

Journal of Nonlinear Functional Analysis Available online at http://jnfa.mathres.org

ON NEW FIXED POINT RESULTS VIA A GENERALIZE EXTENDED SIMULATION FUNCTION IN *b*-METRIC SPACES AND AN APPLICATION TO HOMOTOPY

ORATAI YAMAOD

Faculty of Sports and Health Science, Thailand National Sports University Suphanburi Campus, Suphan Buri, 72000, Thailand

Abstract. In this paper, we investigate the existence of fixed points of nonlinear mappings by using the concept of an e_s -simulation function in *b*-metric spaces. We also provide an example to illustrate our main results. As an application, we investigate the existence of a unique solution to homotopy theory.

Keywords. Admissibility; b-metric spaces; Fixed point; Homotopy theory; Simulation function.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we denote by \mathbb{N} , \mathbb{R}_+ , and \mathbb{R} the sets of positive integers, non-negative real numbers, and real numbers, respectively.

The Banach contraction principle, proved by Banach [1], was the starting point of exhaustive research in the fixed point theory. This principle emphasizes on complete metric spaces. For metric spaces, the one of extension of a metric space was considered in the concept of a *b*-metric space by Czerwik [5] who proved some fixed point theorems of single-valued and multi-valued mapping in *b*-metric space.

Definition 1.1 ([5]). Let *X* be a nonempty set and $s \ge 1$ be a fixed real number. Suppose that the mapping $d : X \times X \to \mathbb{R}_+$ satisfies the following condition for all $x, y, z, \in X$

(1)
$$d(x,y) = d(y,x);$$

(2)
$$d(x,y) \le s[d(x,z) + d(z,y)]$$

(3) x = y if and only if d(x, y) = 0.

Then d is called a b-metric and (X,d) is called a b-metric space with coefficient s.

Every metric is *b*-metric for s = 1, but the converse does not hold in general. Furthermore, many authors studied variational principle for single-valued and multi-valued operators in *b*-metric spaces recently; see, e.g., [2, 3, 6, 7].

E-mail address: o.yamaod@tnsu.ac.th

Received April 25, 2023; Accepted September 10, 2023.

O. YAMAOD

The following examples are some known *b*-metric spaces.

Example 1.2. Let $X = \mathbb{R}$, $p \ge 1$ and the mapping $d : X \times X \to \mathbb{R}_+$ be defined by $d(x, y) = |x-y|^p$ for all $x, y \in X$. Then (X, d) is a *b*-metric space with coefficient $s = 2^{p-1}$.

Example 1.3. Let $X = \{0, 1, 2, 3, 4\}$ and $d : X \times X \rightarrow \mathbb{R}_+$ be defined by

$$d(x,y) = \begin{cases} (x+y)^2 & \text{if } x \neq y; \\ 0 & \text{if } x = y. \end{cases}$$

It is easy to see that (X,d) is a *b*-metric space with coefficient $s = \frac{49}{25}$.

Definition 1.4 ([2]). Let (X,d) be a *b*-metric space and $\{x_n\}$ be a sequence in X.

- (*i*): $\{x_n\}$ is *b*-convergent if there exists $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$; In this case, we write $\lim_{n \to \infty} x_n = x$.
- (*ii*): $\{x_n\}$ is called a *b*-Cauchy sequence if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (*iii*): (X,d) is called *b*-complete if every *b*-Cauchy sequence in X *b*-converges.

Proposition 1.5 ([2]). In a b-metric space (X,d), the following assertions hold.

- (p_1) : A b-convergent sequence has a unique limit.
- (p_2) : Each b-convergent sequence is a b-Cauchy sequence.
- (p_3) : In general, a b-metric is not continuous.

In 2015, Khojasteh et al. [8] introduced the concept of a simulation function and a \mathscr{Z} contraction mapping. They also proved the existence and uniqueness theorems of fixed points
of \mathscr{Z} -contraction mapping in metric spaces. Here, we review some basic knowledge related to
our investigation from [8].

