POSITIVE PERIODIC SOLUTIONS FOR A ϕ-LAPLACIAN GENERALIZED RAYLEIGH EQUATION WITH A SINGULARITY

ZHENHUI WANG, ZHIBO CHENG*
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

This paper explores the existence of positive periodic solutions to a ϕ-Laplacian generalized Rayleigh equation with a singularity as $\left(\phi\left(v^{\prime}(t)\right)\right)^{\prime}+f\left(t, v^{\prime}(t)\right)+g(v(t))=e(t)$, where the function g has a repulsive singularity at $v=0$. According to the Manásevich-Mawhin continuation theorem, we prove the existence of positive periodic solutions to this equation. This result is feasible for the cases of a strong or weak singularity.

Keywords. ϕ-Laplacian; Generalized Rayleigh equation; Positive periodic solution; Strong singularity; Weak singularity.

1. Introduction

The study of singular differential equations can be traced back to the paper of Lazer and Solimini [1]. They explored a second-order differential equation with a singularity:

$$
\begin{equation*}
u^{\prime \prime}-\frac{1}{u^{\alpha}}=h(t), \tag{1.1}
\end{equation*}
$$

where $h(t)$ is a continuous and ω-periodic function. They proved the existence of a positive ω periodic solution to this equation if all $\alpha>0$ and $h(t)$ has a positive mean value. The condition of $\alpha \geq 1$ in equation (1.1) is one of the common conditions. It is a so-called strong force condition that can guarantee the existence of positive periodic solutions; see, e.g., $[2,3,4,5$, $6,7,8]$ and the references therein. Correspondingly, the condition of $0<\alpha<1$ in equation (1.1) is a so-called weak force condition that can guarantee the existence of positive periodic solutions of singular differential equations; see, e.g., $[9,10,11,12,13]$.

At the same time, Rayleigh equations with a singularity were also explored by authors [14, 15, $16,17,18,19,20,21]$. For example, Lu et al. [18] discussed p-Laplacian Rayleigh equations with a singularity in 2016 as follows:

$$
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f\left(u^{\prime}\right)-g_{1}(u)+g_{2}(u)=h(t)
$$

[^0]and
$$
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f\left(u^{\prime}\right)+g_{1}(u)-g_{2}(u)=h(t),
$$
where $p>1$ is a constant, f is a continuous function, $g_{1}, g_{2} \in C((0,+\infty), \mathbb{R})$, when $u \rightarrow 0^{+}, g_{1}$ is unbounded, and it has a strong singularity at $u=0$, namely,
$$
\lim _{u \rightarrow 0^{+}} \int_{1}^{u} g_{1}(s) d s=+\infty
$$

According to the Manásevich-Mawhin's continuation theorem, they proved the existence of positive periodic solutions to the p-Laplacian Rayleigh equations. After that, Xin and Yao [20] in 2020 investigated the p-Laplacian Rayleigh equation with a singularity as follows:

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f\left(t, u^{\prime}\right)+g(u)=h(t) . \tag{1.2}
\end{equation*}
$$

Based on the Manásevich-Mawhin's continuation theorem, they obtained that equation (1.2) has a positive periodic solution.

Inspired by [18, 20], this paper explores the ϕ-Laplacian Rayleigh equation with a singularity as follows:

$$
\begin{equation*}
\left(\phi\left(v^{\prime}\right)\right)^{\prime}+f\left(t, v^{\prime}\right)+g(v)=e(t) \tag{1.3}
\end{equation*}
$$

where f is continuous, and it is a ω-periodic function about $t, f(t, 0) \equiv 0, e(t)$ is a ω-periodic function, $g \in C((0,+\infty), \mathbb{R})$ has a repulsive singularity at $v=0$, that is, $\lim _{v \rightarrow 0^{+}} g(v)=-\infty$. By using the Manásevich-Mawhin continuation theorem, we prove that a new existence criterion of the positive periodic solution to equation (1.3) can be obtained by a weak singularity of repulsive type. In addition, we obtain the existence interval of periodic solutions of equation (1.3). Usually, g has a weak singularity at $v=0$, which means that

