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LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL MULTI-POINT
BOUNDARY VALUE PROBLEMS USING A NEW GENERALIZED FRACTIONAL

DERIVATIVE

GANG CHEN, JINBO NI∗, HUDIE DONG, WEI ZHANG

School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China

Abstract. In this paper, we present a new class of fractional derivative (bi-order Hilfer-Katugampola
fractional derivative). In the framework of this type of fractional calculus, we discuss a class of frac-
tional multi-point boundary value problems (BVPs) and obtain some new fractional Lyapunov-type in-
equalities. Based on the generality of the definition of bi-order Hilfer-Katugampola fractional derivative,
we provide a series of corollaries, which demonstrate that our results unify and generalize some known
results in the existing literature.
Keywords. bi-order Hilfer-Katugampola fractional derivative; Lyapunov-type inequality; Fractional
multi-point BVP.

1. INTRODUCTION

In [1], Lyapunov discussed the following second-order Dirichlet problem{
x′′(t)+q(t)x(t) = 0, t ∈ (a,b),
x(a) = x(b) = 0,

(1.1)

where q(t)∈C([a,b],R). If BVP (1.1) has a nontrivial solution x(t), then the following inequal-
ity ∫ b

a
|q(s)|ds >

4
b−a

(1.2)

holds. The Lyapunov inequality and its generalisations are powerful and efficient tools in inves-
tigating differential and difference equations, including differential stability, oscillation theory,
prior estimation, and eigenvalue problems; see, e.g, [2, 3, 4]. Because fractional calculus is
more effective and powerful in illustrating numerous practical phenomena than integer calcu-
lus, more and more researchers are paying attention to this research topic. In 2013, Ferreira
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[5] first extended inequality (1.2) to the fractional case, and considered the following Dirichlet
problem of fractional differential equation{

(Dα

a+x)(t)+q(t)x(t) = 0, t ∈ (a,b), 1 < a≤ 2,
x(a) = x(b) = 0,

where q(t) ∈C([a,b],R), and Dα

a+ is the Riemann-Liouville fractional derivative of order α . If

the BVP has a nontrivial solution x(t), then the following inequality
∫ b

a |q(s)|ds>Γ(α)
( 4

b−a

)α−1

holds. One year later, the same author, in [6] analyzed (1.1) involving Caputo fractional deriv-
ative in a similar way and obtained the following inequality∫ b

a

∣∣q(s)∣∣ds >
Γ(α)αα

[(α−1)(b−a)]α−1 .

Lyapunov inequality (1.2) has applications in various problems related to fractional differ-
ential equations. Due to the applications, it has been generalized in many forms. The existing
literature can be roughly divided into two categories. First, based on the definitions of fractional
calculus, inequality (1.2) has been extended to various forms with different fractional deriva-
tives, such as Caputo [7, 8], Hadamard [9, 10], Katugampola [11], Hilfer [12, 13], Caputo-
Fabrizio [14], Hilfer-Katugampola [15, 16], and so on. Second, under different boundary con-
ditions, scholars studied fractional Lyapunov-type inequalities for nonlocal BVPs (multi-point
BVPs [17, 18] and integral BVPs [19, 20]). To the best of the authors’ knowledge, there are
only few papers on Lyapunov-type inequalities for fractional differential equations with m-point
boundary value problems in the literature; see [12, 15, 18]. In [12], Wang et al. proposed a new
Lyapunov-type inequality for Hilfer fractional differential equation with mult-ipoint boundary
conditions. Later, a Lyapunov type inequalities for multi-point boundary problems with Caputo-
Hadamard fractional derivative was established by the same author [18]. Recently, Zhang et al.
[15] analysed the m-point BVPs with Hilfer-Katugampola fractional differential equation

ρDα,β
a+ x(t)+q(t)x(t) = 0, t ∈ (a,b), 1 < α < 2, ρ > 0,

x(a) = 0, x(b) =
m−2
∑

i=1
ωix(ϕi),

where q(t) ∈ C([a,b],R), ρDα,β
a+ denotes the Hilfer-Katugampola fractional derivative of or-

der α and type β (0 ≤ β ≤ 1), ωi ≥ 0, a < ϕi < b, a < ϕ1 < ϕ2 < · · · < ϕm−2 < b, with
m−2
∑

i=1
ωi(ϕ

ρ

i −aρ)1−(2−α)(1−β ) < (bρ −aρ)1−(2−α)(1−β ). If the BVPs has a nontrivial solution

x(t), then ∫ b

a
|q(s)|ds≥ [2(α−1)+β (2−α)]2(α−1)+β (2−α)

Γ(α)ρα−1

∆1[1+Q(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

,

where,

∆1 = (α−1)α−1[α−1+β (2−α)]α−1+β (2−α)(bρ −aρ)α−1

and

Q(b) =
(bρ −aρ)1−(2−α)(1−β )

(bρ −aρ)1−(2−α)(1−β )−∑
m−2
i=1 ωi(ϕ

ρ

i −aρ)
1−(2−α)(1−β )

.
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In [21], Bulavatsky presented a new generalized Hilfer’s derivative in the form

D(α,β )µ
a+ x(t) = Iµ(1−α)

0+
d
dt

Iµ(1−α)(1−β )
0+ x(t),

where 0 < α,β < 1 and 0 < µ < 1. In [22], Karimov provided the higher order definition of
bi-order Hilfer fractional derivative of orders α,β (n−1 < α,β < n) and type µ (0 ≤ µ ≤ 1)
in the following form

D(α,β )µ
a+ x(t) = Iµ(n−α)

0+
( d

dt

)nIµ(1−µ)(n−β )
0+ x(t).