Definition 1.6 ([8]). A function $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ is called a simulation function if it satisfies the following conditions:

- $(\zeta 1) \zeta(t,s) < s-t$ for all t,s > 0;
- $(\zeta 2) \zeta(0,0) = 0;$
- (ζ 3) if { t_n } and { s_n } are sequences in (0, ∞) with $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$, then $\limsup_{n \to \infty} \zeta(t_n, s_n) < 0$.

We denote by \mathscr{Z} the class of all simulation functions.

Example 1.7 ([8]). Let $\zeta_1, \zeta_2, \zeta_3 : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be defined by

- (a) $\zeta_1(t,s) = \psi(s) \phi(t)$ for all $t, s \in [0,\infty)$, where $\psi, \phi : [0,\infty) \to [0,\infty)$ are two continuous functions such that $\psi(t) = \phi(t) = 0$ if and only if t = 0 and $\psi(t) < t \le \phi(t)$ for all t > 0;
- (b) $\zeta_2(t,s) = s \varphi(s) t$ for all $t, s \in [0,\infty)$, where $\varphi : [0,\infty) \to [0,\infty)$ is a continuous function such that $\varphi(t) = 0$ if and only if t = 0;
- (c) $\zeta_3(t,s) = s \frac{f(t,s)}{g(t,s)}t$ for all $t, s \in [0,\infty)$, where $f,g:[0,\infty) \to [0,\infty)$ are two continuous functions with respect to each variable such that f(t,s) > g(t,s) for all t,s > 0.

Then ζ_1, ζ_2 , and ζ_3 are simulation functions.

Definition 1.8 ([8]). Let (X,d) be a metric space and $\zeta \in \mathscr{Z}$. A mapping $T : X \to X$ is called a \mathscr{Z} -contraction with respect to ζ if $\zeta(d(Tx,Ty),d(x,y)) \ge 0$ for all $x, y \in X$.

Definition 1.9 ([4]). Let (X,d) be a metric space. A mapping $T : X \to X$ is said to be asymptotically regular at point $x \in X$ if $\lim_{x \to \infty} d(T^n x, T^{n+1} x) = 0$.

Recently, Hierro and Samet [9] introduced the class of extended simulation functions, which is more large than the class of simulation functions. In addition, They obtained a φ -admissibility result involving extended simulation functions for a new class of mappings with respect to a lower semi-continuous function.

Definition 1.10. Recall that $\theta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ is called an extended simulation function (for short, an *e*-simulation function) if it satisfies the following conditions:

 $\begin{array}{l} (\theta_1) \text{: for any sequences } \{\alpha_n\}, \{\beta_n\} \subset (0,\infty), \\ \lim_{n \to \infty} \alpha_n, = \lim_{n \to \infty} \beta_n = l \in (0,\infty), \ \beta_n > l \ \Rightarrow \ \limsup_{n \to \infty} \theta(\alpha_n, \beta_n) < 0; \\ (\theta_2) \text{: } \theta(\alpha, \beta) < \beta - \alpha \ \text{ for every } \alpha, \beta > 0; \\ (\theta_3) \text{: for any sequence } \{\alpha_n\} \subset (0,\infty), \\ \lim_{n \to \infty} \alpha_n = l \in [0,\infty), \theta(\alpha_n, l) \ge 0, \ \Rightarrow \ l = 0. \end{array}$

In this paper, we extend and generalize the notion in the result of Hierro and Samet, which is e_s -simulation function in the setting of *b*-metric spaces. An example to illustrate our main results is presented. As an application, we investigate the existence of a unique solution to homotopy theory.

2. MAIN RESULTS

In this section, we introduce the new concept of an e_s -simulation function and use this concept to prove the existence of a unique fixed point of generalized contraction mappings.

