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ON NEW FIXED POINT RESULTS VIA A GENERALIZE EXTENDED
SIMULATION FUNCTION IN b-METRIC SPACES AND AN APPLICATION TO

HOMOTOPY
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Abstract. In this paper, we investigate the existence of fixed points of nonlinear mappings by using the concept
of an es-simulation function in b-metric spaces. We also provide an example to illustrate our main results. As an
application, we investigate the existence of a unique solution to homotopy theory.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we denote by N, R+, and R the sets of positive integers, non-negative
real numbers, and real numbers, respectively.

The Banach contraction principle, proved by Banach [1], was the starting point of exhaustive
research in the fixed point theory. This principle emphasizes on complete metric spaces. For
metric spaces, the one of extension of a metric space was considered in the concept of a b-metric
space by Czerwik [5] who proved some fixed point theorems of single-valued and multi-valued
mapping in b-metric space.

Definition 1.1 ([5]). Let X be a nonempty set and s ≥ 1 be a fixed real number. Suppose that
the mapping d : X×X → R+ satisfies the following condition for all x,y,z,∈ X

(1) d(x,y) = d(y,x);
(2) d(x,y)≤ s[d(x,z)+d(z,y)];
(3) x = y if and only if d(x,y) = 0.

Then d is called a b-metric and (X ,d) is called a b-metric space with coefficient s.

Every metric is b-metric for s = 1, but the converse does not hold in general. Furthermore,
many authors studied variational principle for single-valued and multi-valued operators in b-
metric spaces recently; see, e.g., [2, 3, 6, 7].
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The following examples are some known b-metric spaces.

Example 1.2. Let X =R, p≥ 1 and the mapping d : X×X→R+ be defined by d(x,y)= |x−y|p
for all x,y ∈ X . Then (X ,d) is a b-metric space with coefficient s = 2p−1.

Example 1.3. Let X = {0,1,2,3,4} and d : X×X → R+ be defined by

d(x,y) =
{

(x+ y)2 if x 6= y;
0 if x = y.

It is easy to see that (X ,d) is a b-metric space with coefficient s = 49
25 .

Definition 1.4 ([2]). Let (X ,d) be a b-metric space and {xn} be a sequence in X .
(i): {xn} is b-convergent if there exists x∈ X such that d(xn,x)→ 0 as n→∞; In this case,

we write lim
n→∞

xn = x.

(ii): {xn} is called a b-Cauchy sequence if d(xn,xm)→ 0 as n,m→ ∞.
(iii): (X ,d) is called b-complete if every b-Cauchy sequence in X b-converges.

Proposition 1.5 ([2]). In a b-metric space (X ,d), the following assertions hold.
(p1): A b-convergent sequence has a unique limit.
(p2): Each b-convergent sequence is a b-Cauchy sequence.
(p3): In general, a b-metric is not continuous.

In 2015, Khojasteh et al. [8] introduced the concept of a simulation function and a Z -
contraction mapping. They also proved the existence and uniqueness theorems of fixed points
of Z -contraction mapping in metric spaces. Here, we review some basic knowledge related to
our investigation from [8].

Definition 1.6 ([8]). A function ζ : [0,∞)× [0,∞)→ R is called a simulation function if it
satisfies the following conditions:
(ζ 1) ζ (t,s)< s− t for all t,s > 0;
(ζ 2) ζ (0,0) = 0;
(ζ 3) if {tn} and {sn} are sequences in (0,∞) with lim

n→∞
tn = lim

n→∞
sn > 0, then limsup

n→∞

ζ (tn,sn)<

0.

We denote by Z the class of all simulation functions.

Example 1.7 ([8]). Let ζ1,ζ2,ζ3 : [0,∞)× [0,∞)→ R be defined by
(a) ζ1(t,s) =ψ(s)−φ(t) for all t,s∈ [0,∞), where ψ,φ : [0,∞)→ [0,∞) are two continuous

functions such that ψ(t) = φ(t) = 0 if and only if t = 0 and ψ(t)< t ≤ φ(t) for all t > 0;
(b) ζ2(t,s) = s− ϕ(s)− t for all t,s ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is a continuous

function such that ϕ(t) = 0 if and only if t = 0;
(c) ζ3(t,s) = s− f (t,s)

g(t,s) t for all t,s ∈ [0,∞), where f ,g : [0,∞)→ [0,∞) are two continuous
functions with respect to each variable such that f (t,s)> g(t,s) for all t,s > 0.