$$
\lim _{v \rightarrow 0^{+}} \int_{1}^{v} g(s) d s<+\infty
$$

where $\phi:(-\infty,+\infty) \rightarrow(-\infty,+\infty)$ of equation (1.3) is a continuous function, which satisfies condition $\phi(0)=0$ and the following conditions:
$\left(B_{1}\right)\left(\phi\left(v_{1}\right)-\phi\left(v_{2}\right)\right)\left(v_{1}-v_{2}\right)>0$ for $\forall v_{1} \neq v_{2}, v_{1}, v_{2} \in \mathbb{R}$;
$\left(B_{2}\right) \exists \kappa:[0,+\infty) \rightarrow[0,+\infty), \kappa(s) \rightarrow+\infty$ when $s \rightarrow+\infty$, s.t., $\phi(v) \cdot v \geq \kappa(|v|)|v|$ for $\forall v \in$ $(-\infty,+\infty)$.

Obviously, ϕ represents many nonlinear operators, that is,

- $\phi_{p}(v)=|v|^{p-2} v:(-\infty,+\infty) \rightarrow(-\infty,+\infty)$, here the constant p satisfies the condition of $p>1$;
- the nonlinear operator $\phi(v)=v e^{v^{2}}:(-\infty,+\infty) \rightarrow(-\infty,+\infty)$.

2. The Positive ω-Periodic Solution To Equation (1.3)

First, we introduce a parameter μ, which satisfies the condition of $\mu \in(0,1]$. Then, we embed equation (1.3) into the equation family as follows:

$$
\begin{equation*}
\left(\phi\left(v^{\prime}(t)\right)\right)^{\prime}+\mu f\left(t, v^{\prime}(t)\right)+\mu g(v(t))=\mu e(t) . \tag{2.1}
\end{equation*}
$$

According to [22, Theorem 3.1], we can obtain the following result.

Lemma 2.1. Let the function ϕ satisfy the condition of $\phi(0)=0$ and the conditions of $\left(B_{1}\right)$ and $\left(B_{2}\right)$. Let σ_{1}, σ_{2}, and σ_{3} be positive constants, and $\sigma_{1}<\sigma_{2}$ such that the following conditions hold:
(1) each possible periodic solution v to equation (2.1) satisfies $\sigma_{1}<v(t)<\sigma_{2}$ and $\left\|v^{\prime}\right\|<\sigma_{3}$ for all $t \in[0, \omega]$, where $\left\|v^{\prime}\right\|:=\max _{t \in[0, \omega]}\left|v^{\prime}(t)\right|$.
(2) σ_{1} and σ_{2} satisfy $\left(g\left(\sigma_{1}\right)-\frac{1}{\omega} \int_{0}^{\omega} e(t) d t\right)\left(g\left(\sigma_{2}\right)-\frac{1}{\omega} \int_{0}^{\omega} e(t) d t\right)<0$.

Then equation (1.3) has at least one ω-periodic solution.
We explore the existence of a positive periodic solution to equation (1.3) with strong or weak singularities. Here we introduce the following notations:

$$
\|e\|:=\max _{t \in[0, \omega]}|e(t)|, e^{*}:=\max _{t \in[0, \omega]} e(t), e_{*}:=\min _{t \in[0, \omega]} e(t), g(+\infty):=\lim _{v \rightarrow+\infty} g(v)
$$

By Lemma 2.1, we have the following main result.
Theorem 2.2. Let the function ϕ satisfy the condition of $\phi(0)=0$ and the conditions of $\left(B_{1}\right)$ and $\left(B_{2}\right)$. Let the following conditions hold:
$\left(H_{1}\right)$ assume that α and m are constants, which satisfy $\alpha>0$ and $m>1$ such that $f(t, v) v \geq$ $\alpha|v|^{m}$, for $(t, v) \in[0, \omega] \times(-\infty,+\infty)$;
$\left(\mathrm{H}_{2}\right) \mathrm{g}$ is a strictly monotone-increasing function, $e^{*}<g(+\infty)$;
$\left(H_{3}\right)$ assume that β and γ are constants, and $\beta>0$ and $\gamma>0$ such that $|f(t, v)| \leq \beta|v|^{m-1}+$ $\gamma,(t, v) \in[0, \omega] \times R$.

