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INFINITELY MANY HIGH ENERGY RADIAL SOLUTIONS FOR A
KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM

XIAN HU, YONG-YI LAN∗

School of Science, Jimei University, Xiamen 361021, China

Abstract. This paper is devoted to the following Kirchhoff-Schrödinger-Poisson system −
(

a+b
∫
R3 |∇u|2 dx

)
∆u+u+φu = f (u) in R3,

−∆φ = u2 in R3,

where a > 0 and b≥ 0 are two constants, and f ∈C(R,R). We obtain infinitely many high energy radial solutions
by using variational methods and the symmetric mountain pass lemma. The main difficulty in this paper is to
obtain the boundedness of the PS-sequence. We use an extra property related to the Pohozaev identity to overcome
the difficulty.
Keywords. High energy radial solutions; Kirchhoff-Schrödinger-Poisson system; Pohozaev identity; Symmetric
mountain pass lemma.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the following Kirchhoff-Schrödinger-Poisson system −
(

a+b
∫
R3 |∇u|2 dx

)
∆u+u+φu = f (u) in R3,

−∆φ = u2 in R3,
(1.1)

where a > 0 and b≥ 0 are two constants, and f ∈C(R,R) satisfies the following conditions:
(A1) f (t) is odd;
(A2) lim

t→0

f (t)
t = 0;

(A3) there exist q ∈ (3,5) such that lim
|t|→∞

f (t)
|t|q = 0;

(A4) there exist µ > 4 such that 1
µ

f (t)t ≥ F(t)> 0 for all t ∈R\{0}, where F(t) =
∫ t

0 f (s)ds.
We remark that these hypotheses were first studied by Berestycki and Lions in [4].
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When a = 1 and b = 0, system (1.1) reduces to the following Schrödinger-Poisson system{
−∆u+u+φu = f (u), in R3,
−∆φ = u2, in R3.

(1.2)

Recently, attention has been paid to problems like (1.2); see, e.g., [6, 7, 8, 9, 10, 12, 13, 14,
19, 21, 24, 26] and the references therein. For autonomous case, papers [8, 24] established the
existence of ground state solutions under some suitable conditions on f . In [10, 12, 19], it was
proved that the system has infinitely many sign-changing solutions by variational methods and
some analytical techniques. In [21], the authors obtained infinitely many high energy radial
solutions by borrowing the method introduced in [14]. For non-autonomous case, papers [6, 9,
26] proved the existence of solutions for a class of Schrödinger-Poisson system. When f (u) =
a(x)|u|p−2u+λk(x)u,4 < p < 6, Eq. (1.2) was widely considered by many researchers; see,
e.g., [7, 13]. For 2 < p < 4, Gan et al. [11] used the mountain pass lemma to prove multiple
positive solutions.

After Benci and Fortunato [2], system (1.1) has been extensively studied; see, e.g., [15,
16, 17, 20, 23, 25]. In [15, 23], the authors studied the existence of high energy solutions of

the Kirchhoff-Schrödinger problem in the following form −
(

a+b
∫
RN |∇u|2 dx

)
∆u+V (x)u =

f (x,u),x ∈ RN . Liu and He [16] obtained similar result in R3. By using constraint variational
methods and the quantitative deformation lemma, Zhang and Wang [25] obtained a least-energy
sign-changing (or nodal) solution to this problem. Using the Nehari manifold and variational
methods, Wang et al. [20] proved that this problem had a least energy nodal solution. Without
assuming the AR condition on f , Lu [17] proved the existence of positive radial solutions. They
used variational methods combining a monotonicity approach with a delicate cut-off technique.

Through the above analysis, there are few results on high energy radial solutions for system
(1.1). Since there are both nonlocal operators and nonlocal nonlinear terms, the study of system
(1.1) becomes more complicated. In this paper, the main difficulty is to obtain the boundedness
of PS-sequence. We apply the method in [14, 21] to overcome the difficulty.

The result of this paper is the following:

Theorem 1.1. Assum that f (t) satisfies (A1)-(A4). Then problem (1.1) possesses infinitely many
high energy radial solutions.

In the following, we introduce some notations (we refer to [1]):
•H1(R3) is the usual Sobolev space endowed with norm

‖u‖2 =
∫
R3
(a|∇u|2 +u2)dx.