Then ζ1,ζ2, and ζ3 are simulation functions.

Definition 1.8 ([8]). Let (X ,d) be a metric space and ζ ∈Z . A mapping T : X → X is called
a Z -contraction with respect to ζ if ζ (d(T x,Ty),d(x,y))≥ 0 for all x,y ∈ X .
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Definition 1.9 ([4]). Let (X ,d) be a metric space. A mapping T : X → X is said to be asymp-
totically regular at point x ∈ X if lim

n→∞
d(T nx,T n+1x) = 0.

Recently, Hierro and Samet [9] introduced the class of extended simulation functions, which
is more large than the class of simulation functions. In addition, They obtained a ϕ-admissibility
result involving extended simulation functions for a new class of mappings with respect to a
lower semi-continuous function.

Definition 1.10. Recall that θ : [0,∞)× [0,∞)→ R is called an extended simulation function
(for short, an e-simulation function) if it satisfies the following conditions:

(θ1): for any sequences {αn}, {βn} ⊂ (0,∞),

lim
n→∞

αn,= lim
n→∞

βn = l ∈ (0,∞), βn > l ⇒ limsup
n→∞

θ(αn,βn)< 0;

(θ2): θ(α,β )< β −α for every α,β > 0;
(θ3): for any sequence {αn} ⊂ (0,∞),

lim
n→∞

αn = l ∈ [0,∞),θ(αn, l)≥ 0, ⇒ l = 0.

In this paper, we extend and generalize the notion in the result of Hierro and Samet, which
is es-simulation function in the setting of b-metric spaces. An example to illustrate our main
results is presented. As an application, we investigate the existence of a unique solution to
homotopy theory.

2. MAIN RESULTS

In this section, we introduce the new concept of an es-simulation function and use this concept
to prove the existence of a unique fixed point of generalized contraction mappings.

Definition 2.1. Let (X ,d) be a b-metric space with coefficient s≥ 1. θs : [0,∞)× [0,∞)→ R is
called an es-simulation function if it satisfies the following conditions:

(θs1): θs(α,β )< β −α for every α,β > 0;
(θs2): for any sequences {αn}, {βn} ⊂ (0,∞), we have

l ≤ lim
n→∞

αn ≤ lim
n→∞

βn ≤ sl, βn > l ∈ (0,∞) ⇒ limsup
n→∞

θs(sαn,βn)< 0;

Definition 2.2. Let (X ,d) be a b-metric space with coefficient s≥ 1. A mapping T : X → X is
called an es-simulation contraction if there exists an es-simulation function θs : [0,∞)× [0,∞)→
R such that

θs(sd(T x,Ty),d(x,y))≥ 0, ∀x,y ∈ X . (2.1)

Remark 2.3. By (θs1), if θ is an es-simulation function, then θs(sα,β ) < 0 for all α,β > 0.
Hence, if T is an es-simulation contraction with respect to θs, then sd(T x,Ty) < d(x,y) for all
distinct x,y ∈ X .

Theorem 2.4. Let (X ,d) be a complete b-metric space with coefficient s≥ 1, and let T : X→ X
be an es-simulation contraction with respect to θs. Then T has a unique fixed point.
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Proof. Let x be an arbitrary point in X . The proof is split into 5 steps.
Step I: Prove that T is an asymptotically regular mapping at x.
Suppose that T nx 6= T n−1x for all n ∈ N. By (2.1) and (θs1), we have

0 ≤ θ(sd(T n+1x,T nx),d(T nx,T n−1x))

< d(T nx,T n−1x)− sd(T n+1x,T nx)

< d(T nx,T n−1x)−d(T n+1x,T nx).