In this paper, motivated by the above works, we propose a new class of fractional derivative
(bi-order Hilfer-Katugampola fractional derivative). Under this new framework of fractional
calculus, we establish fractional Lyapunov-type inequalities with multi-point boundary condi-
tions 

ρD(α,β )µ
a+ x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α,β < 2, ρ > 0,

x(a) = 0, x(b) =
m−2
∑

i=1
ωix(ϕi),

(1.3)

and 
ρD(α,β )µ

a+ x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α,β < 2, ρ > 0,

x(a) = 0, t1−ρ d
dt x(t)|t=b =

m−2
∑

i=1
λix(ηi),

(1.4)

where q(t)∈C([a,b],R), ρD(α,β )µ
a+ is bi-order Hilfer-Katugampola fractional derivative of order

α,β and type µ (0 ≤ µ ≤ 1) (see Sectiom 3), ωi,λi ≥ 0, a < ϕi,ηi < b (i = 1,2, · · · ,m− 2),
a < ϕ1 < ϕ2 < · · ·< ϕm−2 < b, and a < η1 < η2 < · · ·< ηm−2 < b. Let γ = β +µ(2−β ) and
δ = β + µ(α −β ). The interest of this article is to derive Lyapunov-type inequalities for two
different types of differential equations involving a new fractional derivative. To illustrate the
main results of this paper, we assume that the following conditions:

(A) ∑
m−2
i=1 ωi(ϕ

ρ

i −aρ)
γ−1

< (bρ −aρ)γ−1;

(B) ∑
m−2
i=1 λi(η

ρ

i −aρ)
γ−1

< (γ−1)ρ(bρ −aρ)γ−2.
The main contributions of our work are summarized as follows:
• We present a new definition of the bi-order Hilfer-Katugampola fractional derivative and

prove its property.
•We obtain the fractional Lyapunov-type inequalities for the m-point BVPs (1.3) and (1.4).
• There are two special cases of BVPs (1.3) and BVPs (1.4). One is limit case α = β ,ρ→ 0.

Our results are an extension of that obtained recently in [12]; the other is the limit case α = β ,
so BVPs (1.3) and BVPs (1.4) can be degenerated to the results presented in [15] if we choose
α = β ,ρ→ 1. On the other hand, BVPs (1.3) can be degenerated to the result presented in [18].
In addition, if we set α = β ,µ = 0, the BVPs (1.3) is an extension of that obtained recently in
[23].

The rest of this paper is structured as follows: In Section 2, we recall some definitions of
fractional calculus and offer the related properties that will be used in the following. In Section
3, we give a new definition of the bi-order Hilfer-Katugampola fractional derivative and prove
its property. Finally, the main results and a series of corollaries are given in Section 4. The
concluding remark is presented in the last section, Section 5.
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2. PRELIMINARIES

In this section, we present some basic definitions and lemmas, which are useful for estab-
lishing our results. Let c ∈ R, p≥ 1 and X p

c (a,b) be the space of all complex valued Lebesgue
measurable functions x on (a,b) with

∥∥x
∥∥

X p
c
< ∞, where the norm is defined by∥∥x

∥∥
X p

c
=
(∫ b

a

∣∣tcx(t)
∣∣p d

dt

)1/p
< ∞.

Definition 2.1. [24, 25] Let 0 < a < t < b < ∞ and f ∈ X p
c (a,b). The left-side Katugampola

fractional integral of order α > 0 and ρ > 0 is defined by

(ρ Iα

a+ f )(t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1 f (s)ds, t ∈ [a,b].

Definition 2.2. [24, 25] Let α > 0, n = [α]+1 and ρ > 0 for 0 < a < t < b < ∞. The left-side
Katugampola fractional derivative ρDα

a+ f of order α is defined by

(ρDα

a+ f )(t) = ζ
n
ρ (I

n−α

a+ f )(t) =
ρα−n+1

Γ(n−α)

(
t1−ρ d

dt

)n
∫ t

a

sρ−1 f (s)

(tρ − sρ)α−n+1 ds,

where ζ n
ρ =

(
t1−ρ d

dt

)n.

Definition 2.3. [26] Let α > 0, n = [α] + 1, and ρ > 0. The left-side Hilfer-Katugampola
fractional derivative ρDα,β

a+ f of order α and type β (0≤ β ≤ 1) of a function f is defined by

(ρDα,β
a+ f )(t) = (ρ Iβ (n−α)

a+
(
t1−ρ d

dt

)nρ I(1−β )(n−α)
a+ f )(t).

Lemma 2.4. [24, 25] Let α,β > 0, 0 < a < b < ∞, ρ,c ∈ R, 1≤ ρ ≤ ∞, and ρ ≥ c. Then, for
f ∈ X p

c (a,b), the semi group property is valid, that is, (ρ Iα

a+
ρ Iβ

a+ f )(t) = (ρ Iα+β

a+ f )(t).

Lemma 2.5. [27] Let α > 0, n = [α]+1, f ∈ X p
c (a,b), and ρ Iα

a+ f ∈ ACn
ζρ
[a,b]. Then

(ρ Iα

a+
ρDα

a+ f )(t) = f (t)−
n

∑
j=1

(ζ
n− j
ρ (ρ In−α

a+ f ))(a)
Γ(α− j+1)

(tρ −aρ

ρ

)α− j
,

where

ACn
ζρ
[a,b] = { f : [a,b]→ R|ζ n−1

ρ f ∈ AC[a,b]}.