If $\alpha>\left(\frac{\omega}{2 g^{-1}\left(e_{*}\right)}\right)^{m-1}\|e\|$, then equation (1.3) has a positive ω-periodic solution v with

$$
v \in\left(g^{-1}\left(e_{*}\right)-\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}, g^{-1}\left(e^{*}\right)+\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}\right)
$$

Proof. In view of $\int_{0}^{\omega} v^{\prime}(t) d t=0$, we see that there are two points $t_{1}, t_{2} \in(0, \omega)$ such that $v^{\prime}\left(t_{1}\right) \geq 0$ and $v^{\prime}\left(t_{2}\right) \leq 0$. It follows from $\left(B_{1}\right)$ that

$$
\phi\left(v^{\prime}\left(t_{1}\right)\right) \geq 0 \text { and } \phi\left(v^{\prime}\left(t_{2}\right)\right) \leq 0
$$

Let $t_{3}, t_{4} \in(0, \omega)$ be the points where the maximum and minimum values of $\phi\left(v^{\prime}(t)\right)$ are obtained, respectively. Obviously, we have the following conditions:

$$
\begin{equation*}
\left(\phi\left(v^{\prime}\left(t_{3}\right)\right)\right)^{\prime}=0, \phi\left(v^{\prime}\left(t_{3}\right)\right) \geq 0 \tag{2.2}
\end{equation*}
$$

and $\left(\phi\left(v^{\prime}\left(t_{4}\right)\right)\right)^{\prime}=0, \phi\left(v^{\prime}\left(t_{4}\right)\right) \leq 0$. By $\left(B_{2}\right)$, we obtain that $v^{\prime}\left(t_{3}\right) \geq 0$ and $v^{\prime}\left(t_{4}\right) \leq 0$. From $\left(H_{1}\right)$, we have that $f\left(t_{3}, v^{\prime}\left(t_{3}\right)\right) \geq 0$ and $f\left(t_{4}, v^{\prime}\left(t_{4}\right)\right) \leq 0$. Substituting (2.2) into equation (2.1), we deduce $-\mu g\left(v\left(t_{3}\right)\right)+\mu e\left(t_{3}\right)=\mu f\left(t_{3}, v^{\prime}\left(t_{3}\right)\right)$ and $-\mu g\left(v\left(t_{4}\right)\right)+\mu e\left(t_{4}\right)=\mu f\left(t_{4}, v^{\prime}\left(t_{4}\right)\right)$. Since $f\left(t_{3}, v^{\prime}\left(t_{3}\right)\right) \geq 0$ and $f\left(t_{4}, v^{\prime}\left(t_{4}\right)\right) \leq 0$. It follows that

$$
g\left(v\left(t_{3}\right)\right) \leq e\left(t_{3}\right) \leq e^{*} \text { and } g\left(v\left(t_{4}\right)\right) \geq e\left(t_{4}\right) \geq e_{*}
$$

As g is a strictly monotone-increasing function, we obtain

$$
\begin{equation*}
v\left(t_{3}\right) \leq g^{-1}\left(e^{*}\right) \text { and } v\left(t_{4}\right) \geq g^{-1}\left(e_{*}\right) \tag{2.3}
\end{equation*}
$$

From (2.3) and the fact that g is a continuous function, we can see that exists a point $\tau \in(0, \omega)$ such that

$$
\begin{equation*}
g^{-1}\left(e_{*}\right) \leq v(\tau) \leq g^{-1}\left(e^{*}\right) \tag{2.4}
\end{equation*}
$$

