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Abstract. In this paper, we study efficiency of numerical simulation for integrable and nonintegrable discrete Non-
linear Schrödinger equations (NLSE). We first discretize the NLSE into two classical spatial models, nonintegrable
direct discrete model and integrable Ablowitz-Ladik model. By some simple transformations and Doubarx trans-
formation, we obtain two integrable models from Ablowitz-Ladik model. Then, five different kinds of schemes
can be applied to simulate four models in bright and dark cases for comparing the performance in preserving
the conserved quantities’ approximations of NLSE. The numerical experiments indicate that Gauss symplectic
method is more efficient than nonsymplectic schemes and splitting schemes when simulating the same model.
Both intergrable models and nonintergrable model have their own advantages in preserving the conserved quanti-
ties’ approximations. For the three integrable models, Ablowitz-Ladik Model and the model which has a general
symplectic structure have similar simulation effects, and the model owing a cononical symplectic structure has low
efficiency because the complicated Doubarx transformations make the model difficult to solve. Moreover, sym-
plectic scheme and symmetric scheme have overwhelming superiorities over nonsymplectic schemes in preserving
the invariants of Hamiltonian system.
Keywords. Ablowitz-Ladik model; Hamiltonian system; Nnonlinear Schrödinger equation; Nonintegrable; Sym-
plectic scheme.

1. INTRODUCTION

The NLSE can be expressed as {
iut +uxx +a|u|2 = 0,
u(x,0) = u0(x),

(1.1)

where x ∈ R, a is a constant, and u(x, t) is a complex function. It plays an important role in
many physical areas, such as nonlinear optics, hydrodynamics, and plasma physics, and it is
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a completely integrable system [6, 7, 12, 13, 14]. Different parameters and initial conditions
lead to different solitons motion. For example, |u0(±∞)|= 0 with a > 0 induces bright solitons
motion, while |u0(±∞)| = ρ (non-zero constant) with a < 0 induces dark solitons motion. In
this paper, the two cases of solitons motion are discussed.

Using the inverse scattering transform, we can give the solution of NLSE [24]. However,
the analytical solutions are difficult to obtain except for the special initial conditions. For this
reason, a large of numerical methods have been constructed to simulate the NLSE [3, 5, 9, 11,
13, 15, 16, 18, 22, 25]. Usually, these methods discretize the NLSE into ordinary differen-
tial equations of space variants. Unfortunately, not all these methods can obtain expected re-
sults, unphysical ”blow-up” and ”numerical chaos” may occur with unreasonable discretization.
Possessing structure-preserving property and long-time tracking ability of the solitons motion,
symplectic methods have been favored for simulating the NLSE recently. Before employing the
symplectic methods, we need to discretize the NLSE spatially into ordinary differential equa-
tions. There are two classical spatial discrete models, one of which is called direct discrete
model (represented by Model I):

i
dUl

dt
+

Ul+1−2Ul +Ul−1

h2 +a|Ul|2Ul = 0, (1.2)

where h is the spatial step-size and Ul(t) =U(lh, t), l = · · · ,−1,0,1, · · · .
The other spatial discretization model is called Ablowitz-Ladik model (A-L model, repre-

sented by Model II) :

i
dUl

dt
+

Ul+1−2Ul +Ul−1

h2 +
a
2
|Ul|2(Ul−1 +Ul+1) = 0, (1.3)

Model I can be represented as a canonical Hamiltonian system which has canonical sym-
plectic structure. Thus symplectic methods can be employed for simulation. By using two
symplectic numerical schemes, Tang et al. successfully simulated NLSE, and their numeri-
cal results demonstrated that symplectic methods behave better than nonsymplectic methods
in long-time simulations and preservation of invariants [19]. Via explicit splitting technique,
Guan et al. integrated the NLSE, and their numerical results indicated that the explicit sym-
plectic scheme has better performance than the implicit one [8]. Here, we note that, although
expected experimental results have been obtained, Model I is not integrable, which means it
cannot inherit the integrable property of the original NLSE.