3. NEW DEFINITION AND PROPERTY OF BI-ORDER HILFER-KATUGAMPOLA

FRACTIONAL CALCULUS

Definition 3.1. Let α > 0, n− 1 < α,β ≤ n, and ρ > 0. The bi-order Hilfer-Katugampola
fractional derivative ρD(α,β )µ

a+ f of order α,β and type µ (0≤ µ ≤ 1) of a function f is defined

by (ρD(α,β )µ
a+ f )(t) = (ρ Iµ(n−α)

a+ (t1−ρ d
dt )

nρ I(1−µ)(n−β )
a+ f )(t).

Lemma 3.2. Let n− 1 < α,β < n, n = [α] + 1, ρ > 0, f ∈ X p
c (a,b), ρ Iα

a+,
ρ Iβ

a+ ∈ ACn
ζρ
[a,b].

Then(
ρ Iδ

a+
ρD(α,β )µ

a+ f
)
(t) = (ρ Iδ

a+
ρ Iγ−δ

a+
ρDγ

a+ f )(t) = f (t)−
n

∑
j=1

(ζ
n− j
ρ (ρ In−γ

a+ x))(a)
Γ(γ− j+1)

(tρ −aρ

ρ

)γ− j
,
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where γ = β +µ(n−β ), δ = β +µ(α−β ), γ > δ , and ζ n
ρ = (t1−ρ d

dt )
n.

Proof. Let γ = β +µ(n−β ) and δ = β +µ(α−β ). According to the definitions and Lemma
2.4, we have (

ρD(α,β )µ
a+ f

)
(t) =

(
ρ Iµ(n−α)

a+ (t1−ρ d
dt
)nρ I(1−µ)(n−β )

a+ f
)
(t)

=
(

ρ Iγ−δ

a+ (t1−ρ d
dt
)nρ In−γ

a+ f
)
(t)

=
(

ρ Iγ−δ

a+
ρDγ

a+ f
)
(t),

It follows form Lemma 2.5 that(
ρ Iδ

a+
ρD(α,β )µ

a+ f
)
(t) =

(
ρ Iδ

a+
ρ Iγ−δ

a+
ρDγ

a+ f
)
(t) = f (t)−

n

∑
j=1

(
ζ

n− j
ρ (ρ In−γ

a+ f )
)
(a)

Γ(γ− j+1)
(tρ −aρ

ρ

)γ− j
,

which completes the proof. �

4. MAIN RESULTS

4.1. Green’s functions of BVPs (1.3) and (1.4).

Lemma 4.1. Assume that (A) holds. A function x(t) ∈C[a,b] is a solution to BVPs (1.3) if and
only if it satisfies the integral equation

x(t) =
∫ b

a
G(t,s)q(s)x(s)ds+M(t)

m−2

∑
i=1

ωi

∫ b

a
G(ϕi,s)q(s)x(s)ds, t ∈ [a,b],

where M(t) and Green’s function G(t,s) are defined as

M(t) =
(tρ −aρ)γ−1

(bρ −aρ)
γ−1−∑

m−2
i=1 ωi(ϕ

ρ

i −aρ)
γ−1 , t ∈ [a,b],

G(t,s) =
ρ1−δ sρ−1

Γ(δ )(bρ −aρ)γ−1

{
g1(t,s), a≤ s≤ t ≤ b,
g2(t,s), a≤ t ≤ s≤ b,

and

g1(t,s) = (tρ −aρ)
γ−1

(bρ − sρ)δ−1− (bρ −aρ)γ−1(tρ − sρ)
δ−1

,

g2(t,s) = (tρ −aρ)γ−1(bρ − sρ)δ−1.

Proof. Applying operator ρ Iδ

a+ to both sides of (1.3) and combining Lemma 3.2, we obtain

x(t) =−ρ Iδ

a+q(t)x(t)+ c0
(tρ −aρ

ρ

)γ−1
+ c1

(tρ −aρ

ρ

)γ−2
,

where c0,c1 ∈ R, γ = β + µ(2−β ), and δ = β + µ(α −β ). Since x(a) = 0, we immediately
obtain c1 = 0. Thus

x(t) =−ρ Iδ

a+q(t)x(t)+ c0
(tρ −aρ

ρ

)γ−1
. (4.1)
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Boundary condition x(b) = ∑
m−2
i=1 ωix(ϕi) implies that

−ρ Iδ

a+ q(t)x(t)|t=b + c0
(bρ −aρ

ρ

)γ−1
= ∑

m−2
i=1 ωix(ϕi),

and hence

c0 =
( ρ

bρ −aρ

)γ−1(
∑

m−2
i=1 ωix(ϕi)+

ρ Iδ

a+ q(t)x(t)|t=b
)
.

Substituting the values c0 into (4.1), we arrive at

x(t) =− ρ Iδ

a+q(t)x(t)+
( tρ −aρ

bρ −aρ

)γ−1
(∑

m−2
i=1 ωix(ϕi)+

ρ Iδ

a+ q(t)x(t)|t=b)

=− ρ Iδ

a+q(t)x(t)+
( tρ −aρ

bρ −aρ

)γ−1ρ Iδ

a+ q(t)x(t)|t=b +
( tρ −aρ

bρ −aρ

)γ−1
∑

m−2
i=1 ωix(ϕi)

=− ρ1−s

Γ(δ )

∫ t

a

(
tρ − sρ

)δ−1sρ−1q(s)x(s)ds

+
ρ1−s

Γ(δ )

( tρ −aρ

bρ −aρ

)γ−1
∫ b

a

(
bρ − sρ

)δ−1sρ−1q(s)x(s)ds+
( tρ −aρ

bρ −aρ

)γ−1
∑

m−2
i=1 ωix(ϕi)

=
∫ b

a
G(t,s)q(s)x(s)ds+

( tρ −aρ

bρ −aρ

)γ−1
∑

m−2
i=1 ωix(ϕi).