Therefore, {d(T nx,T n−1x)} is a monotonically decreasing sequence of nonnegative reals and
lim
n→∞

d(T nx,T n+1x) := r. Now, we have to prove that r = 0. Assume that r > 0. By using (θs2),
we have

0≤ limsup
n→∞

θs(sd(T n+1x,T nx),d(T nx,T n−1x))< 0,

which is a contradiction. Then r = 0.
On the other hand, we may assume that T px = T p−1x for some p∈N. Let y := T p−1x. Hence

Ty = y and
T ny = T n−1Ty = T n−1y = . . .= Ty = y

for all n ∈ N. For sufficient large n ∈ N, we have

d(T nx,T n+1x) = d(T n−p+1T p−1x,T n−p+2T p−1x) = d(T n−p+1y,T n−p+2y) = d(y,y) = 0.

Therefore, for each x ∈ X , we have

lim
n→∞

d(T nx,T n+1x) = 0. (2.2)

Step II: Prove that the Picard sequence {xn} defined by xn = T xn−1 for all n ∈ N.
Assume to contrary that {xn} is not bounded. Without loss of generality, we can assumes that

xn+p 6= xn for all n, p ∈N. Then, there exists a subsequence {xnk} such that n1 = 1 and for each
k ∈ N, nk+1 is the smallest number such that d(xnk+1,xnk) > 1 and d(xm,xnk) ≤ 1 for all m ∈ N
with nk ≤ m≤ nk+1−1. By the triangular inequality, we have

1 < d(xnk+1 ,xnk)≤ s[d(xnk+1,xnk+1−1)+d(xnk+1−1,xnk)]≤ sd(xnk+1,xnk+1−1)+ s.

Taking limit as k→ ∞ in above inequality and using (2.2), we have

1≤ liminf
k→∞

d(xnk+1,xnk)≤ limsup
k→∞

d(xnk+1,xnk)≤ s.

From Remark 2.3, we obtain that

sd(xnk+1,xnk)≤ d(xnk+1−1,xnk−1)≤ s[d(xnk+1−1,xnk)+d(xnk ,xnk−1)]≤ s+ sd(xnk ,xnk−1).

Letting k→ ∞ and using (2.2), we deduce that there exist

lim
k→∞

d(xnk+1 ,xnk) = 1 and lim
k→∞

d(xnk+1−1,xnk−1) = s. (2.3)

By condition (θs2) with αk = d(xnk+1,xnk), βk = d(xnk+1−1,xnk−1), and l = 1, we can see that

0≤ limsup
k→∞

θs(sd(xnk+1 ,xnk),d(xnk+1−1,xnk−1))< 0,

which is a contradiction. Hence {xn} is bounded.
Step III: Prove that {xn} is a b-Cauchy sequence.



ON NEW FIXED POINT RESULTS 5

Let Cn := sup{d(xi,x j) : i, j ≥ n}. Thus {Cn} is a monotonically non-increasing sequence of
nonnegative real numbers. Since {xn} is a bounded sequence, we have that {Cn} is a monotonic
bounded sequence and C ≥ 0 is such that lim

n→∞
Cn =C.

Next, we prove that C = 0. Let C > 0. There exists nk,mk ∈ N such that mk > nk ≥ k and

Ck−
1
k
< d(xmk ,xnk)≤Ck

for all k ∈ N and hence lim
k→∞

d(xmk ,xnk) = C. From Remark 2.3 and the definition of Cn, we

have sd(xmk ,xnk) ≤ d(xmk−1,xnk−1) ≤Ck−1. Taking limit as k→ ∞, and using lim
n→∞

Cn = C and

lim
k→∞

d(xmk ,xnk) =C, we have

sC ≤ liminf
k→∞

d(xmk−1,xnk−1)≤ limsup
k→∞

d(xmk−1,xnk−1)≤C.

which together with s > 1 observes that C = 0. In the same way, if s = 1, using (θs2) with
αk = d(xmk ,xnk), βk = d(xmk−1,xnk−1), and l =C, we have

