017, Wang [20] proposed an alternative iterative method for solving the split feasibility
problem. This method is defined by the following update rule:

xn+1 = xn− τ[(xn−PCxn)+A∗(Axn−PQ(Axn))],

where PC is the metric projection onto a closed convex set C, A is a linear operator from H0 to
H1, PQ is the metric projection onto a closed convex set Q, and τ is a positive step size.

Motivated by this method, we aim to construct an iterative method for solving problem (1.1).
Specifically, we demonstrate that the SFPMOS is equivalent to finding a fixed point of an ap-
propriate nonlinear operator. For convenience, we define Q0 =C and A0 as the identity operator
on H0 in what follows.

Lemma 3.1. Let T = I− τ ∑
N
i=0 A∗i (I−PQi)Ai. For any (x,z) ∈ H0×Ω, we have the following

inequality:

‖T x− z‖2 ≤ ‖x− z‖2− τ

(
2− τ

N

∑
i=0
‖Ai‖2

) N

∑
i=0
‖Aix−PQi(Aix)‖2. (3.1)

Furthermore, if 0 < τ(∑N
i=0 ‖Ai‖2)< 2, then Ω = Fix(T ), where Fix(T ) denotes the set of fixed

points of T .

Proof. For each i ∈ Λ, we can use Lemma 2.1 to obtain the following inequalities:

〈x− z,A∗i (Aix−PQi(Aix))〉= 〈Aix−Aiz,Aix−PQi(Aix)〉

≥ ‖Aix−PQi(Aix)‖2

≥ ‖Aix−PQi(Aix)‖2.

Additionally, applying the Cauchy-Schwarz inequality yields:∥∥∥∥ N

∑
i=0

A∗i (Aix−PQi(Aix))
∥∥∥∥2

≤
( N

∑
i=0
‖Ai‖‖Aix−PQi(Aix)‖

)2

≤
( N

∑
i=0
‖Ai‖2

) N

∑
i=0
‖Aix−PQi(Aix)‖2.

Using the definition of T , we can then write:

‖T x− z‖2 =

∥∥∥∥x− z− τ

N

∑
i=0

A∗i (Aix−PQi(Aix))
∥∥∥∥2

= ‖x− z‖2−2τ

N

∑
i=0
〈x− z,A∗i (Aix−PQi(Aix))〉+ τ

2
∥∥∥∥ N

∑
i=0

A∗i (Aix−PQi(Aix))
∥∥∥∥2

≤ ‖x− z‖2− τ

(
2− τ

N

∑
i=0
‖Ai‖2

) N

∑
i=0
‖Aix−PQi(Aix)‖2,

which gives us the desired inequality.
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Next, we need to verify that Ω = Fix(T ). To do this, we show that Fix(T ) ⊆ Ω since the
converse is trivial. Let x† ∈ Fix(T ) and z ∈Ω. Using inequality (3.1), we obtain

τ

(
2− τ

N

∑
i=0
‖Ai‖2

) N

∑
i=0
‖Aix−PQi(Aix)†‖2 = 0,

which implies that Aix† ∈ PQi for each i ∈ Λ. Therefore, we have Fix(T )⊆Ω, as desired. �

Motivated by Lemma 3.1, we propose the first method to solve problem (1.1).

Algorithm 3.2. Choose τ > 0 and an arbitrary initial x0 ∈ H0. Given the current iteration xn,
update the next iteration xn+1 via

xn+1 = xn− τ

N

∑
i=0

A∗i ((I−PQi
n
)Aixn),

where Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉} with ζ i
n ∈ ∂qi(Aixn).

Theorem 3.3. If 0 < τ(∑N
i=0 ‖Ai‖2) < 2, then the sequence {xn} produced by Algorithm 3.2

converges weakly to a solution of problem (1.1).

