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Abstract. In this paper, we establish strong convergence theorems via an implicit algorithm for two finite fam-
ilies of uniformly L-Lipschitzian asymptotically quasi-nonexpansive maps in hyperbolic spaces. We prove some
results concerning ∆-convergence as well as strong convergence of the implicit algorithm. Our results are the
generalization of some recent results in CAT(0) spaces, uniformly convex Banach spaces, and hyperbolic spaces.
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1. INTRODUCTION

Numerous problems in various disciplines of science are nonlinear in nature. Therefore,
converting linear structures of a known problem into its corresponding nonlinear structures is
becoming more of great interest. Further investigation of numerous problems in spaces without
linear structures has its own importance in pure and applied mathematics. A general mathe-
matical framework called a convex structure has been studied and introduced by a number of
researchers. One such convex structure is available in a hyperbolic space.

Definition 1.1. Let U be a nonempty subset of a metric space (X ,d), and let T : U →U be a
mapping. Denote the set of fixed points of T by F(T )

(i) T is nonexpansive if d(T x,Ty)≤ d(x,y) for x,y ∈U .
(ii) T is quasi-nonexpansive if F(T ) 6= /0 and d(T x, p)≤ d(x, p) for x ∈U and p ∈ F(T ).

For an initial x0 ∈ U , Das and Debata [8] studied the strong convergence of the following
iterative sequence via the Ishikawa iteration

xn+1 = (1−αn)xn +αnT
(
(1−βn)xn +βnSxn

)
(1.1)
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for two quasi-nonexpansive mappings S,T on a nonempty, closed, and convex subset of a
strictly convex Banach space.

Takahashi and Tamura [29] proved the weak convergence of (1.1) to a common fixed point
of two nonexpansive mappings in a uniformly convex Banach space which satisfies Opial’s
condition or whose norm is Fréchet differentiable and the strong convergence in a strictly convex
Banach space (see also [13, 30]). Mann and Ishikawa iterative procedures are well-defined
in a vector space through its built-in convexity. In the literature, several authors introduced
the notion of the convexity in metric spaces. Note that Mann iterative procedure was also
investigated in hyperbolic metric spaces; see, e.g., [3, 26] and the references therein.

Recent developments in fixed point theory reflect that the iterative construction of fixed points
is vigorously proposed and analyzed for various classes of maps in different spaces. Implicit
algorithms provide better approximation of fixed points than explicit algorithms. The number
of steps of an algorithm also plays an important role in iterative approximation methods. The
case of two maps has a direct link with the minimization problem (see [31]).

In 2001, Xu and Ori [33] investigated te weak convergence of one-step implicit algorithm
for a finite family of nonexpansive maps. They also posed an open question on necessary and
sufficient conditions required for strong convergence of the algorithm. Since then, numerous
authors have considered the weak and strong convergence of various implicit algorithms; see,
e.g., [1, 7, 12, 16, 17, 24, 25] and the references therein.

In 2011, Khan et al. [15] proposed and analyzed a general algorithm for strong convergence
results in CAT(0) spaces. Later, in 2012, Khan et al. [14] proposed an implicit algorithm for
two finite families of nonexpansive maps in a more general setting, hyperbolic spaces. Their re-
sults refined and generalized several remarkable results in CAT(0) spaces and uniformly convex
Banach spaces.

We recall the following definition.

Definition 1.2. Let (X ,d) be a metric space, and let U be a nonempty subset of X . Let T :
U →U be a self-mapping. Recall that

(i). T is said to be asymptotically nonexpansive if there exists a sequence {kn}⊂ [1,∞) with
limn→∞ kn = 1 such that

d(T nx,T ny)≤ knd(x,y), ∀x,y ∈U and ∀ n ∈ N.

(ii). T is said to be asymptotically quasi-nonexpansive if F(T ) 6= /0 and there exists a se-
quence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

d(T nx, p)≤ knd(x, p),∀x,y ∈U ,∀p ∈ F(T )and ∀n ∈ N.

(ii). T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T nx,T ny)≤ Ld(x,y), ∀x,y ∈U and ∀n ∈ N.

Here N denotes the set of positive numbers and F(T ) = {x ∈U : T x = x}.

Remark 1.3. It is easy to see that if F(T ) is nonempty, then nonexpansive mapping, quasi-
nonexpansive mapping, and asymptotically nonexpansive mapping all are the special cases of
asymptotically quasi-nonexpansive type mappings.



COMMON FIXED POINT THEOREMS 3

The purpose of this paper is to establish common fixed point theorems for two finite families
of uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings in the setting of hy-
perbolic spaces. Our results can be viewed as a generalization of the works of Khan et al. in
[14] as well as many related results in the literature.

