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POSITIVE PERIODIC SOLUTIONS FOR A φ -LAPLACIAN GENERALIZED
RAYLEIGH EQUATION WITH A SINGULARITY

ZHENHUI WANG, ZHIBO CHENG∗

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China

Abstract. This paper explores the existence of positive periodic solutions to a φ -Laplacian generalized Rayleigh
equation with a singularity as (φ(v′(t)))′+ f (t,v′(t))+ g(v(t)) = e(t), where the function g has a repulsive sin-
gularity at v = 0. According to the Manásevich-Mawhin continuation theorem, we prove the existence of positive
periodic solutions to this equation. This result is feasible for the cases of a strong or weak singularity.
Keywords. φ -Laplacian; Generalized Rayleigh equation; Positive periodic solution; Strong singularity; Weak
singularity.

1. INTRODUCTION

The study of singular differential equations can be traced back to the paper of Lazer and
Solimini [1]. They explored a second-order differential equation with a singularity:

u′′− 1
uα

= h(t), (1.1)

where h(t) is a continuous and ω-periodic function. They proved the existence of a positive ω-
periodic solution to this equation if all α > 0 and h(t) has a positive mean value. The condition
of α ≥ 1 in equation (1.1) is one of the common conditions. It is a so-called strong force
condition that can guarantee the existence of positive periodic solutions; see, e.g., [2, 3, 4, 5,
6, 7, 8] and the references therein. Correspondingly, the condition of 0 < α < 1 in equation
(1.1) is a so-called weak force condition that can guarantee the existence of positive periodic
solutions of singular differential equations; see, e.g., [9, 10, 11, 12, 13].

At the same time, Rayleigh equations with a singularity were also explored by authors [14, 15,
16, 17, 18, 19, 20, 21]. For example, Lu et al. [18] discussed p-Laplacian Rayleigh equations
with a singularity in 2016 as follows:

(|u′|p−2u′)′+ f (u′)−g1(u)+g2(u) = h(t)
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and

(|u′|p−2u′)′+ f (u′)+g1(u)−g2(u) = h(t),

where p > 1 is a constant, f is a continuous function, g1, g2 ∈C((0,+∞),R), when u→ 0+, g1
is unbounded, and it has a strong singularity at u = 0, namely,

lim
u→0+

∫ u

1
g1(s)ds =+∞.

According to the Manásevich-Mawhin’s continuation theorem, they proved the existence of
positive periodic solutions to the p-Laplacian Rayleigh equations. After that, Xin and Yao [20]
in 2020 investigated the p-Laplacian Rayleigh equation with a singularity as follows:

(|u′|p−2u′)′+ f (t,u′)+g(u) = h(t). (1.2)

Based on the Manásevich-Mawhin’s continuation theorem, they obtained that equation (1.2)
has a positive periodic solution.

Inspired by [18, 20], this paper explores the φ -Laplacian Rayleigh equation with a singularity
as follows:

(φ(v′))′+ f (t,v′)+g(v) = e(t), (1.3)

where f is continuous, and it is a ω-periodic function about t, f (t,0) ≡ 0, e(t) is a ω-periodic
function, g ∈C((0,+∞),R) has a repulsive singularity at v = 0, that is, limv→0+ g(v) =−∞. By
using the Manásevich-Mawhin continuation theorem , we prove that a new existence criterion
of the positive periodic solution to equation (1.3) can be obtained by a weak singularity of
repulsive type. In addition, we obtain the existence interval of periodic solutions of equation
(1.3). Usually, g has a weak singularity at v = 0, which means that

lim
v→0+

∫ v

1
g(s)ds <+∞,

where φ : (−∞,+∞)→ (−∞,+∞) of equation (1.3) is a continuous function, which satisfies
condition φ(0) = 0 and the following conditions:
(B1) (φ(v1)−φ(v2))(v1− v2)> 0 for ∀ v1 6= v2, v1, v2 ∈ R;
(B2) ∃ κ : [0,+∞)→ [0,+∞), κ(s)→ +∞ when s→ +∞, s.t., φ(v) · v ≥ κ(|v|)|v| for ∀ v ∈

(−∞,+∞).
Obviously, φ represents many nonlinear operators, that is,

• φp(v) = |v|p−2v : (−∞,+∞)→ (−∞,+∞), here the constant p satisfies the condition of
p > 1;
• the nonlinear operator φ(v) = vev2

: (−∞,+∞)→ (−∞,+∞).