Definition 2.1. Let (X,d) be a *b*-metric space with coefficient $s \ge 1$. $\theta_s : [0,\infty) \times [0,\infty) \to \mathbb{R}$ is called an e_s -simulation function if it satisfies the following conditions:

 (θ_{s1}) : $\theta_s(\alpha,\beta) < \beta - \alpha$ for every $\alpha,\beta > 0$;

 (θ_{s2}) : for any sequences $\{\alpha_n\}, \{\beta_n\} \subset (0, \infty)$, we have

$$l \leq \lim_{n \to \infty} \alpha_n \leq \lim_{n \to \infty} \beta_n \leq sl, \ \beta_n > l \in (0,\infty) \ \Rightarrow \ \limsup_{n \to \infty} \theta_s(s\alpha_n,\beta_n) < 0;$$

Definition 2.2. Let (X,d) be a *b*-metric space with coefficient $s \ge 1$. A mapping $T : X \to X$ is called an e_s -simulation contraction if there exists an e_s -simulation function $\theta_s : [0,\infty) \times [0,\infty) \to \mathbb{R}$ such that

$$\theta_s(sd(Tx,Ty),d(x,y)) \ge 0, \quad \forall x, y \in X.$$
(2.1)

Remark 2.3. By (θ_{s1}) , if θ is an e_s -simulation function, then $\theta_s(s\alpha,\beta) < 0$ for all $\alpha,\beta > 0$. Hence, if *T* is an e_s -simulation contraction with respect to θ_s , then sd(Tx,Ty) < d(x,y) for all distinct $x, y \in X$.

Theorem 2.4. Let (X,d) be a complete b-metric space with coefficient $s \ge 1$, and let $T : X \to X$ be an e_s -simulation contraction with respect to θ_s . Then T has a unique fixed point.

O. YAMAOD

Proof. Let *x* be an arbitrary point in *X*. The proof is split into 5 steps.

Step I: Prove that *T* is an asymptotically regular mapping at *x*.

Suppose that $T^n x \neq T^{n-1}x$ for all $n \in \mathbb{N}$. By (2.1) and (θ_{s1}), we have

$$\begin{array}{rcl} 0 & \leq & \theta(sd(T^{n+1}x,T^nx),d(T^nx,T^{n-1}x)) \\ & < & d(T^nx,T^{n-1}x) - sd(T^{n+1}x,T^nx) \\ & < & d(T^nx,T^{n-1}x) - d(T^{n+1}x,T^nx). \end{array}$$

Therefore, $\{d(T^nx, T^{n-1}x)\}$ is a monotonically decreasing sequence of nonnegative reals and $\lim_{n\to\infty} d(T^nx, T^{n+1}x) := r$. Now, we have to prove that r = 0. Assume that r > 0. By using (θ_{s2}) , we have

$$0 \leq \limsup_{n \to \infty} \theta_s(sd(T^{n+1}x, T^nx), d(T^nx, T^{n-1}x)) < 0,$$

which is a contradiction. Then r = 0.

On the other hand, we may assume that $T^p x = T^{p-1}x$ for some $p \in \mathbb{N}$. Let $y := T^{p-1}x$. Hence Ty = y and

$$T^{n}y = T^{n-1}Ty = T^{n-1}y = \dots = Ty = y$$

for all $n \in \mathbb{N}$. For sufficient large $n \in \mathbb{N}$, we have

$$d(T^{n}x, T^{n+1}x) = d(T^{n-p+1}T^{p-1}x, T^{n-p+2}T^{p-1}x) = d(T^{n-p+1}y, T^{n-p+2}y) = d(y, y) = 0.$$

Therefore, for each $x \in X$, we have

$$\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0.$$
(2.2)

Step II: Prove that the Picard sequence $\{x_n\}$ defined by $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$.