For Model II, it is completely integrable [1], and thus inherit the integrable property of the
original NLSE. However, it is not a canonical Hamiltonian system. By scaling and isometric
transformations, Model II can be represented as a general Hamiltonian system (represented by
Model III). Via Darboux coordinate transformation, Model III can be transformed into a Hamil-
tonian system with canonical symplectic structure, and we represent the canonical Hamiltonian
system as Model IV. Zhang et al. demonstrated that the numerical results obtained from Model
III are very similar to those obtained from Model IV [26]. In addition, K-symplectic methods
by using spitting technique were constructed, and are more efficient than symplectic methods
[27, 28]. Other researchers also demonstrated the symplectic schemes’ superiorities over non-
symplectic ones when simulating the NLSE [20, 21, 23].

For model IV, it has canonical symplectic structure, and also is integrable. It seems that
Model IV is optimal choice. However Darboux coordinate transformation makes Model IV very
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complicate, which results in time-consuming simulation. Therefore, in the view of simulation
efficiency, Model IV is not the optimal choice.

Up to now, there are few results on which model is more efficient when simulating the NLSE.
Therefore, in this paper, we give a systematic comparison for the nonintegrable model and three
integrable models, and obtain some conclusions about simulation efficiency.

The paper is organized as follows: in Section 2, we give the first five conserved quantities of
the original NLSE, and then obtain approximations of the conserved quantities via central dif-
ference. In Section 3, we standardize the A-L model by scaling transformation, isometric trans-
formation, and coordinate transformation. In Section 4, we construct a splitting K-symplectic
methods for general Hamiltonian system in bright and dark cases. In Section 5, we list the
numerical schemes employed in numerical simulation, including symplectic scheme, nonsym-
plectic scheme, symmetric scheme, nonsymmetric scheme, splitting scheme, and so on. In
Section 6, we present all the numerical results and give a conclusion in the final section.

2. CONSERVED QUANTITIES OF NLSE AND THEIR APPROXIMATIONS

The NLSE has an infinite number of conserved quantities, such as the momentum, the energe,
the charge, and so on; see, e.g., [14, 24]. Here we present the first six ones D1, · · · ,D5 as follows:

D1 =
∫ +∞

−∞

(|U |2−ρ
2)dx, D2 =

∫ +∞

−∞

{UUx−UUx}dx,

D3 =
∫ +∞

−∞

{2|Ux|2−a(|U |4−ρ
4)}dx, D4 =

∫ +∞

−∞

{2UxUxx−3a|U |2UUx}dx,

D5 =
∫ +∞

−∞

{2|Uxx|2−6a|U |2|Ux|2−a((|U |2)x)
2 +a2(|U |6−ρ

6)}dx,

where U is the complex conjugation of U . It should be noted that the conserved quantities
above-mentioned are in the case of dark soliton; if ρ is removed, they present the conserved
quantities of bright soliton. Utilizing central different

Ux(lh, t) =
Ul+1−Ul−1

2h
,

Uxx(lh, t) =
Ul+1−2Ul +Ul−1

h2 ,

Uxxx(lh, t) =
Ul+2−2Ul+1 +2Ul−1−Ul−2

2h3 ,

we can give the approximation to conserved quantities D1, · · · ,D5 with error O(h2) or O(h4):

F1 = h∑
l
(UlU l−ρ

2),

F2 = ∑
l
{UlU l+1−Ul+1U l},

F3 =
1
2h ∑

l
{2|Ul|2−Ul+1U l−1−Ul−1U l+1}−ah∑

l
(|Ul|4−ρ

4),

· · · · · ·

We denote Fm = FRm+ iFIm,m = 1,2,3, where FRm and FIm are the real part and imaginary
part of Fm, respectively. After calculation, we obtain that FI1,FR2, and FI3 are equal to zero.
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Therefore, the preservation of the left three approximations will be used as an indicator of
simulation precision in numerical experiments section.