2. THE POSITIVE ω -PERIODIC SOLUTION TO EQUATION (1.3)

First, we introduce a parameter µ , which satisfies the condition of µ ∈ (0,1]. Then, we embed
equation (1.3) into the equation family as follows:

(φ(v′(t)))′+µ f (t,v′(t))+µg(v(t)) = µe(t). (2.1)

According to [22, Theorem 3.1], we can obtain the following result.
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Lemma 2.1. Let the function φ satisfy the condition of φ(0) = 0 and the conditions of (B1) and
(B2). Let σ1, σ2, and σ3 be positive constants, and σ1 < σ2 such that the following conditions
hold:

(1) each possible periodic solution v to equation (2.1) satisfies σ1 < v(t)< σ2 and ‖v′‖< σ3
for all t ∈ [0,ω], where ‖v′‖ := max

t∈[0,ω]
|v′(t)|.

(2) σ1 and σ2 satisfy
(
g(σ1)− 1

ω

∫
ω

0 e(t)dt
)(

g(σ2)− 1
ω

∫
ω

0 e(t)dt
)
< 0.

Then equation (1.3) has at least one ω-periodic solution.

We explore the existence of a positive periodic solution to equation (1.3) with strong or weak
singularities. Here we introduce the following notations:

‖e‖ := max
t∈[0,ω]

|e(t)|,e∗ := max
t∈[0,ω]

e(t),e∗ := min
t∈[0,ω]

e(t),g(+∞) := lim
v→+∞

g(v).

By Lemma 2.1, we have the following main result.

Theorem 2.2. Let the function φ satisfy the condition of φ(0) = 0 and the conditions of (B1)
and (B2). Let the following conditions hold:

(H1) assume that α and m are constants, which satisfy α > 0 and m > 1 such that f (t,v)v≥
α|v|m, for (t,v) ∈ [0,ω]× (−∞,+∞);

(H2) g is a strictly monotone-increasing function, e∗ < g(+∞);
(H3) assume that β and γ are constants, and β > 0 and γ > 0 such that | f (t,v)| ≤ β |v|m−1+

γ,(t,v) ∈ [0,ω]×R.
If α > ( ω

2g−1(e∗)
)m−1‖e‖, then equation (1.3) has a positive ω-periodic solution v with

v ∈

(
g−1(e∗)−

ω

2

(
‖e‖
α

) 1
m−1

, g−1(e∗)+
ω

2

(
‖e‖
α

) 1
m−1
)
.

Proof. In view of
∫

ω

0 v′(t)dt = 0, we see that there are two points t1, t2 ∈ (0,ω) such that
v′(t1)≥ 0 and v′(t2)≤ 0. It follows from (B1) that

φ(v′(t1))≥ 0 and φ(v′(t2))≤ 0.

Let t3, t4 ∈ (0,ω) be the points where the maximum and minimum values of φ(v′(t)) are ob-
tained, respectively. Obviously, we have the following conditions:

(φ(v′(t3)))′ = 0 ,φ(v′(t3))≥ 0 (2.2)

and (φ(v′(t4)))′ = 0, φ(v′(t4)) ≤ 0. By (B2), we obtain that v′(t3) ≥ 0 and v′(t4) ≤ 0. From
(H1), we have that f (t3,v′(t3)) ≥ 0 and f (t4,v′(t4)) ≤ 0. Substituting (2.2) into equation (2.1),
we deduce−µg(v(t3))+µe(t3)= µ f (t3,v′(t3)) and−µg(v(t4))+µe(t4)= µ f (t4,v′(t4)). Since
f (t3,v′(t3))≥ 0 and f (t4,v′(t4))≤ 0. It follows that

g(v(t3))≤ e(t3)≤ e∗ and g(v(t4))≥ e(t4)≥ e∗ .