Assume to contrary that $\{x_n\}$ is not bounded. Without loss of generality, we can assume that $x_{n+p} \neq x_n$ for all $n, p \in \mathbb{N}$. Then, there exists a subsequence $\{x_{n_k}\}$ such that $n_1 = 1$ and for each $k \in \mathbb{N}$, n_{k+1} is the smallest number such that $d(x_{n_{k+1}}, x_{n_k}) > 1$ and $d(x_m, x_{n_k}) \leq 1$ for all $m \in \mathbb{N}$ with $n_k \leq m \leq n_{k+1} - 1$. By the triangular inequality, we have

$$1 < d(x_{n_{k+1}}, x_{n_k}) \le s[d(x_{n_{k+1}}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_k})] \le sd(x_{n_{k+1}}, x_{n_{k+1}-1}) + s.$$

Taking limit as $k \rightarrow \infty$ in above inequality and using (2.2), we have

$$1 \leq \liminf_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) \leq s$$

From Remark 2.3, we obtain that

$$sd(x_{n_{k+1}}, x_{n_k}) \le d(x_{n_{k+1}-1}, x_{n_k-1}) \le s[d(x_{n_{k+1}-1}, x_{n_k}) + d(x_{n_k}, x_{n_k-1})] \le s + sd(x_{n_k}, x_{n_k-1}).$$

Letting $k \to \infty$ and using (2.2), we deduce that there exist

$$\lim_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) = 1 \quad \text{and} \quad \lim_{k \to \infty} d(x_{n_{k+1}-1}, x_{n_k-1}) = s.$$
(2.3)

By condition (θ_{s2}) with $\alpha_k = d(x_{n_{k+1}}, x_{n_k}), \beta_k = d(x_{n_{k+1}-1}, x_{n_k-1})$, and l = 1, we can see that

$$0 \leq \limsup_{k \to \infty} \theta_s(sd(x_{n_{k+1}}, x_{n_k}), d(x_{n_{k+1}-1}, x_{n_k-1})) < 0$$

which is a contradiction. Hence $\{x_n\}$ is bounded.

Step III: Prove that $\{x_n\}$ is a *b*-Cauchy sequence.

Let $C_n := \sup\{d(x_i, x_j) : i, j \ge n\}$. Thus $\{C_n\}$ is a monotonically non-increasing sequence of nonnegative real numbers. Since $\{x_n\}$ is a bounded sequence, we have that $\{C_n\}$ is a monotonic bounded sequence and $C \ge 0$ is such that $\lim_{n \to \infty} C_n = C$.

Next, we prove that C = 0. Let C > 0. There exists $n_k, m_k \in \mathbb{N}$ such that $m_k > n_k \ge k$ and

$$C_k - \frac{1}{k} < d(x_{m_k}, x_{n_k}) \le C_k$$

for all $k \in \mathbb{N}$ and hence $\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = C$. From Remark 2.3 and the definition of C_n , we have $sd(x_{m_k}, x_{n_k}) \leq d(x_{m_k-1}, x_{n_k-1}) \leq C_{k-1}$. Taking limit as $k \to \infty$, and using $\lim_{n \to \infty} C_n = C$ and $\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = C$, we have

$$sC \leq \liminf_{k\to\infty} d(x_{m_k-1}, x_{n_k-1}) \leq \limsup_{k\to\infty} d(x_{m_k-1}, x_{n_k-1}) \leq C.$$

which together with s > 1 observes that C = 0. In the same way, if s = 1, using (θ_{s2}) with $\alpha_k = d(x_{m_k}, x_{n_k})$, $\beta_k = d(x_{m_k-1}, x_{n_k-1})$, and l = C, we have

$$0 \leq \limsup_{n \to \infty} \theta_s(sd(x_{m_k}, x_{n_k}), d(x_{m_k-1}, x_{n_k-1})) < 0,$$

which is a contradiction. Then C = 0. Hence $\{x_n\}$ is a *b*-Cauchy sequence in *X*.

Step IV: Prove that *T* has a fixed point.

Since (X, d) is a complete *b*-metric space, one sees that there exists $u \in X$ such that $\lim_{n \to \infty} x_n = u$, that is, $\lim d(x_n, u) = 0$.

Next, we are going to claim that u is a fixed point of T by contradiction. Assume to contrary that u is not a fixed point of T, that is, $Tu \neq u$. Hence, d(u, Tu) > 0. Note that there is $n_1 \in \mathbb{N}$ such that $d(x_n, u) < d(u, Tu)$ for all $n \ge n_1$. In particular, $x_n \neq Tu$ for all $n \ge n_1$, that is,

$$d(Tx_n, Tu) = d(x_{n+1}, Tu) > 0$$
(2.4)

for all $n \ge n_1$.