3. A-L MODEL’S STANDARDIZATION BY DOUBARX TRANSFORMATION

For bright solitons, by the scaling transformation Vl =
√

ah2

2 Ul,a > 0, l = · · · ,−1,0,1, · · · ;
s =− t

h2 , A-L Model (also denoted by Model II) can be written as

i
dVl

ds
=Vl+1−2Vl +Vl−1 + |Vl|2(Vl+1 +Vl−1), (3.1)

Similarly, for dark solitons motion, by Vl =
√
−ah2

2 Ul,a < 0, A-L Model can be written as

i
dVl

ds
=Vl+1−2Vl +Vl−1−|Vl|2(Vl+1 +Vl−1). (3.2)

By using isometric transformation Xl =Vlexp(−2si) and denoting Xl = pl+iql, l = · · · ,−1,0,1, · · · ,
we can rewrite equation (3.1) and (3.2) respectively, as follows:

i
dXl

ds
= (1+ |Xl|2)(Xl+1 +Xl−1) (3.3)

and

i
dXl

ds
= (1−|Xl|2)(Xl+1 +Xl−1). (3.4)

For convenience, we denote (3.3) and (3.4) as Model III, which both can be expressed as the
general Hamiltonian system

d
ds

Z = K−1(Z)∇H(Z), (3.5)

where Z = [pT ,qT ]T , and p = [p−n, · · · , pn]
T ,q = [q−n, · · · ,qn]

T ,

K−1(Z) = (ki j(Z))(4n+2)×(4n+2) =

[
O2n+1 D
−D O2n+1

]
,

D= diag{W−n, · · · ,Wn},O2n+1 is (2n+1)×(2n+1) null matrix. Wl = 1+ p2
l +q2

l , l = · · · ,−1,0,1, · · ·
for the bright solitons motion, and Wl = 1− p2

l − q2
l , l = · · · ,−1,0,1, · · · for the dark solitons

motion. The Hamiltonian is

H(Z) =
n

∑
l=−n

(
pl pl+1 +qlql+1

)
, f or bright solitons motion,

H(Z) =
n

∑
l=−n

(
pl pl+1 +qlql+1 +

a
2

h2
ρ

2
)
, f or dark solitons motion. (3.6)

By Doubarx transformations [2, 4] ϕ : R4n+2 → R4n+2,ϕ(Y ) = Z, any general Hamiltonian
system of form (3.5) can be standardized. Here, we give two different doubarx transformations:

For bright solitons motion:pl =
√

1+u2
l tan

(√
1+u2

l vl

)
,

ql = ul,
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with inverse 

ul = ql,

vl =

arctan
(

pl√
1+q2

l

)
√

1+q2
l

,

and correspongding canonical Hamiltonian

G(u,v) =∑
l

{
ulul+1 +

√
1+u2

l

√
1+u2

l+1

tan
(√

1+u2
l vl
)
tan
(√

1+u2
l+1vl+1

)}
.

For dark solitons motion: 
pl =

√
1− exp

{
−(u2

l + v2
l )
}

u2
l + v2

l
vl,

ql =

√
1− exp

{
−(u2

l + v2
l )
}

u2
l + v2

l
ul,

with inverse 
ul =

√
−

ln(1− p2
l −q2

l )

p2
l +q2

l
ql,

vl =

√
−

ln(1− p2
l −q2

l )

p2
l +q2

l
pl,

and corresponding canonical Hamiltonian

G(u,v) =
n

∑
l=−n

{√
1− exp

{
−(u2

l + v2
l )
}

u2
l + v2

l

√
1− exp

{
−(u2

l+1 + v2
l+1)

}
u2

l+1 + v2
l+1

(ulul+1 + vlvl+1)+
a
2

h2
ρ

2
}

Then (3.3) and (3.4) can be represented as a canonical Hamiltonian system (denoted by Model
IV) d

dsY = J−1∇G(Y ) with G(Y ) = H ◦ ϕ(Y ), where Y = [uT ,vT ]T ,u = [u−n, · · · ,un]
T ,v =

[v−n, · · · ,vn]
T ,J =

[
O2n+1 I2n+1
−I2n+1 O2n+1

]
, and I2n+1 is (2n+1)× (2n+1) identity matrix.