As g is a strictly monotone-increasing function, we obtain

v(t3)≤ g−1(e∗) and v(t4)≥ g−1(e∗). (2.3)

From (2.3) and the fact that g is a continuous function, we can see that exists a point τ ∈ (0,ω)
such that

g−1(e∗)≤ v(τ)≤ g−1(e∗). (2.4)
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On the other hand, multiplying both sides of equation (2.1) by v′(t), and then integrating both
sides of equation (2.1) in [0,ω], one has∫

ω

0
(φ(v′(t)))′v′(t)dt +µ

∫
ω

0
f (t,v′(t))v′(t)dt +µ

∫
ω

0
g(v(t))v′(t)dt

= µ

∫
ω

0
e(t)v′(t)dt.

(2.5)

In view of ∫
ω

0
(φ(v′(t)))′v′(t)dt =

∫
ω

0
v′(t)d(φ(v′(t))) = 0

and ∫
ω

0
g(v(t))v′(t)dt =

∫
ω

0
g(v(t))dv(t) = 0,

we see from (2.5) that
∫

ω

0 f (t,v′(t))v′(t)dt =
∫

ω

0 e(t)v′(t)dt. Furthermore, we have∣∣∣∣∫ ω

0
f (t,v′(t))v′(t)dt

∣∣∣∣= ∣∣∣∣∫ ω

0
e(t)v′(t)dt

∣∣∣∣ .
In view of |

∫
ω

0 f (t,v′(t))v′(t)dt|=
∫

ω

0 | f (t,v′(t))v′(t)|dt, we obtain from (H1) that∣∣∣∣∫ ω

0
f (t,v′(t))v′(t)dt

∣∣∣∣≥ α

∫
ω

0
|v′(t)|mdt.

By using the Hölder inequality, we can obtain

α

∫
ω

0
|v′(t)|mdt ≤

∫
ω

0
|e(t)||v′(t)|dt ≤ ‖e‖ω

m−1
m

(∫
ω

0
|v′(t)|mdt

) 1
m

.

Since
(∫

ω

0 |v′(t)|mdt
) 1

m > 0, we deduce(∫
ω

0
|v′(t)|mdt

)m−1
m

≤ ‖e‖ω
m−1

m

α
.

which together with (2.4) and the Hölder inequality yields that

v(t) =
1
2

(
v(τ)+

∫ t

τ

v′(θ)dθ + v(τ)−
∫

τ

t−ω

v′(θ)dθ

)
≤v(τ)+

1
2

(∫ t

τ

|v′(θ)|dθ +
∫

τ

t−ω

|v′(θ)|dθ

)
≤g−1(e∗)+

1
2

∫
ω

0
|v′(θ)|dϑ

≤g−1(e∗)+
1
2

ω
m−1

m

(∫
ω

0
|v′(θ)|mdθ

) 1
m

≤g−1(e∗)+
1
2

ω
m−1

m

(
‖e‖ω m−1

m

α

) 1
m−1

≤g−1(e∗)+
ω

2

(
‖e‖
α

) 1
m−1

:= M1.

(2.6)
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Hence, it following from (2.4) and (2.6) that

v(t)≥g−1(e∗)−
1
2

(∫ t

τ

|v′(θ)|dθ +
∫

τ

t−ω

|v′(θ)|dθ

)
≥g−1(e∗)−

1
2

∫
ω

0
|v′(θ)|dθ

≥g−1(e∗)−
1
2

ω
m−1

m

(∫
ω

0
|v′(θ)|mdθ

) 1
m

≥g−1(e∗)− 1
2

ω
m−1

m

(
‖e‖ω m−1

m

α

) 1
m−1

≥g−1(e∗)−
ω

2
(
‖e‖
α

)
1

m−1 := M2,

due to α > ‖e‖( ω

2g−1(e∗)
)m−1.