2. PRELIMINARIES

Let (X ,d) be a metric space and U be a nonempty subset of X . Let T be a selfmap on U .
Takahashi [31] introduced a convex structure on a metric space to obtain a nonlinear version of
some known fixed point results on Banach spaces.

We now describe another convex structure on a metric space called a Hyperbolic Spaces [18].

Definition 2.1. [18] A hyperbolic space is a triple (X ,d,W ), where (X ,d) is a metric space,
α,β ∈ [0,1], and W : X×X× [0,1]→ X is such that

(W1). d(z,W (x,y,α))≤ (1−α)d(z,x)+αd(z,y),
(W2). d(W (x,y,α),W(x,y,β )) = |α−β |d(x,y),
(W3). W (x,y,α) =W (y,x,(1−α)),
(W4). d(W (x,z,α),W (y,w,α))≤ (1−α)d(x,y)+αd(z,w) for all x,y,z,w ∈ X .

It follows from (W1) that, for each x,y ∈ X and α ∈ [0,1],

d(x,W (x,y,α))≤ αd(x,y), d(y,W (x,y,α))≤ (1−α)d(x,y)

In fact, we have that (see [23])

d(x,W (x,y,α)) = αd(x,y), d(y,W (x,y,α)) = (1−α)d(x,y)

A subset U of a hyperbolic space X is convex if W (x,y,α) ∈U for all x,y ∈U and α ∈ [0,1].
Equivalently, a subset U of a hyperbolic space X is said to be convex if [x,y] ⊂ U , whenever
x,y ∈U (see [27]).

It is known that spaces like CAT(0) space and Banach space are special cases of hyperbolic
space. The class of hyperbolic spaces also contains Hadamard manifolds [4], R-trees, and
Cartesian products of Hilbert balls, the Hilbert open unit ball equipped with the hyperbolic
metric [10], as special cases. Some remarkable results in CAT(0) spaces [9, 15, 19, 32] are
examples of nonlinear structures which play a major role in recent research in metric fixed
point theory.

A map η : (0,∞)× (0,2]→ (0,1], which provides such a number ρ = η(r,ε) for given r > 0
and ε ∈ (0,2], is called the modulus of uniform convexity. We call η monotone if it decreases
with r (for a fixed ε). A uniformly convex hyperbolic space is strictly convex (see [19]).

Lemma 2.2. [20] Let (X ,d,W ) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η . For any r > 0,ε ∈ (0,2], and for all x,y,z ∈ X,

d(x,z)≤ r
d(y,z)≤ r
d(x,y)≥ εr

 ⇒ d(W (x,y,α),z)≤ (1−2α(1−α)η(s,ε))r,

where α ∈ [0,1] and s≥ r.
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The concept of ∆-convergence in a metric space was introduced by Lim [21] and its analogue
in CAT(0) spaces was investigated by Dhompongsa and Panyanak [9]. Later, Khan et al. [14]
continued the investigation of ∆-convergence in the general setting of hyperbolic spaces.

Next, we recall some basic concepts.
Let {xn} be a bounded sequence in a hyperbolic space X . For x ∈ X , define a continuous

functional r(.,{xn}) : X → [0,∞) by r(x,{xn}) = limsupn→∞ d(x,xn). The asymptotic radius
ρ = r({xn}) of {xn} is given by ρ = inf{r(x,{xn} : x ∈ X}. The asymptotic center of a bounded
sequence {xn} with respect to a subset U of X is defined as follows:

AU ({xn}) = {x ∈ X : r(x,{xn})≤ r(y,{xn}) for any y ∈U }.

If the asymptotic center is taken with respect to X , then it is simply denoted by A({xn}). It is
known that uniformly convex Banach spaces and even CAT(0) spaces enjoy the property that
bounded sequences have unique asymptotic centers with respect to closed and convex subsets.

The following lemma is due to Leustean [20] and ensures that this property also holds in a
complete uniformly convex hyperbolic space.

Lemma 2.3. [20] Let (X ,d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then every bounded sequence {xn}in X has a unique asymptotic
center with respect to any nonempty closed convex subset U of X. Recall that a sequence
{xn} in X is said to ∆-converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn} In this case, we write ∆-limn→∞ xn = x and call x as ∆-limit of {xn}.

Iterative construction by means of classical algorithms like Mann’s [22]and Ishikawa’s [11]:

(i) xn+1 = αnxn +(1−αn)T xn,n≥ 0, (Mann)
(ii) xn+1 = αnxn +(1−αn)T (βnxn +(1−βn)T xn),n≥ 0, (Ishikawa),

are vigorously applied for approximation of fixed points of various maps under suitable condi-
tions imposed on the control sequences. Algorithm (i) exhibits weak convergence even in the
setting of Hilbert space. Moreover, Chidume and Mutangadura [6] constructed an example for
Lipschitz pseudocontractive map with a unique fixed point for which the algorithm (i) fails to
converge.