On the other hand, multiplying both sides of equation (2.1) by $\nu^{\prime}(t)$, and then integrating both sides of equation (2.1) in $[0, \omega]$, one has

$$
\begin{align*}
& \int_{0}^{\omega}\left(\phi\left(v^{\prime}(t)\right)\right)^{\prime} v^{\prime}(t) d t+\mu \int_{0}^{\omega} f\left(t, v^{\prime}(t)\right) v^{\prime}(t) d t+\mu \int_{0}^{\omega} g(v(t)) v^{\prime}(t) d t \tag{2.5}\\
& =\mu \int_{0}^{\omega} e(t) v^{\prime}(t) d t
\end{align*}
$$

In view of

$$
\int_{0}^{\omega}\left(\phi\left(v^{\prime}(t)\right)\right)^{\prime} v^{\prime}(t) d t=\int_{0}^{\omega} v^{\prime}(t) d\left(\phi\left(v^{\prime}(t)\right)\right)=0
$$

and

$$
\int_{0}^{\omega} g(v(t)) v^{\prime}(t) d t=\int_{0}^{\omega} g(v(t)) d v(t)=0
$$

we see from (2.5) that $\int_{0}^{\omega} f\left(t, v^{\prime}(t)\right) v^{\prime}(t) d t=\int_{0}^{\omega} e(t) v^{\prime}(t) d t$. Furthermore, we have

$$
\left|\int_{0}^{\omega} f\left(t, v^{\prime}(t)\right) v^{\prime}(t) d t\right|=\left|\int_{0}^{\omega} e(t) v^{\prime}(t) d t\right| .
$$

In view of $\left|\int_{0}^{\omega} f\left(t, v^{\prime}(t)\right) v^{\prime}(t) d t\right|=\int_{0}^{\omega}\left|f\left(t, v^{\prime}(t)\right) v^{\prime}(t)\right| d t$, we obtain from $\left(H_{1}\right)$ that

$$
\left|\int_{0}^{\omega} f\left(t, v^{\prime}(t)\right) v^{\prime}(t) d t\right| \geq \alpha \int_{0}^{\omega}\left|v^{\prime}(t)\right|^{m} d t
$$

By using the Hölder inequality, we can obtain

$$
\alpha \int_{0}^{\omega}\left|v^{\prime}(t)\right|^{m} d t \leq \int_{0}^{\omega}\left|e(t)\left\|v^{\prime}(t) \mid d t \leq\right\| e \| \omega^{\frac{m-1}{m}}\left(\int_{0}^{\omega}\left|v^{\prime}(t)\right|^{m} d t\right)^{\frac{1}{m}} .\right.
$$

Since $\left(\int_{0}^{\omega}\left|v^{\prime}(t)\right|^{m} d t\right)^{\frac{1}{m}}>0$, we deduce

$$
\left(\int_{0}^{\omega}\left|v^{\prime}(t)\right|^{m} d t\right)^{\frac{m-1}{m}} \leq \frac{\|e\| \omega^{\frac{m-1}{m}}}{\alpha}
$$

which together with (2.4) and the Hölder inequality yields that

$$
\begin{align*}
v(t) & =\frac{1}{2}\left(v(\tau)+\int_{\tau}^{t} v^{\prime}(\theta) d \theta+v(\tau)-\int_{t-\omega}^{\tau} v^{\prime}(\theta) d \theta\right) \\
& \leq v(\tau)+\frac{1}{2}\left(\int_{\tau}^{t}\left|v^{\prime}(\theta)\right| d \theta+\int_{t-\omega}^{\tau}\left|v^{\prime}(\theta)\right| d \theta\right) \\
& \leq g^{-1}\left(e^{*}\right)+\frac{1}{2} \int_{0}^{\omega}\left|v^{\prime}(\theta)\right| d \vartheta \\
& \leq g^{-1}\left(e^{*}\right)+\frac{1}{2} \omega^{\frac{m-1}{m}}\left(\int_{0}^{\omega}\left|v^{\prime}(\theta)\right|^{m} d \theta\right)^{\frac{1}{m}} \tag{2.6}\\
& \leq g^{-1}\left(e^{*}\right)+\frac{1}{2} \omega^{\frac{m-1}{m}}\left(\frac{\|e\| \omega^{\frac{m-1}{m}}}{\alpha}\right)^{\frac{1}{m-1}} \\
& \leq g^{-1}\left(e^{*}\right)+\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}:=M_{1} .
\end{align*}
$$