0≤ limsup
n→∞

θs(sd(xmk ,xnk),d(xmk−1,xnk−1))< 0,

which is a contradiction. Then C = 0. Hence {xn} is a b-Cauchy sequence in X .
Step IV: Prove that T has a fixed point.
Since (X ,d) is a complete b-metric space, one sees that there exists u∈X such that lim

n→∞
xn = u,

that is, lim
n→∞

d(xn,u) = 0.
Next, we are going to claim that u is a fixed point of T by contradiction. Assume to contrary

that u is not a fixed point of T , that is, Tu 6= u. Hence, d(u,Tu) > 0. Note that there is n1 ∈ N
such that d(xn,u)< d(u,Tu) for all n≥ n1. In particular, xn 6= Tu for all n≥ n1, that is,

d(T xn,Tu) = d(xn+1,Tu)> 0 (2.4)

for all n≥ n1.
On the other hand, there exists n2 ∈ N such that xn = u for all n ≥ n2. Hence, there exists

a subsequence {xσ(n)} of {xn} such that xσ(n) 6= u for all n ∈ N. Let n3 ∈ N be such that
σ(n3) ≥ n1. Then, by (2.4), we have d(xσ(n),u) > 0 and d(T xσ(n),Tu) > 0 for all n ≥ n3. By
using (2.1) and (θs2), we have

0≤ θs(sd(T xσ(n),Tu),d(xσ(n),u))

< d(xσ(n),u)− sd(T xσ(n),Tu)

≤ d(xσ(n),u)−d(T xσ(n),Tu)

for all n ≥ n3, which means that 0 ≤ d(T xσ(n),Tu) < d(xσ(n),u) for all n ≥ n3. In particular,
we obtain xσ(n)+1 = T xσ(n)→ Tu. By the unicity of the limit, we get u = Tu, which is a con-
tradiction with the fact that we have supposed that Tu 6= u. Therefore, u is a fixed point of
T .

Step V: Prove that T has a unique fixed point.
Let u,v be two fixed points of T such that u 6= v. By using hypothesis (θs1) and inequality

(2.1), we obtain

0≤ θs(sd(Tu,T v),d(u,v)) = θs(sd(u,v),d(u,v))< d(u,v)− sd(u,v)≤ 0,

which is a contradiction. Therefore, u = v and T has a unique fixed point. �
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Example 2.5. Let X = [0,∞] and d : X×X → [0,∞) be defined by

d(x,y) =
{

(x+ y)2 if x 6= y;
0 if x = y

for all x,y ∈ X . Therefore, (X ,d) is a complete b-metric space with s = 2. Define T : X → X
and θs : [0,∞)× [0,∞)→ R by

T x =


1
2

if x = 2;
x

2
√

2
if x ∈ X\{2},

and

θs(α,β ) =

{
1−α if β = 0;
β −3α if β > 0,

for all α,β > 0.
Now, we demonstrate that θs is an es-simulation function but not simulation function. If

α = β = 0, then θs(α,β ) = θs(0,0) = 1 6= 0, which implies that (ζ 1) does not hold, so θs is
not a simulation function. For any α,β > 0, we have θs(α,β ) = β −3α < β −α. For any two
sequence {αn},{βn} ⊂ (0,∞) such that there exists l > 0 with

l ≤ lim
n→∞

αn ≤ lim
n→∞

βn ≤ 2l, βn > l for all n ∈ N,

we have

limsup
n→∞

θs(sαn,βn) = limsup
n→∞

(βn−6αn)≤ limsup
n→∞

βn−6liminf
n→∞

αn ≤ 2l−6l < 0.

Then (θs1) and (θs2) hold and hence θs is an es-simulation function.
Next, we divide the proof that T satisfies inequality (2.1) into 3 cases.
Case I: For x,y ∈ X with x = y, we have θs(sd(T x,Ty),d(x,y)) = θs(0,0) = 1≥ 0.
Case II: For x,y ∈ X\{2} with x 6= y, we obtain that

θs(sd(T x,Ty),d(x,y)) = θs

(
2
(

x
2
√

2
+

y
2
√

2

)2

,(x+ y)2

)

= (x+ y)2− 3
4
(x+ y)2

≥ 0.

Case III: For (x,y) ∈ X\{2}∪{2} or {2}∪X\{2}, we see that

θs(sd(T x,Ty),d(x,y)) = θs

(
2
(

x
2
√

2
+

1
2

)2

,(x+2)2

)

= (x+2)2− 3
4
(x+
√

2)2

≥ (x+2)2− 3
4
(x+2)2 ≥ 0.

Therefore, (2.1) is satisfied. Hence, all the conditions of Theorem (2.4) hold, so T has a unique
fixed point. In this case, 0 is a fixed point of T .