From now on, let L = {1,2,3, . . . ,N}. In 2001, Xu and Ori [33] obtained a weak conver-
gence result using an implicit algorithm for a finite family of nonexpansive maps

Theorem 2.4. [33] Let {Ti : i ∈L } be a family of nonexpansive selfmaps on a closed convex
subset U of a Hilbert space with F = ∩N

i=1F(Ti) 6= /0, let x0 ∈ U and let {αn} be a sequence
in (0,1) such that limn→∞ αn = 0. Then the sequence xn = αnxn−1 +(1−αn)Tnxn, where n≥ 1
and Tn = Tn(modN) (here the modN function takes values in L ), converges weakly to a point in
F.

In 2007, Plubtieng et al. [24] generalized the algorithm of Xu and Ori [33] for two finite
families {Ti : i ∈L } and {Si : i ∈L } of nonexpansive maps and studied its weak and strong
convergence in Banach spaces.

Given x0 in K (a subset of Banach space), their algorithm is defined as follows:

xn = αnxn−1 +(1−αn)Tn[βnxn +(1−βn)Snxn] (2.1)

where {αn} and {βn} are two sequences in (0,1).
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In 2012, Khan et al. [14] investigated ∆-convergence as well as strong convergence through a
two-step implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces,
a more general setting. The two-step algorithm (2.1) is be defined in a hyperbolic space as:

xn =W (xn−1,Tnyn,αn),

yn =W (xn,Snxn,βn),n≥ 1
(2.2)

where Tn = Tn(modN) and Sn = Sn(modN). They proved that such implicit algorithm (2.2) is well
defined. Khan et al. [14] proved the generalized version of Lemma 1.3 of Schu [28] in a uni-
formly convex hyperbolic space with monotone modulus of uniform convexity. More precisely,
they obtained and proved the following lemmas.

Lemma 2.5. [14] Let (X ,d,W ) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η . Let x ∈ X and {αn} be a sequence in [b,c] for some b,c ∈ (0,1). If {xn}
and {yn} are sequences in X such that

limsup
n→∞

d(xn,x)≤ r, limsup
n→∞

d(yn,x)≤ r

and
lim
n→∞

d(W (xn,yn,αn),x) = r

for some r ≥ 0. Then limn→∞ d(xn,yn) = 0.

Moreover, Khan et al. [14] proved a metric version of a result due to Bose and Laskar [5]
which plays a crucial role in proving ∆-convergence of algorithm (2.2)

Lemma 2.6. [14] Let U be a nonempty,closed, and convex subset of a uniformly convex
hyperbolic space X, and let {xn} be a bounded sequence in U such that A({xn}) = {y}
and r({xn}) = ρ . If {ym} is another sequence in U such that limn→∞ r(ym,{xn}) = ρ, then
limn→∞ ym = y.

From now on, for two finite families {Ti : i ∈L } and {Si : i ∈L } of maps on U , we set
F(Ti) = {x : Tix = x}, F(Si) = {x : Six = x} and F = ∩N

i=1
(
F(Ti)∩F(Si)

)
6= /0. Recall that a

sequence {xn} in a metric space X is said to be Fejér monotone with respect to U (a subset
of X) if d(xn+1,x) ≤ d(xn,x) for all x ∈ U and for all n ≥ 1. A map T : U → U is called
to be semi-compact if any bounded sequence {xn} satisfying d(xn,T xn)→ 0 as n→ ∞ has a
convergent subsequence.

Let f be a nondecreasing selfmap on [0,∞) with f (0) = 0 and f (t) > 0 for all t ∈ (0,∞)
and let d(x,A) = inf{d(x,y) : y ∈ A}. Then a family {Ti : i ∈ L } of selfmaps on U with
F = ∩N

i=1F(Ti) 6= /0, satisfies:
(i) condition (A ) if f (d(x,F ))≤ d(x,Tix) for all x ∈U , holds for at least one Ti ∈ {Ti : i ∈

L } or f (d(x,F ))≤maxi∈L d(x,Tix) holds for all x ∈U .
Modifications of condition (A ) for two finite families of selfmaps have been made recently

in [13, 24] as follows:
Let {Ti : i ∈L } and {Si : i ∈L } be two finite families of nonexpansive selfmaps on U with

F 6= /0. Then the two families are said to satisfy:
(ii) condition (B) on U if

f (d(x,F)≤ d(x,Tix) or f (d(x,F))≤ d(x,Six)

for all x ∈U holds for at least one Ti ∈ {Ti : i ∈L } or at least one Si ∈ {Si : i ∈L }, and
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(ii) condition (C ) on U if

f (d(x,F))≤ 1
2
[
d(x,Tix)+d(x,Six)

]
holds for all x ∈U .