On the other hand, there exists $n_2 \in \mathbb{N}$ such that $x_n = u$ for all $n \ge n_2$. Hence, there exists a subsequence $\{x_{\sigma(n)}\}$ of $\{x_n\}$ such that $x_{\sigma(n)} \ne u$ for all $n \in \mathbb{N}$. Let $n_3 \in \mathbb{N}$ be such that $\sigma(n_3) \ge n_1$. Then, by (2.4), we have $d(x_{\sigma(n)}, u) > 0$ and $d(Tx_{\sigma(n)}, Tu) > 0$ for all $n \ge n_3$. By using (2.1) and (θ_{s2}) , we have

$$0 \le \theta_s(sd(Tx_{\sigma(n)}, Tu), d(x_{\sigma(n)}, u)) < d(x_{\sigma(n)}, u) - sd(Tx_{\sigma(n)}, Tu) \le d(x_{\sigma(n)}, u) - d(Tx_{\sigma(n)}, Tu)$$

for all $n \ge n_3$, which means that $0 \le d(Tx_{\sigma(n)}, Tu) < d(x_{\sigma(n)}, u)$ for all $n \ge n_3$. In particular, we obtain $x_{\sigma(n)+1} = Tx_{\sigma(n)} \to Tu$. By the unicity of the limit, we get u = Tu, which is a contradiction with the fact that we have supposed that $Tu \ne u$. Therefore, u is a fixed point of T.

Step V: Prove that *T* has a unique fixed point.

Let u, v be two fixed points of T such that $u \neq v$. By using hypothesis (θ_{s1}) and inequality (2.1), we obtain

$$0 \leq \theta_s(sd(Tu,Tv),d(u,v)) = \theta_s(sd(u,v),d(u,v)) < d(u,v) - sd(u,v) \leq 0,$$

which is a contradiction. Therefore, u = v and T has a unique fixed point.

Example 2.5. Let $X = [0, \infty]$ and $d : X \times X \to [0, \infty)$ be defined by

$$d(x,y) = \begin{cases} (x+y)^2 & \text{if } x \neq y; \\ 0 & \text{if } x = y \end{cases}$$

for all $x, y \in X$. Therefore, (X, d) is a complete *b*-metric space with s = 2. Define $T : X \to X$ and $\theta_s : [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

$$Tx = \begin{cases} \frac{1}{2} & \text{if } x = 2;\\ \frac{x}{2\sqrt{2}} & \text{if } x \in X \setminus \{2\}, \end{cases}$$

and

$$\theta_s(\alpha,\beta) = \begin{cases}
1-\alpha & \text{if } \beta = 0; \\
\beta - 3\alpha & \text{if } \beta > 0,
\end{cases}$$

for all $\alpha, \beta > 0$.

Now, we demonstrate that θ_s is an e_s -simulation function but not simulation function. If $\alpha = \beta = 0$, then $\theta_s(\alpha, \beta) = \theta_s(0, 0) = 1 \neq 0$, which implies that $(\zeta 1)$ does not hold, so θ_s is not a simulation function. For any $\alpha, \beta > 0$, we have $\theta_s(\alpha, \beta) = \beta - 3\alpha < \beta - \alpha$. For any two sequence $\{\alpha_n\}, \{\beta_n\} \subset (0, \infty)$ such that there exists l > 0 with

$$l \leq \lim_{n \to \infty} \alpha_n \leq \lim_{n \to \infty} \beta_n \leq 2l, \ \beta_n > l \text{ for all } n \in \mathbb{N},$$

we have

$$\limsup_{n\to\infty} \theta_s(s\alpha_n,\beta_n) = \limsup_{n\to\infty} (\beta_n - 6\alpha_n) \le \limsup_{n\to\infty} \beta_n - 6\liminf_{n\to\infty} \alpha_n \le 2l - 6l < 0.$$

Then (θ_{s1}) and (θ_{s2}) hold and hence θ_s is an e_s -simulation function.