Hence, it following from (2.4) and (2.6) that

$$
\begin{aligned}
v(t) & \geq g^{-1}\left(e_{*}\right)-\frac{1}{2}\left(\int_{\tau}^{t}\left|v^{\prime}(\theta)\right| d \theta+\int_{t-\omega}^{\tau}\left|v^{\prime}(\theta)\right| d \theta\right) \\
& \geq g^{-1}\left(e_{*}\right)-\frac{1}{2} \int_{0}^{\omega}\left|v^{\prime}(\theta)\right| d \theta \\
& \geq g^{-1}\left(e_{*}\right)-\frac{1}{2} \omega^{\frac{m-1}{m}}\left(\int_{0}^{\omega}\left|v^{\prime}(\theta)\right|^{m} d \theta\right)^{\frac{1}{m}} \\
& \geq g^{-1}\left(e^{*}\right)-\frac{1}{2} \omega^{\frac{m-1}{m}}\left(\frac{\|e\| \omega^{\frac{m-1}{m}}}{\alpha}\right)^{\frac{1}{m-1}} \\
& \geq g^{-1}\left(e_{*}\right)-\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}:=M_{2},
\end{aligned}
$$

due to $\alpha>\|e\|\left(\frac{\omega}{2 g^{-1}\left(e_{*}\right)}\right)^{m-1}$.
Next, we explore a uniform bound of $v^{\prime}(t)$. On account of $v(0)=v(\omega)$, we can obtain a point $t_{5} \in[0, \omega]$ with $v^{\prime}\left(t_{5}\right)=0$. Furthermore, $\phi\left(v^{\prime}\left(t_{5}\right)\right)=0$. It follows from $\left(H_{3}\right)$ that

$$
\begin{aligned}
\left\|\phi\left(v^{\prime}\right)\right\| & =\max _{t \in\left[t_{5}, t_{5}+\omega\right]}\left\{\left|\int_{t_{5}}^{t}\left(\phi\left(v^{\prime}(\theta)\right)\right)^{\prime} d \theta\right|\right\} \\
& \leq \int_{0}^{\omega} \mid f\left(t, v^{\prime}(t)\left|d t+\int_{0}^{\omega}\right| g(v(t))\left|d t+\int_{0}^{\omega}\right| e(t) \mid d t\right. \\
& \left.\leq \beta \int_{0}^{\omega} \mid v^{\prime}(t)\right)\left.\right|^{m-1} d t+\gamma \omega+\int_{0}^{\omega}|g(v(t))| d t+\omega\|e\| \\
& \left.\leq\left.\beta \omega^{\frac{1}{m}}\left(\int_{0}^{\omega} \mid v^{\prime}(t)\right)\right|^{m} d t\right)^{\frac{m-1}{m}}+\gamma \omega+\int_{0}^{\omega}|g(v(t))| d t+\omega\|e\| \\
& \leq \beta \omega^{\frac{1}{m}} \frac{\|e\| \omega^{\frac{m-1}{m}}}{\alpha}+\gamma \omega++\left\|g_{M_{1}}\right\| \omega+\omega\|e\| \\
& \leq \frac{\beta\|e\| \omega}{\alpha}+\gamma+\left\|g_{M_{1}}\right\| \omega+\omega\|e\|:=M_{3}^{\prime}
\end{aligned}
$$

where $\left\|g_{M_{1}}\right\|:=\max _{M_{2} \leq v \leq M_{1}}|g(v)|$.
We claim that there is a positive constant M_{3} which satisfies the condition of $M_{3}>M_{3}^{\prime}+1$ such that $\left\|v^{\prime}(t)\right\| \leq M_{3}$. for all $t \in(-\infty,+\infty)$. In fact, if not, there exists a positive constant M_{4} with $\kappa\left(\left|v^{\prime}\right|\right)>M_{4}$ for some $v^{\prime} \in(-\infty,+\infty)$. We obtain from $\left(B_{2}\right)$ that

$$
\kappa\left(\left|v^{\prime}\right|\right)\left|v^{\prime}\right| \leq\left|\phi\left(v^{\prime}\right)\right| v^{\prime} \leq\left|\phi\left(v^{\prime}\right)\right|\left|v^{\prime}\right| \leq M_{3}^{\prime}\left|v^{\prime}\right| .
$$