Remark 2.7. Condition (B) and condition (C ) are equivalent to condition (A ) if Ti = Si for
all i ∈L .

Lemma 2.8. [2] Let U be a nonempty closed subset of a complete metric space (X ,d) and
{xn} be Fejér monotone with respect to U. Then {xn} converges to some p ∈ U if and only if
limn→∞ d(xn,U ) = 0.

We now recollect more results by Khan et al. [14] as follows:

Lemma 2.9. [14] Let U be a nonempty, closed, and convex subset of a hyperbolic space X and
let {Ti : i ∈L } and {Si : i ∈L } be two finite families of nonexpansive selfmaps on U such
that F 6= /0. Suppose that the sequence {xn} is defined implicitly in (2.2). Then limn→∞ d(xn, p)
exists for each p ∈ F.

Lemma 2.10. [14] Let U be a nonempty, closed, and convex subset of a uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and let {Ti : i ∈ L } and
{Si : i∈L } be two finite families of nonexpansive selfmaps of U such that F 6= /0. Suppose that
the sequence {xn} is defined implicitly in (2.2). Then

lim
n→∞

d(xn,Tixn) = lim
n→∞

d(xn,Sixn) = 0

for each i = 1,2,3, . . . ,N.

Theorem 2.11. [14] Let U be a nonempty, closed, and convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η and let {Ti : i ∈L }
and {Si : i∈L } be two finite families of nonexpansive selfmaps of U such that F 6= /0. Then the
sequence {xn} defined implicitly in (2.2) ∆-converges to a common fixed point of {Ti : i ∈L }
and {Si : i ∈L }.

Theorem 2.12. [14] Let U be a nonempty, closed, and convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η and let {Ti : i ∈L }
and {Si : i∈L } be two finite families of nonexpansive selfmaps on U such that F 6= /0. Suppose
that a pair of maps Ti and Si in {Ti : i ∈L } and {Si : i ∈L } respectively, satisfies condition
(B). Then the sequence {xn} defined implicitly in (2.2) converges strongly to p ∈ F.

Theorem 2.13. [14] Let U be a nonempty, closed, and convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η and let {Ti : i ∈L }
and {Si : i∈L } be two finite families of nonexpansive selfmaps on U such that F 6= /0. Suppose
that one the of maps Ti and Si in {Ti : i ∈ L } and {Si : i ∈ L } is semi-compact. Then the
sequence {xn} defined implicitly in (2.2) converges strongly to p ∈ F.

The following is a very well known lemma.

Lemma 2.14. Let {an}∞
n=1,{bn}∞

n=1, and {δn}∞
n=1 be sequences of nonnegative real numbers

satisfying the inequality an+1 ≤ (1+δn)an +bn,n≥ 1. If ∑
∞
n=1 bn < ∞ and ∑

∞
n=1 δn < ∞, then
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(i). limn→∞ an exists.
(ii). In particular, if {an}∞

n=1 has a subsequence which converges strongly to zero, then
limn→∞ an = 0.

Inspired and motivated by the works of Khan et al. [14] and some related results, we estab-
lish common fixed point theorems for two families of uniformly L-Lipschitzian asymptotically
quasi-nonexpansive mappings in hyperbolic spaces. Our results generalize the results obtained
by Khan et al. [14], as well as some related results in CAT(0) spaces and uniformly Banach
spaces.

3. MAIN RESULTS

In this section, we prove some technical lemmas before proving our main results. Note that
we do not need two different sequences {k(Ti)

n }∞
n=1 ⊂ [1,∞) and {k(Si)

n }∞
n=1 ⊂ [1,∞) satisfying

two families of asymptotically quasi-nonexpasive mappings {Ti : i ∈ L } and {Si : i ∈ L },
respectively. We let kn = max{k(Ti)

n ,k(Si)
n }. Thus, from now on, we take only one sequence

{kn}∞
n=1 ⊂ [1,∞) satisfying such two families of asymptotically quasi-nonexpasive mappings.

Let LTi and LSi be constants satisfying two families of uniformly L-Lipschitzian mappings {Ti :
i ∈L } and {Si : i ∈L }, respectively. We take L = max{LTi,LSi}.

Let (X ,d,W ) be a hyperbolic space. Let U be a nonempty and convex subset of X . We
introduce the following definitions.