Next, we explore a uniform bound of v′(t). On account of v(0) = v(ω), we can obtain a point
t5 ∈ [0,ω] with v′(t5) = 0. Furthermore, φ(v′(t5)) = 0. It follows from (H3) that∥∥φ(v′)

∥∥= max
t∈[t5,t5+ω]

{∣∣∣∣∫ t

t5
(φ(v′(θ)))′dθ

∣∣∣∣}
≤
∫

ω

0
| f (t,v′(t)|dt +

∫
ω

0
|g(v(t))|dt +

∫
ω

0
|e(t)|dt

≤β

∫
ω

0
|v′(t))|m−1dt + γω +

∫
ω

0
|g(v(t))|dt +ω‖e‖

≤βω
1
m (
∫

ω

0
|v′(t))|mdt)

m−1
m + γω +

∫
ω

0
|g(v(t))|dt +ω‖e‖

≤βω
1
m
‖e‖ω m−1

m

α
+ γω ++‖gM1‖ω +ω‖e‖

≤β‖e‖ω
α

+ γ +‖gM1‖ω +ω‖e‖ := M′3,

where ‖gM1‖ := max
M2≤v≤M1

|g(v)|.

We claim that there is a positive constant M3 which satisfies the condition of M3 > M′3 + 1
such that ‖v′(t)‖ ≤M3. for all t ∈ (−∞,+∞). In fact, if not, there exists a positive constant M4
with κ(|v′|)> M4 for some v′ ∈ (−∞,+∞). We obtain from (B2) that

κ(|v′|)|v′| ≤ |φ(v′)|v′ ≤ |φ(v′)||v′| ≤M′3|v′|.

Thus κ(|v′|)≤M′3 for all v′ ∈ (−∞,+∞), which is a contradiction.
Let σ1 < M2, σ2 > M1, and σ3 > M3 be constants. We obtain a periodic solution v to equation

(2.1), and we have
σ1 < v(t)< σ2, ‖v′(t)‖< σ3,

and the condition (1) of Lemma 2.1 is satisfied. Furthermore, let us explore the condition (2) of
Lemma 2.1, Actually, because (H2), we obtain

g(σ1)−
1
ω

∫
ω

0
e(t)dt < 0,
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and

g(σ2)−
1
ω

∫
ω

0
e(t)dt > 0.

Hence, condition (2) is also satisfied. By using Lemma 2.1, we can obtain at least one positive
periodic solution v of equation (1.3) which satisfies

v ∈

(
g−1(e∗)−

ω

2

(
‖e‖
α

) 1
m−1

, g−1(e∗)+
ω

2

(
‖e‖
α

) 1
m−1
)
.

�

Nest, we present a numerical example that illustrates our results.

Example 2.3. We give the following φ -Laplacian Rayleigh equation, which has a repulsive and
strong singularity.

(φ(v′(t)))′+(6+ sin8t)v′(t)+4− 1
v(t)

= ecos2 4t , (2.7)

where relativistic operator φ(v) = vev2
. Obviously, ω = π

4 , f (t,v) = (6+ sin8t)v, g(v) = 4− 1
v ,

e(t) = ecos2 4t , and e∗ = 1, e∗ = e. Thus condition (H2) holds. Since f (t,v) · v = (6+ sin8t) ·
v2 ≥ 5|v|2,α = 5,m = 2, then condition (H1) holds. Besides, | f (t,v)| ≤ 7v+ 1, β = 7,γ = 1,
condition (H3) is satisfied.