4. SPLITTING K-SYMPLECTIC METHODS FOR MODEL III

The general Hamiltonian system (3.5) with Hamiltonian H(z)=H1(p)+H2(q) and K−1(z)=[
O2n+1 −K12(p,q)

KT
12(p,q) O2n+1

]
can be decomposed into two subsystems as{

ṗ = 0,
q̇ = K12(p,q)T ∇pH1(p),

(4.1)
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and {
ṗ =−K12(p,q)∇qH2(q),
q̇ = 0.

(4.2)

If these two subsystems can be solved explicitly, we can construct K-symplectic methods
by composing analytical solutions of the corresponding subsystems. We denote the analytical
solutions of (4.1) and (4.2) by ψ t

1 and ψ t
2, and then splitting method ψ t

1 ◦ψ t
2 is K-symplectic

with one-order, and ψ
t
2
1 ◦ψ t

2 ◦ψ
t
2
1 is K-symplectic with second-order [17].

In dark solitons case, general Hamiltonian function (3.6) can be separated into H1 =∑
∞
−∞(pl pl+1)

and H2 =∑
∞
−∞(qlql+1+

a
2h2ρ2). Then we can solve the two subsystems exactly, the correspond-

ing analytical solutions are

ψ
t
1 :


pi(t) = pi,

qi(t) =
C1eM1t−1
C1eM1t +1

·
√

1− p2
i ,

ψ
t
2 :


pi(t) =

C2eM2t−1
C1eM2t +1

·
√

1−q2
i ,

qi(t) = qi,

where 

C1 =

√
1− p2

i +qi√
1− p2

i −qi

,M1 =−2(pi+1 + pi−1)
√

1− p2
i ,

C2 =

√
1−q2

i + pi√
1−q2

i − pi

,M2 =−2(qi+1 +qi−1)
√

1−q2
i ,

i = · · · ,−1,0,1, · · · , and pi,qi are the initial value. By similar technique, we can also derive the
subsystems’ solutions in bright solitons case as follows:

φ
t
1 :


p̃i(t) = pi,

q̃i(t) =
C1− tan(M1t)
C1 + tan(M1t)

,

and

φ
t
2 :


p̃i(t) =

C2 + tan(M2t)
C2− tan(M2t)

,

q̃i(t) = qi,

where 
C1 =

qi

1+ p2
i
,M1 =

√
1+ p2

i (pi+1 + pi−1),

C2 =
pi

1+q2
i
,M1 =

√
1+q2

i (qi+1 +qi−1).
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Then we can employ directly the second-order Strang’s splitting method

Φ2 ≡ φ
t
2

1 ◦φ
t
2 ◦φ

t
2

1 , f or bright solitons motion,

Ψ2 ≡ ψ
t
2
1 ◦ψ

t
2 ◦ψ

t
2
1 , f or dark solitons motion.

to simulate Model III.

5. NUMERICAL SCHEMES

In this section, several different numerical schemes are presented, including symplectic scheme,
symmetric scheme, nonsymplectic and nonsymmetric scheme, splitting schemes, etc.

Symplectic-symmetric Scheme (S1): Midpoint rule

Zn+1 = Zn + τ f
(

Zn+1 +Zn

2

)
.

The scheme is actually a Gauss method. It is symmetric in τ , and symplectic with second-order
for canonical Hamiltonian systems.

Nonsymplectic-nonsymmetric R-K Shceme (S2):
Zn+1 = Zn +

τ

4
[ f (R1)+3 f (R2)],

R1 = Zn +
τ

3
[ f (R1)− f (R2)],

R2 = Zn +
τ

9
[(2+2

√
3) f (R1)+3 f (R2)].

The scheme is nonsymmetric in τ with second-order, and nonsymplectic for canonical Hamil-
tonian systems.

Symplectic-symmetric Scheme (S3): the L-L-N splitting method

Zn+1 = Φ
t(Zn) = φ

τ

2
1 ◦φ

τ

2
2 ◦φ

τ
3 ◦φ

τ

2
2 ◦φ

τ

2
1 (Zn).