Definition 3.1. Let {Ti : i ∈L } and {Si : i ∈L } be two families of uniformly L-Lipschitzian

asymptotically quasi-nonexpansive self maps on U with 0 < L <

√
5−1
2

. The two-step algo-
rithm can be defined in a hyperbolic space as:

xn+1 =W (xn,T n
i yn,αn),

yn =W (xn,Sn
i xn,βn),n≥ 1

(3.1)

where Ti = Ti(modN) and Si = Si(modN) and i = 1,2,3, . . . ,N.

We demonstrate that algorithm (3.1) exists, and define a map Ω1 : U →U by

Ω1x =W (x0,T n
1 W (x,Sn

1x,β1),α1).

For a given x0 ∈U , the existence of x1 =W
(
x0,T n

1 W (x1,Sn
1x1,β1

)
,α1) is guaranteed if Ω1 has

a fixed point. Now, for any u,v ∈U and applying (W4), we have

d(Ω1u,Ω1v) = d
(
W (x0,T n

1 W (u,Sn
1u,β1),α1),W (x0,T n

1 W (v,Sn
1v,β1),α1

)
≤ α1d

(
T n

1 W (u,Sn
1u,β1),T n

1 W (v,Sn
1v,β1)

)
≤ α1LT1d

(
W (u,Sn

1u,β1),W (v,Sn
1v,β1)

)
≤ α1LT1[(1−β1)d(u,v)+β1d(Sn

1u,Sn
1v)]

≤ α1LT1[(1−β1)d(u,v)+β1LS1d(u,v)]

≤ α1L[d(u,v)+Ld(u,v)] (where L = max{LT1,LS1})

≤ α1(L+L2)d(u,v)

≤ α1d(u,v), (because L+L2 < 1).
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Since α1 ∈ (0,1), one sees that Ω1 is a contraction. By the Banach contraction principle, Ω1
has a unique fixed point. Thus the existence of x1 is guaranteed. Continuing in this way, we
find the existence of x2,x3 and so on. Thus implicit algorithm (3.1) is well defined.

We now prove the following lemmas.

Lemma 3.2. Let U be a nonempty, closed, and convex subset of a hyperbolic space X with
monotone modulus of uniform convexity η , and let {Ti : i ∈L } and {Si : i ∈L } be two finite
families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive selfmaps on U such

that F 6= /0 with 0 < L <

√
5−1
2

. Suppose that the following conditions hold true: (i) αn →
0,βn→ 0, (ii) ∑

∞
n=1 αnβn < ∞, (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞. Then, for the sequence {xn}

defined implicitly in (3.1), limn→∞ d(xn, p) exists for each p ∈ F.

Proof. For any p ∈ F, it follows from (3.1) that

d(xn+1, p) = d
(
W (xn,T n

i yn,αn), p
)

≤ (1−αn)d(xn, p)+αnd(T n
i yn, p)

≤ (1−αn)d(xn, p)+αnknd(yn, p)

= (1−αn)d(xn, p)+αnknd(W (xn,Sn
i xn,βn), p)

≤ (1−αn)d(xn, p)+αnkn
[
(1−βn)d(xn, p)+βnd(Sn

i xn, p)
]

≤ (1−αn)d(xn, p)+αnkn(1−βn)d(xn, p)+αnβnk2
nd(xn, p)

=
[
1−αn +αnkn−αnβnkn +αnβnk2

n
]
d(xn, p)

≤ [1+αnkn +αnβnk2
n]d(xn, p)

= (1+σn)d(xn, p).

Since ∑
∞
n=1 σn <∞, where σn =αnkn+αnβnk2

n, it follows from Lemma 2.14 that limn→∞ d(xn, p)
exists for each p ∈ F. Consequently, limn→∞ d(xn,F) exists. �

Lemma 3.3. Let U be a nonempty, closed, and convex subset of a uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η . Let {Ti : i ∈ L } and {Si : i ∈ L }
be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive selfmaps

on U such that F 6= /0 with 0 < L <

√
5−1
2

. Suppose that the following conditions hold true:

(i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞. Then, for the

sequence {xn} defined implicitly in (3.1), we have

lim
nto∞

d(xn,T n
i xn) = lim

n→∞
d(xn,Sn

i xn) = 0

for each i = 1,2,3, ..,N. Moreover,

lim
nto∞

d(xn,Tixn) = lim
n→∞

d(xn,Sixn) = 0

for each i = 1,2,3, ..,N.
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Proof. From Lemma 3.2, it follows that limn→∞ d(xn, p) exists for each p ∈ F. Suppose that
limn→∞ d(xn, p) = c. If c = 0, it is trivial. Next, we consider the case c > 0. Observe that

d(yn, p) = d(W (xn,Sn
i xn,βn), p)

≤ (1−βn)d(xn, p)+βnd(Sn
i xn, p)

≤ (1−βn)d(xn, p)+βnknd(xn, p)

≤ [1−βn +βnkn]d(xn, p)

≤ (1+βnkn)d(xn, p).