Next, we divide the proof that T satisfies inequality (2.1) into 3 cases.

Case I: For $x, y \in X$ with x = y, we have $\theta_s(sd(Tx, Ty), d(x, y)) = \theta_s(0, 0) = 1 \ge 0$. **Case II**: For $x, y \in X \setminus \{2\}$ with $x \neq y$, we obtain that

$$\theta_s(sd(Tx,Ty),d(x,y)) = \theta_s\left(2\left(\frac{x}{2\sqrt{2}} + \frac{y}{2\sqrt{2}}\right)^2, (x+y)^2\right)$$
$$= (x+y)^2 - \frac{3}{4}(x+y)^2$$
$$\ge 0.$$

Case III: For $(x, y) \in X \setminus \{2\} \cup \{2\}$ or $\{2\} \cup X \setminus \{2\}$, we see that

$$\begin{aligned} \theta_s(sd(Tx,Ty),d(x,y)) &= \theta_s\left(2\left(\frac{x}{2\sqrt{2}} + \frac{1}{2}\right)^2, (x+2)^2\right) \\ &= (x+2)^2 - \frac{3}{4}(x+\sqrt{2})^2 \\ &\ge (x+2)^2 - \frac{3}{4}(x+2)^2 \ge 0. \end{aligned}$$

Therefore, (2.1) is satisfied. Hence, all the conditions of Theorem (2.4) hold, so *T* has a unique fixed point. In this case, 0 is a fixed point of *T*.

We have the following corollaries from Theorem 2.4.

Corollary 2.6 ([8]). Let (X,d) be a complete metric space, and let $T : X \to X$ be a \mathscr{Z} contraction with respect to ζ . Then T has a unique fixed point.

3. APPLICATION TO HOMOTOPY

In this section, we study the existence of a unique solution to homotopy theory.

Theorem 3.1. Let (X,d) be a b-metric space, U be an open subset of X, and \overline{U} be a closed subset of X such that $U \subseteq \overline{U}$. Suppose that $H : \overline{U} \times [0,1] \to X$ with the following assumptions:

1. $\lambda \in [0,1]$ and $x \neq H(x,\lambda)$ for all $x \in \partial U$ (here ∂U denote the boundary of $U \subseteq X$);

2. *there exists* $L \in [0, 1)$ *and* $M \ge 0$ *such that*

$$d(H(x,\lambda),H(y,\lambda)) \le Ld(x,y)$$

and

$$d(H(x,\lambda),H(x,\mu)) \le M|\lambda-\mu|$$

for all $x, y \in \overline{U}$ and $\lambda, \mu \in [0, 1]$.

Then $H(\cdot, 0)$ *has a fixed point if and only if* $H(\cdot, 1)$ *has a fixed point.*

Proof. Let the set

$$A = \{\lambda \in [0,1] | x = H(x,\lambda) \text{ for some } x \in U\}.$$

Since $H(\cdot, 0)$ has a fixed point in U, we have $0 \in A$ and so A is a nonempty set.

Next, we demonstrate that *A* is both closed and open in [0,1]. From the connectedness, we have that A = [0,1]. Consequently, $H(\cdot, 1)$ has a fixed point in *U*.

Step I: First, we sprove that *A* is closed in [0,1]. Let $\{\lambda_n\} \subseteq A$ with $\lim_{n \to \infty} \lambda_n = \lambda \in [0,1]$. We prove that $\lambda \in A$. Since $\lambda_n \in A$ for all $n \in \mathbb{N}$, there exists $x_n \in U$ such that $x_n = H(x_n, \lambda_n)$. For any $n, m \in \mathbb{N}$, we have

$$d(x_n, x_m) = d(H(x_n, \lambda_n), H(x_m, \lambda_m))$$

$$\leq s[d(H(x_n, \lambda_n), H(x_n, \lambda_m)) + d(H(x_n, \lambda_m), H(x_m, \lambda_m))]$$

$$\leq sM|\lambda_n - \lambda_m| + sLd(x_n, x_m),$$

which implies that

$$d(x_n, x_m) \le \frac{sM}{1 - sL} |\lambda_n - \lambda_m|.$$
(3.1)