Proof. Let z ∈Ω be fixed. Then, using Lemma 3.1, we see that

‖xn+1− z‖2 ≤ ‖xn− z‖2− τ

(
2− τ

N

∑
i=0
‖Ai‖2

) N

∑
i=0
‖(I−PQi

n
)Aixn‖2. (3.2)

This implies that {xn} is Fejér monotone with respect to Ω. To complete the proof, we need to
demonstrate that every weak cluster point of {xn} belongs to Ω. By induction, we can deduce
from (3.2) that

lim
n→∞

N

∑
i=0
‖(I−PQi

n
)Aixn‖= 0.

Since ∂qi is bounded on bounded sets, there exists a constant δ > 0 such that ‖ζ i
n‖ ≤ δ for all

n≥ 0 and i ∈ Λ. From the definition of Qi
n, we obtain

qi(Aixn)≤ 〈ζn,Aixn−PQi
n
(Aixn)〉 ≤ δ‖(I−PQi

n
)Aixn‖→ 0. (3.3)

Now, if x′ ∈ ωw(xn) and {xnk} is a subsequence of {xn} such that xnk ⇀ x′, then the w-lsc and
(3.3) imply that

qi(Aix′)≤ liminf
k→∞

qi(Aixnk)≤ 0.

It follows that Aix† ∈ Qi for each i ∈ Λ. Thus x† ∈ Ω as desired. Consequently, we can use
Lemma 2.3 to deduce that the sequence {xn} converges weakly to an element of Ω. �

Remark 3.4. In fact, the following more general step size conditions can be used in the above
theorem: 0 < τn(∑

N
i=0 ‖Ai‖2)< 2 such that

0 < lim
n→∞

τn ≤ lim
n→∞

τn <
2

∑
N
i=0 ‖Ai‖2

.

Since Algorithm 3.2 has only weak convergence, we aim to modify it so that the strong
convergence is guaranteed. The idea of our modification is partly taken from the technique for
split common fixed point problem [21].
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Algorithm 3.5. Start by choosing a fixed element u, τ > 0, a sequence {αn} ⊂ [0,1], and an
arbitrary initial x0 ∈H0. At each iteration, given the current iterate xn, we update the next iterate
xn+1 using the formula:

xn+1 = αnu+(1−αn)

[
xn− τ

N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

]
, (3.4)

where Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉} with ζ i
n ∈ ∂qi(Aixn).

Theorem 3.6. Suppose that the following conditions are true:
(c1) limn αn = 0;
(c2) ∑

∞
n=0 αn = ∞;

(c3) 0 < τ(∑N
i=0 ‖Ai‖2)< 2.

If problem (1.1) is consistent, then the sequence {xn} produced by Algorithm 3.5 converges
strongly to PΩ(u).

Proof. To demonstrate that the iterative sequence is bounded, we define

yn = xn− τ

N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

and ε = τ(2− τ ∑
N
i=0 ‖Ai‖2). Using Lemma 3.1, we obtain the inequality

‖yn−PΩ(u)‖2 ≤ ‖xn−PΩ(u)‖2− ε

N

∑
i=0
‖(I−PQi

n
)Aixn‖2. (3.5)

Since our hypothesis implies that ‖yn−PΩ(u)‖ ≤ ‖xn−PΩ(u)‖, we can use (3.4) to derive the
following chain of inequalities

‖xn+1−PΩ(u)‖= ‖αn(u−PΩ(u))+(1−αn)(yn−PΩ(u))‖
≤ αn‖u−PΩ(u)‖+(1−αn)‖yn−PΩ(u)‖
≤ αn‖u−PΩ(u)‖+(1−αn)‖xn−PΩ(u)‖
≤max

{
‖u−PΩ(u)‖,‖xn−PΩ(u)‖

}
.

Using induction, we can then show that ‖xn−PΩ(u)‖ ≤ max
{
‖x0−PΩ(u)‖,‖u−PΩ(u)‖

}
for

all n≥ 0, which implies that {xn} is bounded.
Next, we prove

an+1 ≤ (1−αn)an +αnbn, (3.6)

where an = ‖xn−PΩ(u)‖2 and

bn = 2〈u−PΩ(u),xn+1−PΩ(u)〉−
(1−αn)ε

αn

N

∑
i=0
‖(I−PQi

n
)Aixn‖2.