(4.2)
It follows that

∑
m−2
i=1 ωix(ϕi) = ∑

m−2
i=1 ωi

∫ b

a
G(ϕi,s)q(s)x(s)ds+∑

m−2
i=1 ωix(ϕi)∑

m−2
i=1 ωi

(ϕ
ρ

i −aρ

bρ −aρ

)γ−1
,

that is

∑
m−2
i=1 ωix(ϕi) =

∑
m−2
i=1 ωi

∫ b
a G(ϕi,s)q(s)x(s)ds(bρ −aρ)γ−1

(bρ −aρ)γ−1−∑
m−2
i=1 ωi(ϕ

ρ

i −aρ)
γ−1 , t ∈ [a,b]. (4.3)

By substituting (4.3) into (4.2), one has

x(t) =
∫ b

a
G(t,s)q(s)x(s)ds+

( tρ −aρ

bρ −aρ

)γ−1
∑

m−2
i=1 ωix(ϕi)

=
∫ b

a
G(t,s)q(s)x(s)ds+

( tρ −aρ

bρ −aρ

)γ−1 (bρ −aρ)γ−1
∑

m−2
i=1 ωi

∫ b
a G(ϕi,s)q(s)x(s)ds(

bρ −aρ
)γ−1−∑

m−2
i=1 ωi

(
ϕ

ρ

i −aρ
)γ−1

=
∫ b

a
G(t,s)q(s)x(s)ds+

(
tρ −aρ

)γ−1
∑

m−2
i=1 ωi

∫ b
a G(ϕi,s)q(s)x(s)ds(

bρ −aρ
)γ−1−∑

m−2
i=1 ωi

(
ϕ

ρ

i −aρ
)γ−1 .

This proof is completed. �

Lemma 4.2. Assume that (B) holds. A function x(t) ∈C[a,b] is a solution to BVPs (1.4) if and
only if it satisfies the integral equation

x(t) =
∫ b

a
Y (t,s)q(s)x(s)ds+L(t)

m−2

∑
i=1

λi

∫ b

a
Y (ηi,s)q(s)x(s)ds, t ∈ [a,b],
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where L(t) and Green’s function Y (t,s) are given as

L(t) =
(tρ −aρ)γ−1

(γ−1)ρ(bρ −aρ)γ−2−∑
m−2
i=1 λi(η

ρ

i −aρ)
γ−1 , t ∈ [a,b],

Y (t,s) =
(bρ − sρ)δ−2

ρ1−δ sρ−1

(γ−1)Γ(α)

{
y1(t,s), a≤ s≤ t ≤ b,
y2(t,s), a≤ t ≤ s≤ b,

and

y1(t,s) = (δ −1)(bρ −aρ)2−γ(tρ −aρ)γ−1− (γ−1)
(tρ − sρ)δ−1

(bρ − sρ)δ−2 ,

y2(t,s) = (δ −1)(bρ −aρ)2−γ(tρ −aρ)γ−1.

Proof. The proof of this lemma follows by a similar method employed in Lemma 4.1, we obtain

x(t) =−ρ Iδ

a+q(t)x(t)+ c̃0
(tρ −aρ

ρ

)γ−1
+ c̃1

(tρ −aρ

ρ

)γ−2
,

where c̃0, c̃1 ∈ R, γ = β + µ(2− β ), and δ = β + µ(α − β ). By using boundary condition
x(a) = 0, we immediately obtain that c̃1 = 0, which finds

x(t) =−ρ Iδ

a+q(t)x(t)+ c̃0
(tρ −aρ

ρ

)γ−1
.

Taking derivative to the equality above with respect to t, and multiplying the both sides of the
results obtained by t1−ρ , we arrive at

t1−ρ d
dt

x(t) =−ρ Iδ−1
a+ q(t)x(t)+ c̃0(γ−1)

(tρ −aρ

ρ

)γ−2
,

which together with boundary condition t1−ρ d
dt x(t)|t=b =

m−2
∑

i=1
λix(ηi) yields

c̃0 =
ργ−2(

∑
m−2
i=1 λix(ηi)+

ρ Iδ−1
a+ q(t)x(t)|t=b

)
(γ−1)(bρ −aρ)γ−2 .

Thus

x(t) =−ρ Iδ

a+q(t)x(t)+
(tρ −aρ)γ−1(

∑
m−2
i=1 λix(ηi)+

ρ Iδ−1
a+ q(t)x(t)|t=b

)
ρ(γ−1)(bρ −aρ)γ−2

=
∫ b

a
Y (t,s)q(s)x(s)ds+

(tρ −aρ)γ−1

ρ(γ−1)(bρ −aρ)γ−2 ∑
m−2
i=1 λix(ηi).

(4.4)

Moreover,

∑
m−2
i=1 λix(ηi) =∑

m−2
i=1 λi

∫ b

a
Y (ηi,s)q(s)x(s)ds+∑

m−2
i=1 λix(ηi)

∑
m−2
i=1 λi(ηi

ρ −aρ)γ−1

ρ(γ−1)(bρ −aρ)γ−2 ,

which implies

∑
m−2
i=1 λix(ηi) =

ρ(γ−1)(bρ −aρ)γ−2
∑

m−2
i=1 λi

∫ b
a Y (ηi,s)q(s)x(s)ds

ρ(γ−1)(bρ −aρ)γ−2−∑
m−2
i=1 λi(ηiρ −aρ)γ−1 . (4.5)

Substitute (4.5) into (4.4) finishes the proof. �
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The following lemma is from 4.14.