For Model I, the Hamiltonian system can be decomposed into H1 +H2 +H3. We can easily
obtain the solutions for the three subsystems. Similar to Section 4, we can obtain a symplectic
and symmetric splitting method with second-order. One can refers to [8] for more details.

Symplectic -symmetric Scheme (S4): the Strang’s splitting method

Zn+1 = Ψ
t(Zn) = ψ

τ

2
1 ◦ψ

t
2 ◦ψ

τ

2
1 (Zn).

The scheme is K-symplectic for Model III with second-order.
Nonsymplectic-symmetric R-K Scheme (S5):

Zn+1 = Zn +
τ

2
[ f (R1)+ f (R2)],

R1 = Zn +
τ

12
[2 f (R1)+3 f (R2)],

R2 = Zn +
τ

12
[3 f (R1)+4 f (R2)].

The scheme is symmetric in τ with second-order, but nonsymplectic for canonical Hamiltonian
systems.

We use the above five different schemes to simulate bright solitons and dark solitons respec-
tively, and test the time evolutions of the conserved quantities’ approximations of NLSE. These
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five schemes are all second-order. Moreover S3 and S4 are explicit, S3 can be employed in
Model I (canonical Hamiltonian system), and S4 can be used in Model III (general Hamiltonian
system).

6. NUMERICAL EXPERIMENTS

In this section, four different models, namely Model I (the direct discrete model), Model II
(the untransformed A-L model), Model III ( the A-L model after scaling and isometric trans-
formation), and Model IV (the standardized A-L model). As mentioned above, Model I and
Model IV are the canonical Hamiltonian systems, and Model III is the generalized Hamiltonian
system.

6.1. Initial conditions. We give the initial conditions of the bright solitons in the following:

u(x,0) = 2η

√
2
a

e2χxisech[2η(x− x1)],

where a = 2,η = 0.5,χ = 0.5, and x1 = 0.0. For the dark solitons, the initial conditions are :

u(x,0) = ρ
1+ ei2θeλ (x−x0)

1+ eλ (x−x0)
,

where a =−2,λ =
√
−2aρsinθ ,ρ = 0.72,θ = 0.75, and x0 = 0.0.

We simulate the four models in bright and dark solitons motion with spatial inteval x ∈
[−900,900] and temporal interval t ∈ [0,100]. We choose six different sets of spatial step-
size h and temporal step-size τ as follows :

1 2 3 4 5 6
h 0.6 0.5 0.4 0.3 0.2 0.15
τ 0.04 0.025 0.02 0.01 0.005 0.0025

As it is difficult to obtain the analytical solution of the original NLSE with general conditions,
we use the error of the conserved quantities’ approximations FR1,FI2,FR3 as an indicator of
simulation accuracy, which is a traditional choice in numerical simulation field [8, 19, 20, 21,
23, 26, 27, 28]. For each scheme in our numerical experiments, we compare the accuracy of the
conserved quantities’ approximations (for different spatial step-size and temporal step-size) as
a function of the CPU simulation time. Then we get the efficient figures of numerical schemes.

6.2. Different schemes for same model. In this sub-section, we apply different schemes to
same model in order to show which scheme is more efficient. For simplicity, we call err(A) =
A(t)−A(0) for any variable A, and max|err(A)| expresses the maximum absolute error of vari-
able A. In the following, we discuss it in bright and dark solitons motion, and present nu-
merical results with schemes S1, S2, S3 for Model I, and S1, S2, S4 for Model III (different
applied splitting methods S3, S4 because of different models’ function structures). Model I
is a canonical Hamiltonian system, so Gauss symplectic methods applied to the system have
overwhelming superiorities over nonsymplectic ones in long-time simulation and preservation
of invariants. Model III is a general Hamiltonian system, Gauss symplectic method and K-
symplectic scheme also should have similar superiorities over nonsymplectic ones in theory.
The experimental results are displayed in the Figure 1 and Figure 2, respectively.
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In bright solitons case, from Figure 1, we find S1 behaves better than S2, S3, S4, especially
in (a) and (c). It means the second Gauss symplectic method is significantly efficient than
nonsymplectic-nonsymmetric scheme S2, also than the explicit symplectic scheme S3 and S4.
Although splitting method S3 and S4 are symplectic or K-symplectic, and can be implemented
easily, it doesn’t show high efficiency over nonsymplectic-nonsymmetric scheme S2 with same
order, which is unexpected.