Taking the limsup on both sides of the above inequality, we have

limsup
n→∞

d(yn, p)≤ limsup
n→∞

d(xn, p) = c.

Since Ti is asymptotically quasi-nonexpansive, we have

limsup
n→∞

d(T n
i yn, p)≤ c. (3.2)

We also get
limsup

n→∞

d(xn, p)≤ c. (3.3)

Moreover,
limsup

n→∞

d(xn+1, p) = limsup
n→∞

d(W (xn,T n
i yn,αn), p) = c. (3.4)

From (3.2), (3.3), (3.4), and Lemma 2.5, we have

limsup
n→∞

d(xn,T n
i yn) = 0. (3.5)

Next, we note that

d(xn+1,xn) = d(W (xn,T n
i yn,αn),xn)≤ αnd(T n

i yn,xn).

Taking the limsup on both sides in the above inequality, we have limsupn→∞ d(xn+1,xn) ≤ 0.
Hence,

limsup
n→∞

d(xn+1,xn) = 0. (3.6)

Now,
d(xn,xn+i)≤ d(xn,xn+1)+d(xn+1,xn+2)+ · · ·+d(xn+i−1,xn+i).

Taking the limit as n → ∞ on both sides of the above inequality and using (3.6), we have
limn→∞ d(xn,xn+i) = 0 for i < N. Furthermore, observe that

d(xn+1, p)≤ (1−αn)d(xn, p)+αnd(T n
i yn, p)

≤ (1−αn)d(xn,T n
i yn)+(1−αn)d(T n

i yn, p)+αnknd(yn, p)

≤ (1−αn)d(xn,T n
i yn)+(1−αn)knd(yn, p)+αnknd(yn, p)

= (1−αn)d(xn,T n
i yn)+ knd(yn, p).

Applying liminf and limsup on both sides in the above inequality and using (3.5), we arrive at

c≤ liminf
n→∞

d(yn, p)≤ limsup
n→∞

d(yn, p)≤ c.

That is,
lim
n→∞

d
(
W (xn,Sn

i xn,βn), p
)
= lim

n→∞
d(yn, p) = c. (3.7)
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Since Si is asymptotically quasi-nonexpansive, we have

limsup
n→∞

d(Sn
i xn, p)≤ c, (3.8)

and
limsup

n→∞

d(xn, p)≤ c. (3.9)

From (3.7), (3.8), (3.9), and Lemma 2.5, we obtain limn→∞ d(xn,Sn
i xn) = 0. Moreover,

d(xn+1,T n
i xn)≤ d(xn+1,T n

i yn)+d(T n
i yn,T n

i xn)

≤ d
(
W (xn,T n

i yn,αn),T n
i yn
)
+Ld(yn,xn)

≤ (1−αn)d(xn,T n
i yn)+αnd(T n

i yn,T n
i yn)+Ld(yn,xn)

= (1−αn)d(xn,T n
i yn)+Ld(W (xn,Sn

i xn,βn),xn)

≤ (1−αn)d(xn,T n
i yn)+L

[
(1−βn)d(xn,xn)+βnd(Sn

i xn,xn)
]

= (1−αn)d(xn,T n
i yn)+Lβnd(Sn

i xn,xn),

which gives limn→∞ d(xn+1,T n
i xn) = 0. For each i ∈L , we have

d(xn,T n
n+ixn)≤ d(xn,xn+1)+d(xn+1,T n

n+ixn)

= d(xn,xn+1)+d(xn+1,T n
i xn).

(3.10)

Taking the limit as n→∞ in above inequality, we have limn→∞ d(xn,T n
n+ixn) = 0 for each i∈L .

Since for each i ∈L , the sequence {d(xn,T n
i xn)} is a subsequence of ∪N

i=1{d(xn,T n
n+ixn)} and

limn→∞ d(xn,T n
n+ixn) = 0 for each i ∈ L . Therefore limn→∞ d(xn,T n

i xn) = 0 for each i ∈ L .
Similarly, we have limn→∞ d(xn,Sn

n+ixn) = 0 for each i ∈L . Therefore limn→∞ d(xn,Sn
i xn) = 0

for each i ∈L . Now,

d(xn,Tn+ixn)≤ d(xn,T n
n+ixn)+d(T n

n+ixn,T n+1
n+i xn)+d(T n+1

n+i xn,Tn+ixn)

≤ d(xn,T n
n+ixn)+Ld(xn,Tn+ixn)+Ld(xn,T n

n+ixn).