Lemma 4.3. If 1 < ` < 2, then 2−`
(`−1)`−1/`−2 ≤

(`−1)`−1

``
.

Lemma 4.4. The Green’s functions G(t,s) and Y (t,s) defined in Lemmas 4.1 and 4.2, sepa-
rately, satisfy the following properties:
(i) G(t,s) and Y (t,s) are two continuous functions for any (t,s) ∈ [a,b]× [a,b],
(ii) for any (t,s) ∈ [a,b]× [a,b], then

|G(t,s)| ≤ (γ−1)γ−1(δ −1)δ−1

Γ(α)(δ + γ−2)δ+γ−2 ρ
1−δ sρ−1(bρ −aρ)δ−1,

(iii) for any (t,s) ∈ [a,b]× [a,b],

|Y (t,s)| ≤ ρ1−δ sρ−1(bρ − sρ)δ−2

Γ(α)(γ−1)
max{γ−δ ,δ −1}.

Proof. (i) is obvious. We now demonstrate that (ii) holds. From the function g2(t,s), we see
that 0 ≤ g2(t,s) ≤ g2(s,s), (t,s) ∈ [a,b]× [a,b]. Differentiating g1(t,s) with respect to s, we
obtain

∂g1(t,s)
∂ s

=(δ −1)ρsρ−1(bρ −aρ)γ−1(tρ − sρ)δ−2
(

1−
( tρ − sρ

bρ − sρ

)2−δ( tρ −aρ

bρ −aρ

)γ−1
)
≥ 0,

which indicate that g1(t,s) is increasing with respect to s ∈ [a, t]. It follows that g1(t,a) ≤
g1(t,s)≤ g1(t, t), a≤ s≤ t ≤ b. On account of

g1(t,a) =(tρ −aρ)
γ−1

(bρ −aρ)δ−1
(

1−
(bρ −aρ

tρ −aρ

)γ−δ
)
≤ 0,

we have |g1(t,s)| ≤max{max
t∈[a,b]

g1(t, t), max−
t∈[a,b]

g1(t,a)}. Observe

h1(t) = g1(t, t) = (tρ −aρ)γ−1(bρ − tρ)δ−1, t ∈ [a,b],

and

h2(t) =−g1(t,a) =(bρ −aρ)γ−1(tρ −aρ)δ−1
(

1−
( tρ −aρ

bρ −aρ

)γ−δ
)
, t ∈ [a,b].

Now, differentiating h1(t) on (a,b), one has

h′1(t) = ρtρ−1(tρ −aρ)γ−2(bρ − tρ)δ−2
(

1−
(δ −1

γ−1
)(tρ −aρ

bρ − tρ

))
.

Observe that h′1(t) = 0 have a unique solution t̃, which is given as

t = t̃ =
(

aρ +
(bρ −aρ)(γ−1)

(δ + γ−2)

)1/ρ
=

(
bρ − (bρ −aρ)(δ −1)

(δ + γ−2)

)1/ρ
.

Since h′1(t̃)> 0 on (a, t̃) and h′1(t̃)< 0 on (t̃,b), we conclude that

max
t∈[a,b]

h1(t) = h1(t̃) =
(
(bρ −aρ)(γ−1)

δ + γ−2

)γ−1((bρ −aρ)(δ −1)
δ + γ−2

)δ−1

=
(γ−1)γ−1(δ −1)δ−1

(δ + γ−2)δ+γ−2 (bρ −aρ)δ+γ−2.
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Next, we need to prove that

max
t∈[a,b]

h2(t)≤ max
t∈[a,b]

h1(t). (4.6)

If γ−δ = 0, inequality (4.6) is obvious. If γ−δ 6= 0, then

h′2(t) = ρtρ−1(bρ −aρ)δ−1(tρ −aρ)δ−2×
(

1−
( γ−1

δ −1
)( tρ −aρ

bρ −aρ

)γ−δ
)
.

Observe that h′2(t) = 0 have a unique solution t̂ given as

t = t̂ =
(

aρ +
(

δ −1
γ−1

)1/γ−δ

(bρ −aρ)

)1/ρ
.

Since h′2(t̂)> 0 on (a, t̂) and h′2(t̂)< 0 on (t̂,b), we conclude that

max
t∈[a,b]

h2(t) = h2(t̂) =(bρ −aρ)δ+γ−2 γ−δ

γ−1

(
δ −1
γ−1

)δ−1/γ−δ

.

To prove that h2(t̂)≤ h1(t̃), we set `= δ+r−2
r−1 (1 < ` < 2). By using Lemma 4.3, we obtain

h2(t̂)≤
(
(δ −1)δ−1(γ−1)γ−1

(δ + γ−2)δ+γ−2

)1/γ−1

(bρ −aρ)
δ+γ−2

≤
(
(δ −1)δ−1(γ−1)γ−1

(δ + γ−2)δ+γ−2

)
(bρ −aρ)

δ+γ−2

=h1(t̃).

Thus

|g1(t,s)| ≤max{max
t∈[a,b]

g1(t, t),max−
t∈[a,b]

g1(t,a)}

= max{max
t∈[a,b]

h1(t), max
t∈[a,b]

h2(t)}

= maxh1(t) =
(bρ −aρ)(δ+γ−2)(δ −1)δ−1(γ−1)γ−1

(δ + γ−2)(δ+γ−2)
.

It follows that

|G(t,s)| ≤ (γ−1)γ−1(δ −1)δ−1

(δ + γ−2)δ+γ−2 · ρ
1−δ sρ−1(bρ −aρ)δ+γ−2

Γ(α)(bρ −aρ)γ−1

=
(γ−1)γ−1(δ −1)δ−1(bρ −aρ)δ−1

ρ1−δ sρ−1

Γ(α)(δ + γ−2)δ+γ−2 .