Using the inequality in (3.5), we can derive the following inequality:

‖xn+1−PΩ(u)‖2 ≤ (1−αn)‖xn−PΩ(u)‖2 +2αn〈u−PΩ(u),xn+1−PΩ(u)〉

− (1−αn)ε
N

∑
i=0
‖(I−PQi

n
)Aixn‖2.



8 L. XUE, H. CUI

Therefore, we can use the above inequality to prove that (3.6) holds.
Finally, we show the convergence of the iterative sequence. Since {bn} is clearly bounded

from above, we can take a subsequence {bnk} such that

lim
n→∞

bn = lim
k→∞

bnk

= lim
k→∞

[
2〈u−PΩ(u),xnk+1−PΩ(u)〉−

ε

αnk

N

∑
i=0
‖Aixnk−PQi

nk
(Aixnk)‖

2
]
. (3.7)

Since 〈u−PΩ(u),xnk+1−PΩ(u)〉 is bounded, we may assume without loss of generality that its
limit exists. Consequently, from (3.7), the following limit

lim
k→∞

1
αnk

N

∑
i=0
‖Aixnk−PQi

nk
(Aixnk)‖

2

also exists. This combined with condition (c1) implies that

lim
k→∞

N

∑
i=0
‖Aixnk−PQi

nk
(Aixnk)‖= 0, (3.8)

which implies that any weak cluster point of {xnk} belongs to Ω. Moreover, by the definition of
xn, we have

‖xnk+1− xnk‖= ‖αnk(u− xnk)+(1−αnk)(ynk− xnk)‖
≤ αnk‖u− xnk‖+‖ynk− xnk‖

≤ αnk‖u− xnk‖+ τ

N

∑
i=0
‖Aixnk−PQi

nk
(Aixnk)‖.

From (c1) and (3.8), we see that ‖xnk+1−xnk‖→ 0. Without loss of generality, we may suppose
that {xnk+1} converges weakly to x̄ ∈Ω. Using (3.7) and (2.1), we can prove that

lim
n→∞

bn ≤ 2 lim
k→∞
〈u−PΩ(u),xnk+1−PΩ(u)〉

= 2〈u−PΩ(u), x̄−PΩ(u)〉 ≤ 0.

Finally, we apply Lemma 2.4 to (3.6) to obtain the desired result. �

Remark 3.7. It is easy to see that the real sequence given by αn = 1/(n+1)p with 0 < p ≤ 1
satisfies (c1)-(c2). Similarly, if we replace “u” by a given contraction “ f ”, we can prove that
the above method strongly converges to the unique fixed point of PΩ f .

4. VARIABLE STEPSIZES

It is worth noting that the stepsize selection method mentioned earlier requires prior the
knowledge of the value of ∑

N
i=0 ‖Ai‖2, which is often difficult to obtain in practice. However,

taking inspiration from our recent work [6], we opted to use a variable stepsize instead. We
mention here that the choice of this variable stepsize is not dependent on ∑

N
i=0 ‖Ai‖2, making it

a more practical alternative.
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Algorithm 4.1. Start by choosing an arbitrary initial x0 ∈ H0. At each iteration, given the
current iterate xn, if ‖∑

N
i=0 A∗i ((I−PQi

n
)Aixn)‖= 0, we terminate the algorithm. Otherwise, we

update the next iterate xn+1 using the formula:

xn+1 = xn− τn

N

∑
i=0

A∗i ((I−PQi
n
)Aixn). (4.1)

Here Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉} with ζ i
n ∈ ∂qi(Aixn) and

τn =
∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

‖∑
N
i=0 A∗i (I−PQi

n
)Aixn‖2

. (4.2)

If our current iteration xn satisfies ‖∑
N
i=0 A∗i ((I−PQi

n
)Aixn)‖ = 0, then we can easily verify

that it is a solution to problem (1.1). To see this, consider fixing an z ∈ Ω. Using Lemma 2.1,
we can prove that

N

∑
i=0
‖(I−PQi

n
)Aixn‖2 =

N

∑
i=0
〈Aix−Aiz,(I−PQi

n
)Aixn〉

≤

〈
x− z,

N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

〉
= 0.