(a) (b)

(c) (d)

FIGURE 1. (a), (b): conserved quantities’ approximations FR1, FR3’s errors of
S1,S2 and S3 versus CPU times of Model in bright solitons motion; (c), (d):
conserved quantities’ approximations FI2, FR3’s errors of S1,S2 and S4 versus
CPU times of Model III in bright solitons motion.

In dark solitons case, from Figure 2, we also find S1 behaves better than S2, S3, and S4,
especially in (a) and (c). It is similar to bright solitons case. In addition, symplectic scheme
S3 behaves better than nonsymplectic-nonsymmetric scheme S2 in (a) and (b) of Figure 2, the
essential reason is that Model I is canonical Hamiltonian system.

The above result demonstrates that Gauss symplectic methods have overwhelming superior-
ities over nonsymplectic scheme and explicit symplectic scheme (splitting method). Moreover,
it seems that explicit symplectic scheme do not take the advantage of comsuming less time and
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(a) (b)

(c) (d)

FIGURE 2. (a), (b): conserved quantities’ approximations FR1, FI2’s errors of
S1,S2 and S3 versus CPU times of Model I in dark solitons motion; (c), (d):
conserved quantities’ approximations FI2, FR3’s errors of S1,S2 and S4 versus
CPU times of Model III in dark solitons motion.

possessing symplectic structure when simulating Model III, the most possible reason is that
Model III is not a canonical Hamiltonian system.

6.3. Same scheme for different models. Different models have different properties, which
lead to different numerical simulation effects. In this sub-section, we compare the simulation
performance of different models with same scheme in preserving the conserved quantities’ ap-
proximations.

For the Model I, namely direct discretization model, it is a canonical Hamiltonian system,
but nonintegrable. For the Model II (A-L model), it is integrable, but not a Hamiltonian system.
After some simple scaling and isometric transformations, Model II can be transformed into
Model III. For Model III, it is a general Hamiltonian system, and also integrable. Applying
complicated Doubarx transformations to the Model III, we can obtain the Model IV, which is a
integrable and canonical Hamiltonian system.
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Gauss methods are A-stable, B-stable, and have superiorities in long-time simulation, so we
employ the first selected Gauss method with order two, that is the midpoint scheme S1, to sim-
ulate different models. From Figure 3. it is obvious that for the different conserved quantities’
approximations FR1, FI2, and FR3, the integrable and nonintegarable models play different ad-
vantages. For FR1, we can clearly see that the results obtained in Model I is significantly more
efficient than those of the other three models in (a) and (b) of Figure 3. The main reason is that
FR1 is the quadratic invariant of Model I which is a canonical Hamiltonian system , and Gauss
symplectic method S1 can exactly preserve all the quadratic invariants. For FI2 in (c) and (d),
the integrable systems of Model II, III, and IV behave better than the nonintegrable Model I. For
FR3 in (e) and (f), in the case of bright solitons motion, the results obtained in three integrable
models are more efficient than the nonintegrable Model I, while the results are just the reverse
in the case of dark solitons motion.

As a whole, for the integrable models, the results obtained from Model II and Model III are
very similar, mainly because Model III is transformed from Model II by some simple transfor-
mations. Model IV is a canonical Hamiltonian system, and also integrable. It seems that the
Model IV should be the best in integrable models, however it behaves worst. It is not surpris-
ing at all. The reason is that Model IV is obtained from Model III by Doubarx transformations
which are complicated. It makes implementation very time-consuming and leads to inefficiency.