Taking the limit as n→ ∞ on both side of the above inequality, we obtain

lim
n→∞

d(xn,Tn+ixn)≤ L lim
n→∞

d(xn,Tn+ixn)

for each i ∈L , which implies limn→∞ d(xn,Tn+ixn) = 0 because 0 < L < 1. Since, for each i ∈
L , the sequence {d(xn,Tixn)} is a subsequence of∪N

i=1{d(xn,Tn+ixn)} and limn→∞ d(xn,Tn+ixn)
= 0 for each i∈L , one has limn→∞ d(xn,Tixn)= 0. Similarly, we can prove limn→∞ d(xn,Sn+ixn)
= 0 for each i ∈L . Therefore limn→∞ d(xn,Sixn) = 0. Hence our proof is finished. �

Now, we are ready to establish ∆-convergence and strong convergence of algorithm (3.1).

Theorem 3.4. Let U be a nonempty, closed, and convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i∈L } and
{Si : i∈L } be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Suppose that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Then the sequence {xn} defined by (3.1) ∆-converges to a common fixed point of {Ti : i ∈L }
and {Si : i ∈L }.
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Proof. It follows from Lemma 3.2 that {xn} is bounded. Therefore by Lemma 2.3, {xn} has a
unique asymptotic center. That is, A({xn}) = {x}. Let {un} be any subsequence of {xn} such
that A({un}) = {u}. Then by Lemma 3.3, we have

lim
n→∞

d(un,T n
i un) = 0 = lim

n→∞
d(un,Sn

i un)

for each i ∈L .
We next prove that u is the common fixed point of {Ti : i ∈L } and {Si : i ∈L }. We define

a sequence {zm} in U by zm = T n
mu where Tm = Tm(modN). Observe that

d(zm,un)≤ d(T n
mu,T n

mun)+d(T n
mun,T n

m−1un)+ · · ·+d(T n
1 un,un)

≤ Ld(u,un)+
m−1

∑
i=1

d(T n
i un,un)

≤ d(u,un)+
m−1

∑
i=1

d(T n
i un,un) (because 0 < L < 1).

Therefore, we obtain

r(zm,{un}) = limsup
n→∞

d(zm,un)≤ limsup
n→∞

d(u,un) = r(u,{un}).

Hence |r(zm,{un})−r(u,{un})| → 0 as m→∞. It follows from Lemma 2.6 that Tm(modN)u = u.
Hence u is the common fixed point of {Ti : i ∈ L }. Similarly, we can show that u is the
common fixed point of {Si : i ∈ L }. Therefore u is the common fixed point of {Ti : i ∈ L }
and {Si : i ∈L }. For the uniqueness, note that limn→∞ d(xn,u) exists by Lemma 3.2. Suppose
x 6= u. By the uniqueness of asymptotic centers, one has

limsup
n→∞

d(un,u)< limsup
n→∞

d(un,x)

≤ limsup
n→∞

d(xn,x)

≤ limsup
n→∞

d(xn,u)

≤ limsup
n→∞

d(un,u),

which is a contradiction. Hence x = u. Since {un} is an arbitrary subsequence of {xn}, then
A({un}) = {u} for all subsequences {un} of {xn}, which proves that {xn} ∆-converges to a
common fixed point u of {Ti : i ∈L } and {Si : i ∈L }. �

Corollary 3.5. Let U be a nonempty, closed, and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i ∈L } and
{Si : i ∈ L } be two finite families of uniformly L-Lipschitzian asymptotically nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Suppose that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Then the sequence {xn} defined by (3.1) ∆-converges to a common fixed point of {Ti : i ∈L }
and {Si : i ∈L }.

We next use condition (B) to investigate strong convergence of algorithm (3.1). The follow-
ing technical lemma is crucial.
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Lemma 3.6. Let U be a nonempty, closed, and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η . Let {Ti : i ∈L } and {Si :
i ∈ L } be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Suppose that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Then the sequence {xn}defined implicitly in (3.1) converges strongly to p ∈ F if and only if
limn→∞ d(xn,F) = 0.

Proof. Observe from Lemma 3.2 that d(xn+1, p)≤ d(xn, p). It follows that {xn} is Fejér mono-
tone with respect to F and limn→∞ d(xn,F) exists. Hence, the result follows from Lemma 2.8
immediately. �

Based on Lemma 3.6, we now establish the strong convergence of algorithm (3.1).

Theorem 3.7. Let U be a nonempty, closed, and convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i∈L } and
{Si : i∈L } be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Assume that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Suppose that a pair of maps Ti and Si in {Ti : i ∈L } and {Si : i ∈L }, respectively, satisfies
condition (B). Then the sequence {xn} defined implicitly in (3.1) converges strongly to p ∈ F.