(4.7)

Finally, we indicate that (iii) holds. In fact, for any (t,s) ∈ [a,b]× [a,b], it can easily be
proved that 0≤ y2(t,s)≤ y2(s,s) = y1(s,s). Differentiating the function y1(t,s) with respect to
t, we obtain

∂y1(t,s)
∂ t

=ρtρ−1(γ−1)(δ −1)
(
−
(bρ − sρ

tρ − sρ

)2−δ

+
(bρ −aρ

tρ −aρ

)2−γ
)
≤ 0,
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which indicate that y1(t,s) is increasing with respect to t ∈ [s,b]. It follows that y1(b,s) ≤
y1(t,s)≤ y1(s,s) = y2(s,s), and hence

|y1(t,s)| ≤max{max
s∈[a,b]

|y1(b,s)| , max
s∈[a,b]

|y1(s,s)|}. (4.8)

For any s ∈ [a,b], it is easy to verify that y1(b,s) is an increasing function. Thus

y1(b,a)≤ y1(b,s)≤ y1(b,b), (4.9)

y1(b,a) = (δ − γ)(bρ − sρ)≤ 0, and y1(b,b) = (δ −1)(bρ −aρ)> 0. Observe that |y1(b,s)| ≤
max{y1(b,b),−y1(b,a)} = (bρ − aρ)max{γ − δ ,δ − 1}, which together with (4.8) and (4.9)
yields that |y1(t,s)|= (bρ −aρ)max{γ−δ ,δ −1}. Thus

|Y (t,s)| ≤(bρ − sρ)δ−2
ρ1−δ sρ−1

Γ(α)(γ−1)
(bρ −aρ)max{γ−δ ,δ −1}.

This completes the proof. �

4.2. Lyapunov-type Inequalities for BVPs (1.3) and (1.4).

Theorem 4.5. Let (A) hold. If x(t) is the a nontrivial continuous solution of BVPs (1.3), q(t) ∈
C([a,b],R), then ∫ b

a
|q(s)|ds≥ Γ(α)ρδ−1(δ + γ−2)δ+γ−2

Λ1[1+M(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

, (4.10)

where

Λ1 = (γ−1)γ−1(δ −1)δ−1(bρ −aρ)δ−1.

Proof. x(t) is a solution to BVPs (1.3) if and only if it satisfies the integral equation

x(t) =
∫ b

a
G(t,s)q(s)x(s)ds+M(t)

m−2

∑
i=1

ωi

∫ b

a
G(ϕi,s)q(s)x(s)ds.

Observe that

|x(t)| ≤
∫ b

a
|G(t,s)| |q(s)| |x(s)|ds+ |M(t)|

m−2

∑
i=1

ωi

∫ b

a
|G(ϕi,s)| |q(s)| |x(s)|ds

≤ Λ1ρ1−δ sρ−1‖x‖
∞

Γ(α)(δ + γ−2)δ+γ−2 (1+M(b)∑
m−2
i=1 ωi)

∫ b

a
|q(s)|ds

≤Λ1ρ1−δ max{aρ−1,bρ−1}‖x‖
∞

Γ(α)(δ + γ−2)δ+γ−2 (1+M(b)∑
m−2
i=1 ωi)

∫ b

a
|q(s)|ds,

which implies that (4.10) holds. Otherwise, BVPs (1.3) have a uniqueness solution x(t) ≡ 0.
This completes the proof. �

The following corollary 4.6 coincides with [15, Theorem 4.1].

Corollary 4.6. Consider the following Hilfer-Katugampola fractional m-point BVPs
ρDα,µ

a+ x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α < 2, ρ > 0,

x(a) = 0, x(b) =
m−2
∑

i=1
ωix(ϕi),

(4.11)



A NEW GENERALIZED FRACTIONAL BVPS 11

where q(t) ∈ C([a,b],R) and ρDα,µ
a+ denotes the Hilfer-Katugampola fractional derivative of

order α and type µ (0≤ µ ≤ 1). If (4.11) has a nontrivial continuous solution, then∫ b

a
|q(s)|ds≥ [2(α−1)+µ(2−α)]2(α−1)+µ(2−α)

Γ(α)ρα−1

∆1[1+Q(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

. (4.12)

Proof. Applying Theorem 4.5 with α = β , γ = α +µ(2−α), and δ = α , one has

Λ1 = (α−1)α−1[α−1+µ(2−α)]α−1+µ(2−α)(bρ −aρ)α−1 = ∆1

M(b) =
(bρ −aρ)1−(2−α)(1−µ)

(bρ −aρ)1−(2−α)(1−µ)−∑
m−2
i=1 ωi(ϕ

ρ

i −aρ)
1−(2−α)(1−µ)

= Q(b)

Then (4.10) reduce to (4.12). �

The following corollary coincides with [12, Theorem 3.1].