This implies that Aixn ∈ Qi
n, which in turn implies from the definition of Qi

n that qi(Aixn) ≤ 0.
Therefore, we can conclude that Aixn ∈ Qi for each i ∈ Λ. Without losing generality, we may
assume that the above iterative sequence is infinite.

Theorem 4.2. If problem (1.1) is consistent, then the sequence {xn} generated by Algorithm
4.1 weakly converges to a solution of the problem.

Proof. First, we prove that sequence {xn} satisfies the Fejér monotonicity property with respect
to set Ω. Fix any z ∈Ω. It then follows from (4.1) that

‖xn+1− z‖2 =

∥∥∥∥(xn− z)− τn

N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

∥∥∥∥2

= ‖xn− z‖2−2τn

N

∑
i=0
〈xn− z,A∗i ((I−PQi

n
)Aixn)〉+ τ

2
n

∥∥∥∥ N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

∥∥∥∥2

≤ ‖xn− z‖2−2τn

N

∑
i=0
‖(I−PQi

n
)Aixn‖2 + τ

2
n

∥∥∥∥ N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

∥∥∥∥2

,

which from (4.2) yields

‖xn+1− z‖2 ≤ ‖xn− z‖2− τn

N

∑
i=0
‖(I−PQi

n
)Aixn‖2. (4.3)

Thus we can prove that the distance between xn+1 and a point z is less than or equal to the
distance between xn and z. This implies that the sequence is getting closer to z as n increases.

Next, we prove that any weak cluster point of {xn} belongs to Ω. Let x† be any weak cluster
point of {xn}, and let {xnk} be a subsequence that converges weakly to x†. By using equation
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(4.3) and induction, we can prove that τn ∑
N
i=0 ‖(I−PQi

n
)Aixn‖2 approaches zero as n goes to

infinity. Using the Cauchy-Schwarz inequality, we can then prove that

τn =
∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

‖∑
N
i=0 A∗i ((I−PQi

n
)Aixn)‖2

≥
∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

(∑N
i=0 ‖A∗i ((I−PQi

n
)Aixn)‖)2

≥
∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

(∑N
i=0 ‖A∗i ‖‖(I−PQi

n
)Aixn‖)2

≥
∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

(∑N
i=0 ‖Ai‖2)(∑N

i=0 ‖(I−PQi
n
)Aixn‖2)

=
1

∑
N
i=0 ‖Ai‖2

> 0,

This indicates that τn is bounded below by a positive constant. Combining this result with
τn ∑

N
i=0 ‖(I−PQi

n
)Aixn‖2→ 0, we can conclude that ∑

N
i=0 ‖(I−PQi

n
)Aixn‖ approaches zero as n

goes to infinity. By a similar argument, we can prove that Aix† ∈ Qi for each i ∈ Λ. Therefore,
we can conclude that x† ∈Ω.

Finally, using Lemma 2.3, we can conclude that sequence {xn} converges weakly to a solution
of problem (1.1). �

Remark 4.3. We note that the stepsize we have chosen does not require any knowledge of the
exact value of ∑

N
i=0 ‖Ai‖2. Moreover, we can use a more general form of the stepsize, given by:

τn =
ρ ∑

N
i=0 ‖(I−PQi

n
)Aixn‖2

‖∑
N
i=0 A∗i ((I−PQi

n
)Aixn)‖2

,where 0 < ρ < 2.

Similarly, we can construct another strongly convergent method, as described in Algorithm
4.4.

Algorithm 4.4. Start by choosing a fixed element u, a sequence {αn} ⊂ [0,1], and an arbitrary
initial x0 ∈ H0. At each iteration, given the current iterate xn, if ‖∑

N
i=0 A∗i ((I−PQi

n
)Aixn)‖= 0,

we terminate the algorithm. Otherwise, we update the next iterate xn+1 using the formula:

xn+1 = αnu+(1−αn)

[
xn− τn

N

∑
i=0

A∗i ((I−PQi
n
)Aixn)

]
. (4.4)

Here, Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉}, with ζ i
n ∈ ∂qi(Aixn).