Next, we consider the conditions (B1) and (B2)

(φ(v))′ = (vev2
)′ = ev2

(1+2v2)> 0,

and
φ(v) · v = v2ev2

≥ (|v|e|v|
2
)|v|.

It is easy to see that conditions (B1) and (B2) hold. Hence, g−1(v) = 1
4−v , and then we obtain(

ω

2g−1(e∗)

)m−1

‖e‖= 3
8
×π× e≈ 3.2024 < α = 5,

g−1(e∗)−
ω

2
(
‖e‖
α

)

1
m−1

=
1
3
− π× e

40
≈ 0.1198 > 0.119,

and

g−1(e∗)+
ω

2
(
‖e‖
α

)

1
m−1

=
1

4− e
+

π× e
40
≈ 0.9937 < 0.994.

By using Theorem 2.2, we can obtain at least one positive and π

4 -periodic solution v of equation
(2.7), which satisfies v ∈ (0.119,0.994).
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[4] A. Fonda, R. Manásevich, F. Zanolin, Subharmonics solutions for some second order differential equations
with singularities, SIAM J. Math. Anal. 24 (1993) 1294-1311.

[5] R. Hakl, P. Torres, On periodic solutions of second-order differential equations with attractive-repulsive sin-
gularities, J. Differential Equations 248 (2010) 111-126.

[6] Z. Wang, Periodic solutions of Liénard equation with a singularity and a deviating argument, Nonlinear Anal.
16 (2014) 227-234.

[7] J. Xia, Z. Wang, Existence and multiplicity of periodic solutions for the duffing equation with singularity,
Proc. R. Soc. Edinb. Sect. A, 137 (2007) 625-645.

[8] M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl.
203 (1996) 254-269.

[9] Z. Cheng, J. Ren, Studies on a damped differential equation with repulsive singularity, Math. Meth. Appl.
Sci. 36 (2013) 983-992.

[10] J. Chu, P. Torres, M. Zhang, Periodic solution of second order non-autonomous singular dynamical systems,
J. Differential Equations 239 (2007) 196-212.

[11] X. Li, Z. Zhang, Periodic solutions for damped differential equations with a weak repulsive singularity,
Nonlinear Anal. 70 (2009) 2395-2399.

[12] P. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations 232 (2007) 277-
284

[13] H. Wang, Positive periodic solutions of singular systems with a parameter, J. Differential Equations, 249
(2010) 2986-3002.

[14] L. Chen, S. Lu, A new result on the existence of periodic solutions for Rayleigh equations with a singularity
of repulsive type, Adv. Difference Equ. 2017 (2017) 106.

[15] Y. Guo, Y. Wang, D. Zhou, A new result on the existence of periodic solutions for Rayleigh equation with a
singularity, Adv. Difference Equ. 2017 (2017) 394.

[16] F. Kong, F. Liang, J. Nieto, Positive periodic solutions of coupled singular Rayleigh systems, Qual. Theory
Dyn. Syst. 19 (2020) 27.

[17] S. Lu, X. Jia, Existence and uniqueness of homoclinic solution for a Rayleigh equation with a singularity,
Qual. Theory Dyn. Syst. 19 (2020) 17.

[18] S. Lu, T. Zhong, L. Chen, Periodic solutions for p-Laplacian Rayleigh equations with singularities, Bound.
Value Probl. 2016 (2016) 12.

[19] Y. Xin, G. Hu, Periodic solution for prescribed mean curvature Rayleigh equation with a singularity, Adv.
Difference Equ. 2020 (2020) 269.

[20] Y. Xin, S. Yao, Positive periodic solution for p-Laplacian Rayleigh equation with weak and strong singulari-
ties of repulsive type, J. Fixed Point Theory Appl. 22 (2020) 45.

[21] Y. Xin, Z. Cheng, Positive periodic solution for φ -Laplacian Rayleigh equation with strong singularity,
Bound. Value Probl. 2016 (2016) 139.
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