Corollary 4.7. Consider the following Hilfer fractional m-point BVPs Dα,µ
a+ x(t)+q(t)x(t) = 0, t ∈ (a,b), 1 < α ≤ 2, 0≤ β ≤ 1,

x(a) = 0, x(b) =
m−2
∑

i=1
ωix(ϕi),

(4.13)

where q(t) ∈C([a,b],R) and Dα,µ
a+ denotes the Hilfer fractional derivative of order α and type

µ . If (4.13) has a nontrivial continuous solution, then∫ b

a
|q(s)|ds≥ Γ(α)

∆̃1
· 1

1+∑
m−2
i=1 ωiT (b)

,

where

∆̃1 = lim
ρ→1

Λ1

ρδ−1(δ + γ−2)δ+γ−2 =
(γ−1)γ−1(δ −1)δ−1(b−a)δ−1

(δ + γ−2)δ+γ−2

=
(α−1)α−1(α−1+2µ−αµ)α−1+2µ−αµ(b−a)α−1

(2α−2+2µ−αµ)2α−2+2µ−αµ
,

T (b) = lim
ρ→1

(bρ −aρ)γ−1

(bρ −aρ)γ−1−∑
m−2
i=1 ωi(ϕ

ρ

i −aρ)
γ−1

=
(b−a)1−(2−α)(1−µ)

(b−a)1−(2−α)(1−µ)−∑
m−2
i=1 ωi(ϕi−a)1−(2−α)(1−µ)

.

Proof. Applying Theorem 4.5 withα = β and ρ → 1, one has

lim
ρ→1

Γ(α)ρδ−1(δ + γ−2)δ+γ−2

Λ1[1+M(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

=
Γ(α)

∆̃1
· 1

1+∑
m−2
i=1 ωiT (b)

.

�

The following corollary is consistent with in [23, Theorem 5].
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Corollary 4.8. Consider the following Katugampola fractional Dirichlet problem{
ρDα

a+x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α < 2,
x(a) = 0, x(b) = 0,

(4.14)

where q(t) ∈C([a,b],R) and ρDα

a+ denotes the Katugampola fractional derivative of order α .
If (4.14) has a nontrivial continuous solution, then∫ b

a
|q(s)|ds≥ Γ(α)

max{aρ−1,bρ−1}
( 4ρ

bρ −aρ

)α−1
. (4.15)

Proof. Applying Theorem 4.5 with α = β , µ = 0, and ωi = 0, we obtain∫ b

a
|q(s)|ds≥ Γ(α)ρδ−1(δ + γ−2)δ+γ−2

Λ1[1+M(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

=
Γ(α)ρα−1(2α−2)(2α−2)

(α−1)(2α−2)(bρ −aρ)α−1 max{aρ−1,bρ−1}

=
Γ(α)

max{aρ−1,bρ−1}
(

4ρ

bρ −aρ
)α−1.

One sees that (4.10) is reduced to (4.15) immediately. �

The following corollary coincides with [18, Theorem 3.7].

Corollary 4.9. Consider the following Caputo-Hadamard fractional m-point BVPs
C
HDα

a+x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α < 2,

x(a) = 0, x(b) =
m−2
∑

i=1
ωix(ϕi),

(4.16)

where q(t) ∈C([a,b],R) and C
HDα

a+ is the Caputo-Hadamard fractional derivative of order α .
If (4.16) has a nontrivial continuous solution, then∫ b

a
|q(s)|ds≥ aααΓ(α)

[(α−1)(lnb− lna)]α−1 ·
ln b

a −∑
m−2
i=1 ωi ln ϕi

a

ln b
a +∑

m−2
i=1 ωi ln b

ϕi

.

Proof. Applying Theorem 4.5 with α = β , µ = 1, and ρ → 0+, we have

lim
ρ→0+

[2(α−1)+µ(2−α)]2(α−1)+µ(2−α)
Γ(α)ρα−1

Λ1[1+M(b)∑
m−2
i=1 ϕi]max{aρ−1,bρ−1}

=
aααΓ(α)

(α−1)α−1 lim
ρ→0+

ρα−1

(bρ −aρ)α−1 · lim
ρ→0+

(bρ −aρ)α−1−∑
m−2
i=1 ωi(ϕi

ρ −aρ)

(bρ −aρ)(1+∑
m−2
i=1 ϕi)−∑

m−2
i=1 ωi(ϕiρ −aρ)

L′Hospital′s rule
aααΓ(α)

[(α−1)(lnb− lna)]α−1 ·
ln b

a −∑
m−2
i=1 ωi ln ϕi

a

ln b
a +∑

m−2
i=1 ωi ln b

ϕi

.

�

The following corollary coincides with [9, Theorem 2].
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Corollary 4.10. Consider the following Hadamard fractional Dirichlet problem{ HDα

a+x(t)+q(t)x(t) = 0, 0 < a < t < b, 1 < α < 2,
x(a) = 0, x(b) = 0

(4.17)

where q(t) ∈C([a,b],R) and HDα

a+ is the Hadamard fractional derivative of order α . If (4.17)
has a nontrivial continuous solution, then∫ b

a
|q(s)|ds≥ 4(α−1)aΓ(α)

(
ln

b
a

)1−α
.

Proof. Let α = β , µ = 0, ωi = 0, and ρ → 0+ in the right-side (4.10). It follows that

lim
ρ→0+

Γ(α)ρδ−1(δ + γ−2)δ+γ−2

Λ1[1+M(b)∑
m−2
i=1 ωi]max{aρ−1,bρ−1}

= 4(α−1)aΓ(α) lim
ρ→0+

ρα−1

(bρ −aρ)α−1

L′Hospital′s rule(ln
b
a
)1−α4(α−1)aΓ(α).

�

Theorem 4.11. Let (B) hold. If x(t) is the a nontrivial continuous solution to BVPs (1.4) and
q(t) ∈C([a,b],R), then∫ b

a
(bρ − sρ)δ−2|q(s)|ds≥ (γ−1)ρδ−1Γ(α)

Λ2
(
1+L(b)∑

m−2
i=1 λi

) , (4.18)

where

Λ2 = (bρ −aρ)max{γ−δ ,δ −1}max{aρ−1,bρ−1}.