Theorem 4.5. If problem (1.1) is consistent, then the sequence {xn} generated by Algorithm
4.4 converges strongly to PΩ(u).

5. AN APPLICATION

The SFPMOS is a generalization of the split feasibility problem. Therefore, the convergence
theorems discussed above can be applied to develop new iterative techniques for solving the
split feasibility problem. For the rest of this discussion, we assume that the solution set of the
split feasibility problem (also denoted as Ω) is nonempty.
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Algorithm 5.1. Choose an arbitrary initial x0 ∈ H0. Given the current iteration xn, update the
next iteration xn+1 via

xn+1 = xn− τ

1

∑
i=0

A∗i (I−PQi
n
)Aixn, (5.1)

where Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉} with ζ i
n ∈ ∂qi(Aixn), i = 0,1.

Algorithm 5.2. Choose an arbitrary initial x0 ∈ H0 and a fixed element u. Given the current
iteration xn, update the next iteration xn+1 via

xn+1 = αnu+(1−αn)

[
xn− τ

1

∑
i=0

A∗i (I−PQi
n
)Aixn

]
, (5.2)

where Qi
n = {y ∈ Hi : qi(Aixn)≤ 〈ζ i

n,Aixn− y〉} with ζ i
n ∈ ∂qi(Aixn), i = 0,1.

Corollary 5.3. If 0 < τ(∑1
i=0 ‖Ai‖2) < 2, then the iterative sequence generated by Algorithm

5.1 weakly converges to a solution of the SFP. Additionally, if the real sequence {αn} satisfies
conditions (c1)-(c2), then the iterative sequence produced by Algorithm 5.2 strongly converge
to PΩ(u).

We can obtain similar convergence results for the SFP.

Algorithm 5.4. Start by choosing an arbitrary initial x0 ∈ H0. At each iteration, given the
current iterate xn, if ‖∑

N
i=0 A∗i (I−PQi

n
)Aixn‖ = 0, then stop. Otherwise, update the next iterate

xn+1 using the formula:

xn+1 = xn− τn

N

∑
i=0

A∗i (I−PQi
n
)Aixn. (5.3)

Here, Qi
n = {y ∈ Hi : qi(Aixn) ≤ 〈ζ i

n,Aixn− y〉}, with ζ i
n ∈ ∂qi(Aixn) for i = 0,1. The step size

τn is defined as:

τn =
∑

1
i=0 ‖(I−PQi

n
)Aixn‖2

‖∑
1
i=0 A∗i (I−PQi

n
)Aixn‖2

.

Algorithm 5.5. Start by choosing a fixed element u, a sequence {αn} ⊂ [0,1], and an arbitrary
initial x0 ∈ H0. At each iteration, given the current iterate xn, if ‖∑

1
i=0 A∗i (I−PQi

n
)Aixn‖ = 0,

then stop. Otherwise, update the next iterate xn+1 using the formula:

xn+1 = αnu+(1−αn)

[
xn− τn

N

∑
i=0

A∗i (I−PQi
n
)Aixn

]
.

Here, Qi
n = {y ∈ Hi : qi(Aixn) ≤ 〈ζ i

n,Aixn− y〉}, with ζ i
n ∈ ∂qi(Aixn) for i = 0,1. The step size

τn is defined as:

τn =
∑

1
i=0 ‖(I−PQi

n
)Aixn‖2

‖∑
1
i=0 A∗i (I−PQi

n
)Aixn‖2

.

Corollary 5.6. If 0 < τ(∑1
i=0 ‖Ai‖2)< 2, then Algorithm 5.4 generates a sequence that weakly

converges to a solution of the SFP. Furthermore, if conditions (c1)-(c2) are satisfied, Algorithm
5.5 produces a sequence that strongly converges to PΩ(u).
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