Thus $\kappa\left(\left|v^{\prime}\right|\right) \leq M_{3}^{\prime}$ for all $v^{\prime} \in(-\infty,+\infty)$, which is a contradiction.
Let $\sigma_{1}<M_{2}, \sigma_{2}>M_{1}$, and $\sigma_{3}>M_{3}$ be constants. We obtain a periodic solution v to equation (2.1), and we have

$$
\sigma_{1}<v(t)<\sigma_{2},\left\|v^{\prime}(t)\right\|<\sigma_{3}
$$

and the condition (1) of Lemma 2.1 is satisfied. Furthermore, let us explore the condition (2) of Lemma 2.1, Actually, because $\left(H_{2}\right)$, we obtain

$$
g\left(\sigma_{1}\right)-\frac{1}{\omega} \int_{0}^{\omega} e(t) d t<0
$$

and

$$
g\left(\sigma_{2}\right)-\frac{1}{\omega} \int_{0}^{\omega} e(t) d t>0
$$

Hence, condition (2) is also satisfied. By using Lemma 2.1, we can obtain at least one positive periodic solution v of equation (1.3) which satisfies

$$
v \in\left(g^{-1}\left(e_{*}\right)-\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}, g^{-1}\left(e^{*}\right)+\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}\right) .
$$

Nest, we present a numerical example that illustrates our results.
Example 2.3. We give the following ϕ-Laplacian Rayleigh equation, which has a repulsive and strong singularity.

$$
\begin{equation*}
\left(\phi\left(v^{\prime}(t)\right)\right)^{\prime}+(6+\sin 8 t) v^{\prime}(t)+4-\frac{1}{v(t)}=e^{\cos ^{2} 4 t} \tag{2.7}
\end{equation*}
$$

where relativistic operator $\phi(v)=v e^{v^{2}}$. Obviously, $\omega=\frac{\pi}{4}, f(t, v)=(6+\sin 8 t) v, g(v)=4-\frac{1}{v}$, $e(t)=e^{\cos ^{2} 4 t}$, and $e_{*}=1, e^{*}=e$. Thus condition $\left(H_{2}\right)$ holds. Since $f(t, v) \cdot v=(6+\sin 8 t)$. $v^{2} \geq 5|v|^{2}, \alpha=5, m=2$, then condition $\left(H_{1}\right)$ holds. Besides, $|f(t, v)| \leq 7 v+1, \beta=7, \gamma=1$, condition $\left(H_{3}\right)$ is satisfied.

Next, we consider the conditions $\left(B_{1}\right)$ and $\left(B_{2}\right)$

$$
(\phi(v))^{\prime}=\left(v e^{v^{2}}\right)^{\prime}=e^{v^{2}}\left(1+2 v^{2}\right)>0,
$$

and

$$
\phi(v) \cdot v=v^{2} e^{v^{2}} \geq\left(|v| e^{|v|^{2}}\right)|v| .
$$

It is easy to see that conditions $\left(B_{1}\right)$ and $\left(B_{2}\right)$ hold. Hence, $g^{-1}(v)=\frac{1}{4-v}$, and then we obtain

$$
\begin{gathered}
\left(\frac{\omega}{2 g^{-1}\left(e_{*}\right)}\right)^{m-1}\|e\|=\frac{3}{8} \times \pi \times e \approx 3.2024<\alpha=5 \\
g^{-1}\left(e_{*}\right)-\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}=\frac{1}{3}-\frac{\pi \times e}{40} \approx 0.1198>0.119
\end{gathered}
$$

and

$$
g^{-1}\left(e^{*}\right)+\frac{\omega}{2}\left(\frac{\|e\|}{\alpha}\right)^{\frac{1}{m-1}}=\frac{1}{4-e}+\frac{\pi \times e}{40} \approx 0.9937<0.994
$$

By using Theorem 2.2, we can obtain at least one positive and $\frac{\pi}{4}$-periodic solution v of equation (2.7), which satisfies $v \in(0.119,0.994)$.