Proof. According to Lemma 4.2, x(t) is a solution to BVPs (1.4) if and only if satisfies the
integral equation

x(t) =
∫ b

a
Y (t,s)q(s)x(s)ds+L(t)

m−2

∑
i=1

λi

∫ b

a
Y (ηi,s)q(s)x(s)ds, t ∈ [a,b].

Thus

|x(t)| ≤
∫ b

a
|Y (t,s)||q(s)||x(s)|ds+ |L(t)|

m−2

∑
i=1

λi

∫ b

a
|Y (ηi,s)||q(s)||x(s)|ds.

Combining with Lemma 4.4 (iii), one finds

‖x‖
∞
≤ρ1−δ sρ−1(bρ −aρ)max{γ−δ ,δ −1}‖x‖

∞

Γ(α)(γ−1)
(1+L(b)∑

m−2
i=1 λi)

×
∫ b

a
(bρ −aρ)δ−2 |q(s)|ds

≤Λ2ρ1−δ‖x‖
∞

Γ(α)(γ−1)
(1+L(b)∑

m−2
i=1 λi)

∫ b

a
(bρ −aρ)β−2+µ(α−β ) |q(s)|ds,

which implies that (4.18) holds. Otherwise, BVPs (1.4) have a uniqueness solution x(t) ≡ 0.
Hence, the proof is complete. �
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The following corollary is consistent with [15, Theorem 4.2].

Corollary 4.12. Consider the following Hilfer-Katugampola fractional m-point BVPs
ρDα,µ

a+ x(t)+q(t)x(t) = 0, t ∈ (a,b), 1 < α < 2, ρ > 0,

x(a) = 0, t1−ρ d
dt x(t)|t=b =

m−2
∑

i=1
λix(ηi),

(4.19)

where q(t) ∈ C([a,b],R) and ρDα,µ
a+ denotes the Hilfer-Katugampola fractional derivative of

order α and type µ (0≤ µ ≤ 1). If (4.19) has a nontrivial continuous solution, then∫ b

a
(bρ − sρ)α−2|q(s)|ds≥ [1− (2−α)(1−µ)]ρα−1Γ(α)

∆2[1+R(b)∑
m−2
i=1 λi]

,

where

∆2 = (bρ −aρ)max{µ(2−α),α−1}max{aρ−1,bρ−1},

R(b) =
(bρ −aρ)1−(2−α)(1−µ)

[1− (2−α)(1−µ)]ρ(bρ −aρ)−(2−α)(1−µ)−∑
m−2
i=1 λi(η

ρ

i −aρ)
[1−(2−α)(1−µ)]

.

Proof. Letting α = β in the right-side inequality (4.18), one sees that∫ b

a
(bρ − sρ)δ−2 |q(s)|ds≥ (γ−1)ρδ−1Γ(α)

Λ2
(
1+L(b)∑

m−2
i=1 λi

)
=

[1− (2−α)(1−µ)]ρα−1Γ(α)

∆2
(
1+R(b)∑

m−2
i=1 λi

) .

�

The following result coincides with [15, Corollary 4.5].

Corollary 4.13. Consider the following Katugampola fractional m-point BVPs
ρDα

a+x(t)+q(t)x(t) = 0, t ∈ (a,b), 1 < α < 2, ρ > 0,

x(a) = 0, t1−ρ d
dt x(t)|t=b =

m−2
∑

i=1
λix(ηi),

(4.20)

where q(t) ∈C([a,b],R) and ρDα

a+ denotes the Katugampola fractional derivative of order α .
If (4.20) has a nontrivial continuous solution, then∫ b

a
(bρ − sρ)α−2 |q(s)|ds≥ ρα−1Γ(α)

∆̃2(1+H(b)∑
m−2
i=1 λi)

,

where ∆̃2 = (bρ −aρ)max{aρ−1,bρ−1} and

H(b) =
(bρ −aρ)α−1

(α−1)ρ(bρ −aρ)α−2−∑
m−2
i=1 λi(η

ρ

i −aρ)
α−1 .

Proof. Let α = β and µ = 0 in the right-side inequality (4.18). This completes the proof. �
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5. CONCLUSIONS

In this paper, we provided a new definition of the bi-order Hilfer-Katugampola fractional
derivative and proved its property, which plays a vital role in the study of BVPs (1.3) and
(1.4). Based on this type of fractional calculus, some fractional Lyapunov-type inequalities
for m-point BVPs were studied. Comparing with previous work, we obtained new Lyapunov
type inequalities that utilize general fractional derivatives. Clearly, there are two special cases
of BVPs (1.3) and (1.4). If α = β ,ρ → 0, then our results are an extension of that recently
established in [12]. If α = β , and then BVPs (1.3) and (1.4) degenerate to the results pre-
sented in [15]. On the one hand, if α = β ,ρ → 1, then BVPs (1.3) is reduced to the result
presented in [18]. In addition, if α = β ,µ = 0, then BVPs (1.3) can be viewed as an exten-
sion of the results obtained recently in [23]. Finally, as a possible extension directions for
fractional Lyapunov-type inequalities for BVPs in the future. The following problems are inter-
esting: the Lyapunov-type inequalities for bi-order Hilfer-Katugampola fractional differential
equation under Sturm-Liouville boundary conditions, the Lyapunov-type inequalities for frac-
tional Langevin equations, and the Lyapunov-type inequality for the fractional boundary value
problems associated with anti-periodic boundary conditions, and so on.

Funding.
This research was supported by Anhui Provincial Natural Science Foundation (2208085QA05),
National Natural Science Foundation of China (11601007), and the Key Program of University
Natural Science Research Fund of Anhui Province (KJ2020A0291).

REFERENCES
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