We have the following corollaries from Theorem 2.4.
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Corollary 2.6 ([8]). Let (X ,d) be a complete metric space, and let T : X → X be a Z -
contraction with respect to ζ . Then T has a unique fixed point.

3. APPLICATION TO HOMOTOPY

In this section, we study the existence of a unique solution to homotopy theory.

Theorem 3.1. Let (X ,d) be a b-metric space, U be an open subset of X, and U be a closed
subset of X such that U ⊆U. Suppose that H : U× [0,1]→ X with the following assumptions:

1. λ ∈ [0,1] and x 6= H(x,λ ) for all x ∈ ∂U (here ∂U denote the boundary of U ⊆ X);
2. there exists L ∈ [0,1) and M ≥ 0 such that

d(H(x,λ ),H(y,λ ))≤ Ld(x,y)

and
d(H(x,λ ),H(x,µ))≤M|λ −µ|

for all x,y ∈U and λ ,µ ∈ [0,1].
Then H(·,0) has a fixed point if and only if H(·,1) has a fixed point.

Proof. Let the set
A = {λ ∈ [0,1]|x = H(x,λ ) for some x ∈U}.

Since H(·,0) has a fixed point in U , we have 0 ∈ A and so A is a nonempty set.
Next, we demonstrate that A is both closed and open in [0,1]. From the connectedness, we

have that A = [0,1]. Consequently, H(·,1) has a fixed point in U .
Step I: First, we sprove that A is closed in [0,1]. Let {λn} ⊆ A with lim

n→∞
λn = λ ∈ [0,1]. We

prove that λ ∈ A. Since λn ∈ A for all n ∈ N, there exists xn ∈U such that xn = H(xn,λn). For
any n,m ∈ N, we have

d(xn,xm) = d(H(xn,λn),H(xm,λm))

≤ s[d(H(xn,λn),H(xn,λm))+d(H(xn,λm),H(xm,λm))]

≤ sM|λn−λm|+ sLd(xn,xm),

which implies that

d(xn,xm)≤
sM

1− sL
|λn−λm|. (3.1)

Taking limit as n→ ∞ in (3.1), we see that lim
n→∞

d(xn,xm) = 0. Then {xn} is a Cauchy sequence

in X . Since (X ,d) is a complete b-metric space, then there exists x ∈ X such that lim
n→∞

xn = x,

that is, lim
n→∞

d(xn,x) = 0. For any n ∈ N, we obtain that

d(xn,H(x,λ )) = d(H(xn,λn),H(x,λ ))

≤ s[d(H(xn,λn),H(xn,λ ))+d(H(xn,λ ),H(x,λ ))]

≤ sM|λn−λ |+ sLd(xn,x).

Taking limit as n→ ∞ in the inequality above, we have lim
n→∞

d(xn,H(x,λ )) = 0, which implies

that x = lim
n→∞

xn = H(x,λ ). Therefore, λ ∈ A and hence A is closed in [0,1].

Step II: We prove that A is open in [0,1].
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Let λ0 ∈ A. Then there exists x0 ∈U with x0 = H(x0,λ0). Since U is open, we have that there
exists r > 0 such that Bd

(
x0,

r
s

)
⊆U . Fix ε > 0 with ε < r(1−L)

sM , and let λ ∈ (λ0− ε,λ0 + ε).
For x ∈ Bd

(
x0,

r
s

)
, we have

d(H(x,λ ),x0) = d(H(x,λ ),H(x0,λ0))

≤ s[d(H(x,λ ),H(x,λ0))+d(H(x,λ0),H(x0,λ0))]

≤ sM|λ −λ0|+ sLd(x,x0)≤ r.

Then, for each fixed λ ∈ (λ0− ε,λ0 + ε), we obtain that

H(·,λ ) : Bd

(
x0,

r
s

)
→ Bd

(
x0,

r
s

)
.

Thus H(·,λ ) has a fixed point in U . From Assumption 1, we have that the fixed point must be
in U . Hence λ ∈ A for all λ ∈ (λ0−ε,λ0+ε), so A is open in [0,1]. For the reverse implication,
we use the same strategy and the desired conclusion follows immediately. �
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