Taking limit as $n \to \infty$ in (3.1), we see that $\lim_{n \to \infty} d(x_n, x_m) = 0$. Then $\{x_n\}$ is a Cauchy sequence in *X*. Since (X, d) is a complete *b*-metric space, then there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$, that is, $\lim_{n \to \infty} d(x_n, x) = 0$. For any $n \in \mathbb{N}$, we obtain that

$$d(x_n, H(x, \lambda)) = d(H(x_n, \lambda_n), H(x, \lambda))$$

$$\leq s[d(H(x_n, \lambda_n), H(x_n, \lambda)) + d(H(x_n, \lambda), H(x, \lambda))]$$

$$\leq sM|\lambda_n - \lambda| + sLd(x_n, x).$$

Taking limit as $n \to \infty$ in the inequality above, we have $\lim_{n\to\infty} d(x_n, H(x, \lambda)) = 0$, which implies that $x = \lim_{n\to\infty} x_n = H(x, \lambda)$. Therefore, $\lambda \in A$ and hence *A* is closed in [0, 1].

Step II: We prove that A is open in [0, 1].

O. YAMAOD

Let $\lambda_0 \in A$. Then there exists $x_0 \in U$ with $x_0 = H(x_0, \lambda_0)$. Since *U* is open, we have that there exists r > 0 such that $B_d(x_0, \frac{r}{s}) \subseteq U$. Fix $\varepsilon > 0$ with $\varepsilon < \frac{r(1-L)}{sM}$, and let $\lambda \in (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$. For $x \in \overline{B_d(x_0, \frac{r}{s})}$, we have

$$d(H(x,\lambda),x_0) = d(H(x,\lambda),H(x_0,\lambda_0))$$

$$\leq s[d(H(x,\lambda),H(x,\lambda_0)) + d(H(x,\lambda_0),H(x_0,\lambda_0))]$$

$$\leq sM|\lambda - \lambda_0| + sLd(x,x_0) \leq r.$$

Then, for each fixed $\lambda \in (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$, we obtain that

$$H(\cdot,\lambda):\overline{B_d\left(x_0,\frac{r}{s}\right)}\to\overline{B_d\left(x_0,\frac{r}{s}\right)}.$$

Thus $H(\cdot, \lambda)$ has a fixed point in \overline{U} . From Assumption 1, we have that the fixed point must be in U. Hence $\lambda \in A$ for all $\lambda \in (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$, so A is open in [0,1]. For the reverse implication, we use the same strategy and the desired conclusion follows immediately.

REFERENCES

- S. Banach, Sur les operations dans les ensembles abstrait et leur application aux equations integrals, Fund. Math. 3 (1922) 133-181.
- [2] M. Boriceanu, M. Bota, A. Petrusel, Mutivalued fractals in *b*-metric spaces, Cent. Eur. J. Math. 8 (2010) 367-377.
- [3] M. Bota, A. Molnar, V. Csaba, On Ekeland's variational principle in *b*-metric spaces, Fixed Point Theory 12 (2011) 21–28.
- [4] F. E. Browder, W. V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc. 72 (1966) 571-576.
- [5] S. Czerwik, Contraction mappings in *b*-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993) 5-11.
- [6] S. Czerwik, Nonlinear set-valued contraction mappings in *b*-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998) 263-276.
- [7] M. Delfani, A. Farajzadeh, C.F. Wen, Some fixed point theorems of generalized F_t-contraction mappings in b-metric spaces, J. Nonlinear Var. Anal. 5 (2021) 615-625.
- [8] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015) 1189-1194.
- [9] A.F. R. L. D. Hierro, B. Samet, φ-admissibility results via extended simulation functions, J. Fixed Point Theory Appl. 19 (2017) 1997–2015.