6.4. Symplectic and symmetric schemes compared with nonsymplectic-nonsymmetric sch
emes in a canonical Hamiltonian system. We note that the indicator of simulation accuracy
used is the error of the conserved quantities’ approximations FR1, FI2, FR3 in sub-section 6.2
and 6.3, however these approximations are obtained by discretizing the conserved quantities
of the original Schrodinger equation, usually are not the invariants of Hamiltonian systems.
Therefore the symplectic methods can not fully show its advantages, especially for explicit
symplectic scheme S3 in (a), (b) of Fig. 1. If we apply symplectic schemes to a canonical
Hamiltonian system, and use the error of Hamiltonian systems’ invariants as an indicator of
simulation accuracy, symplectic schemes’ advantages will be showed fully.

In this sub-section, the performance of symplectic scheme and symmetric scheme will be
compared with nonsymplectic-nonsymmetric scheme in a canonical Hamiltonian system. We
choose scheme S1, S2, S5, which represent the symplectic scheme, nonsymplectic-nonsymmetric
scheme and symmetric scheme, respectively, and choose Model I, which represent the canoni-
cal Hamiltonian system. The energy E and charge Q are the two invariants of Model I (for more
details, see [19]), then we use the error of these two invariants as an indicator of simulation
accuracy.

From Figure 4, the symplectic scheme S1 has obvious advantage over the nonsymplectic-
nonsymmetric scheme S2, especially in (b), (c), and (d). Meanwhile, we can find the per-
formance of symmetric schemes is very similar to that of symplectic schemes in most cases,
especially in the case of dark solitons motion. The main reason is that symmetric schemes are
very closely related to symplectic schemes, if linear problems and other conditions are satis-
fied, symmetric Runge–Kutta schemes will be equivalent to the symplectic schemes [10]. From
above experimental results, symplectic schemes and symmetric schemes have overwhelming
superiorities over the nonsymplectic-nonsymmetric scheme in long-time preserving invariants
of the original Hamiltonian.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3. (a), (c), (e): conserved quantities’ approximations FR1, FI2, FR3’s
errors versus CPU times in bright solitons case; (b), (d), (f): conserved quanti-
ties’ approximations FR1, FI2, FR3’s errors versus CPU times in dark solitons
case.



NONLINEAR SCHRÖDINGER EQUATIONS 13

(a) (b)

(c) (d)

FIGURE 4. (a), (b): conserved quantities’ approximations E, Q’s errors of S1,
S2 and S5 versus CPU times in bright solitons case; (c), (d): conserved quanti-
ties’ approximations E, Q’s errors of S1, S2 and S5 versus CPU times in dark
solitons case.

7. CONCLUSIONS

The NLSE has four often-used discrete models: Model I, Model II, Model III, and Model
IV, where Model I is a nonintegrable system, Modle II, Model III and Model IV are inte-
grable systems. Numerical experiments demonstrate that Gauss method is more efficient than
the nonsymplectic-nonsymmetric scheme and explicit symplectic schemes with same order, no
matter applied to integrable models or nonintergrable model. Meanwhile, explicit symplec-
tic schemes do not demonstrate their advantage of preserving structure. When using the same
scheme for different models, for the conserved quantities’ approximation FR1, the results ob-
tained in the nonintegrable Model I is significantly more efficient than those of the three in-
tegrable models. While for the conserved quantities’ approximation FI2, conclusion are just
the reverse. Therefore, both intergrable models and nonintergrable model have their own ad-
vantages in preserving the conserved quantities’ approximation of the original NLSE. For the
three integrable models, Model II and Model III have similar simulation effect as the two mod-
els can be transformed by some simple transformation. For the integrable Model IV, because
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of complicated Doubarx transformations, it is diffcult to implement simulation, which leads
to inefficiency. When using the error of Hamiltonian system’s invariants as an indicator of
simulation accuracy, symplectic schemes have the obvious advantage over the nonsymplectic-
nonsymmetric schemes. In addition, symplectic scheme and symmetric scheme have very sim-
ilar preservation of the invariants.

We also note here that, in sub-section 6.2 and 6.3, the indicator of simulation accuracy is
the error of conserved quantities’ approximation of the original NLSE, not that of invariants of
the discrete Models. Therefore, the conclusions that we obtained is a slight different from the
existing viewpoints about symplectic schemes’ simulation.
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