Proof. It follows from Lemma 3.2 that limn→∞ d(xn,F) exists. Moreover, Lemma 3.3 implies
that limn→∞ d(xn,Tixn) = limn→∞ d(xn,Sixn) = 0 for each i ∈ L . So condition (B) guar-
antees that limn→∞ f (d(xn,F)) = 0. Since f is nondecreasing with f (0) = 0, it follows that
limn→∞ d(xn,F) = 0. Therefore, Lemma 3.6 implies that {xn} converges strongly to a point
p ∈ F. �

Corollary 3.8. Let U be a nonempty, closed, and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i ∈L } and
{Si : i ∈ L } be two finite families of uniformly L-Lipschitzian asymptotically nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Assume that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Suppose that a pair of maps Ti and Si in {Ti : i ∈L } and {Si : i ∈L } respectively, satisfies
condition (B). Then the sequence {xn} defined implicitly in (3.1) converges strongly to p ∈ F.

As in the proof of Theorem 3.4 in [24], we prove the following result similarly.

Theorem 3.9. Let U be a nonempty, closed, and convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i∈L } and
{Si : i∈L } be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Assume that the following conditions are

satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞. Sup-

pose that one of the map in {Ti : i ∈L } and {Si : i ∈L } is semi-compact. Then the sequence
{xn} defined implicitly in 3.1 converges strongly to p ∈ F.
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Proof. Suppose that Ti0 and S j0 are semi-compact for some i0, j0 ∈L . It follows from Lemma
3.3 that

lim
nto∞

d(xn,Ti0xn) = lim
n→∞

d(xn,S j0xn) = 0.

By semi-compactness of the mappings Ti0 and S j0 , there exists a subsequence {xn j} of {xn} such
that lim j→∞ xn j = p∈U and limnto∞ d(xn j ,Ti0xn j) = 0 = limn→∞ d(xn j ,S j0xn j). Now by Lemma
3.3, we have that limn→∞ d(xn j ,Tixn j)= 0 for all i∈L , which implies that limn→∞ d(p,Ti p}= 0
for all i ∈L . Thus p ∈ F(Ti). Similarly, one can prove that p ∈ F(Si). Therefore p ∈ F, which
leads to limn→∞ d(xn,F) = 0. By Lemma 3.6, one sees that sequence {xn} converges strongly
to a common fixed point in F. This completes our proof. �

Corollary 3.10. Let U be a nonempty, closed, and convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η , and let {Ti : i ∈L }
and {Si : i ∈L } be two finite families of uniformly L-Lipschitzian asymptotically nonexpansive

selfmaps on U such that F 6= /0 with 0 < L <

√
5−1
2

. Assume that the following conditions

are satisfied (i) αn→ 0,βn→ 0, (ii) ∑
∞
n=1 αnβn < ∞, and (iii) ∑

∞
n=1 αnkn < ∞,∑∞

n=1 αnk2
n < ∞.

Suppose that one of the map in {Ti : i∈L } and {Si : i∈L } is semi-compact. Then the sequence
{xn} defined implicitly in 3.1 converges strongly to p ∈ F.

Remark 3.11. (1) Lemma 3.2 is a refinement and a generalization of Lemma 2.9 ([14]
Lemma 2.7).

(2) Lemma 3.3 is a refinement and a generalization of Lemma 2.10 ([14] Lemma 2.8).
(3) Theorem 3.4, which demonstrates that the sequence defined in (3.1) ∆-converges to a

common fixed point of {Ti : i∈L } and {Si : i∈L }, is a refinement and a generalization
of Theorem 2.11 ([14]Theorem 3.1).

(4) Lemma 3.6 is a refinement and a generalization of Lemma 3.3 in [14].
(5) Theorem 3.7 demonstrates that if a pair of maps Ti and Si in {Ti : i ∈L } and {Si : i ∈

L } respectively, satisfies condition (B), then the sequence {xn} defined implicitly in
(3.1) converges strongly to p ∈ F. This Theorem is a refinement and a generalization of
Theorem 2.12 ([14]Theorem 3.4).

(6) Theorem 3.9 demonstrates that if one of the map in {Ti : i∈L } and {Si : i∈L } is semi-
compact, then the sequence {xn} defined implicitly in 3.1 converges strongly to p ∈ F.
This theorem is a refinement and a generalization of Theorem 2.13 ([14] Theorem 3.5).

As consequences, we obtain Corollaries 3.5, 3.8, and 3.10. All of our main results
hold true for the subclass of asymptotically nonexpansive mappings.
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