Funding

This paper was supported by Technological Innovation Talents in Universities and Colleges in Henan Province (21HASTIT025), Natural Science Foundation of Henan Province (222300420449), Henan Province "Double First-Class" Discipline Establishment Engineering Cultivation Project (AQ20230718) and Innovative Research Team of Henan Polytechnic University (T2022-7).

REFERENCES

[1] A. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc. 99 (1987) 109-114.
[2] Z. Cheng, J. Ren, Periodic and subharmonic solutions for Duffing equation with singularity, Discrete Contin. Dyn. Syst. A, 32 (2012) 1557-1574.
[3] Z. Cheng, Q. Yuan, Damped superlinear Duffing equation with strong singularity of repulsive type, J. Fixed Point Theory Appl. 22 (2020) 37.
[4] A. Fonda, R. Manásevich, F. Zanolin, Subharmonics solutions for some second order differential equations with singularities, SIAM J. Math. Anal. 24 (1993) 1294-1311.
[5] R. Hakl, P. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations 248 (2010) 111-126.
[6] Z. Wang, Periodic solutions of Liénard equation with a singularity and a deviating argument, Nonlinear Anal. 16 (2014) 227-234.
[7] J. Xia, Z. Wang, Existence and multiplicity of periodic solutions for the duffing equation with singularity, Proc. R. Soc. Edinb. Sect. A, 137 (2007) 625-645.
[8] M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl. 203 (1996) 254-269.
[9] Z. Cheng, J. Ren, Studies on a damped differential equation with repulsive singularity, Math. Meth. Appl. Sci. 36 (2013) 983-992.
[10] J. Chu, P. Torres, M. Zhang, Periodic solution of second order non-autonomous singular dynamical systems, J. Differential Equations 239 (2007) 196-212.
[11] X. Li, Z. Zhang, Periodic solutions for damped differential equations with a weak repulsive singularity, Nonlinear Anal. 70 (2009) 2395-2399.
[12] P. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations 232 (2007) 277284
[13] H. Wang, Positive periodic solutions of singular systems with a parameter, J. Differential Equations, 249 (2010) 2986-3002.
[14] L. Chen, S. Lu, A new result on the existence of periodic solutions for Rayleigh equations with a singularity of repulsive type, Adv. Difference Equ. 2017 (2017) 106.
[15] Y. Guo, Y. Wang, D. Zhou, A new result on the existence of periodic solutions for Rayleigh equation with a singularity, Adv. Difference Equ. 2017 (2017) 394.
[16] F. Kong, F. Liang, J. Nieto, Positive periodic solutions of coupled singular Rayleigh systems, Qual. Theory Dyn. Syst. 19 (2020) 27.
[17] S. Lu, X. Jia, Existence and uniqueness of homoclinic solution for a Rayleigh equation with a singularity, Qual. Theory Dyn. Syst. 19 (2020) 17.
[18] S. Lu, T. Zhong, L. Chen, Periodic solutions for p-Laplacian Rayleigh equations with singularities, Bound. Value Probl. 2016 (2016) 12.
[19] Y. Xin, G. Hu, Periodic solution for prescribed mean curvature Rayleigh equation with a singularity, Adv. Difference Equ. 2020 (2020) 269.
[20] Y. Xin, S. Yao, Positive periodic solution for p-Laplacian Rayleigh equation with weak and strong singularities of repulsive type, J. Fixed Point Theory Appl. 22 (2020) 45.
[21] Y. Xin, Z. Cheng, Positive periodic solution for ϕ-Laplacian Rayleigh equation with strong singularity, Bound. Value Probl. 2016 (2016) 139.
[22] R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operator, J. Differential Equations, 145 (1998) 367-393

[^0]: *Corresponding author.
 E-mail address: czb_1982@126.com (Z. Cheng).
 Received January 11, 2023; Accepted September 6, 2023.