•H1
r (R3) is the subspace of H1(R3) containing only the radial functions.

• For any 1≤ s < ∞,Ls(R3) is the usual Lebesgue space with the norm ‖u‖s
s =

∫
R3 |u|s dx.

•D1,2(R3) is completion of C∞
0 (R3) with respect to the norm ‖u‖2

D1,2(R3)
=
∫
R3 |∇u|2 dx.

•S is optimal Sobolev embedding constant, denoted by

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx

(
∫
R3 |u|6 dx)

1
3
.
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By the Lax-Milgram theorem, for any u∈H1
r (R3), there exists an unique φu ∈D1,2(R3) such

that −∆φu = u2, we refer to [3]. Furthermore,

φu =
1

4π

∫
R3

u2(y)
|x− y|

dy. (1.3)

Substituting (1.3) into system (1.1), we can rewrite (1.1) in the following equivalent equation

−
(

a+b
∫
R3
|∇u|2 dx

)
∆u+u+φuu = f (u) in R3. (1.4)

The corresponding energy functional of problem (1.4) is defined on H1
r (R3) by

I(u) =
1
2

∫
R3
(a|∇u|2 +u2)dx+

b
4

(∫
R3
|∇u|2 dx

)2

+
1
4

∫
R3

φuu2 dx−
∫
R3

F(u)dx. (1.5)

Obviously, energy functional I(u) is well defined and is of C1 with derivative given by

〈I′(u),ψ〉 =
∫
R3
(a∇u ·∇ψ +uψ)dx+b

∫
R3
|∇u|2 dx

∫
R3

∇u∇ψ dx+
∫
R3

φuuψ dx

−
∫
R3

f (u)ψ dx, (1.6)

for any ψ ∈H1
r (R3). From (A2) and (A3), for any ε > 0, there exist Cε > 0,q ∈ (3,5) such that

| f (t)| ≤ ε

2
|t|+Cε |t|q.

Then we have

I(u) ≥ 1
2

∫
R3
(a|∇u|2 +u2)dx+

b
4

(∫
R3
|∇u|2 dx

)2

+
1
4

∫
R3

φuu2 dx− ε

2

∫
R3
|u|2 dx

− Cε

∫
R3
|u|q+1 dx

≥ 1
2
(1− ε)

∫
R3
(a|∇u|2 +u2)dx−Cε

∫
R3
|u|q+1 dx. (1.7)

Taking ε = 1
2 , we define

J(u) =
1
4

∫
R3
(a|∇u|2 +u2)dx−C

∫
R3
|u|q+1 dx. (1.8)

Clearly, J is well defined and is of C1 with derivative given by

〈J′(u),v〉= 1
2

∫
R3
(a∇u ·∇v+uv)dx−C(q+1)

∫
R3
|u|q−1uvdx. (1.9)

for any v ∈ H1
r (R3). And, there is

I(u)≥ J(u) for all u ∈ H1
r (R3). (1.10)

Now, as in [8], we define a functional:

P(u) =
a
2

∫
R3
|∇u|2 dx+

3
2

∫
R3

u2 dx+
b
2

(∫
R3
|∇u|2 dx

)2

+
5
4

∫
R3

φuu2 dx−3
∫
R3

F(u)dx,

which is the Pohozaev functional associated with (1.1). When u is a weak solution to (1.1), then
P(u) = 0.
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The paper is organized as follow. In Section 1, we introduced the main purpose of this paper.
The proof of the Theorem 1 will be given in Section 2. We denote various positive constants as
c,ci,C or Ci (i = 0,1,2,3, ...) for convenience.

2. PROOF OF THEOREM 1

Proof of Theorem 1..1 In this section we divide this proof into four steps.
Step 1: Symmetric mountain pass geometry structure. Assume (A1)-(A4) hold, then (1)

there exist ρ > 0 and α > 0 such that

I(u)≥ J(u)≥ 0, if‖u‖ ≤ ρ,

and I(u)≥ J(u)≥ α, if‖u‖= ρ.

(2) for any n ∈ N, there exists an odd continuous mapping τ0n : Sn−1 = {δ = (δ1, ...,δn) ∈
Rn; |δ |= 1}→ H1

r (R3) such that

J(τ0n(δ ))≤ I(τ0n(δ ))< 0, for allδ ∈ Sn−1,

which shows that I(u) and J(u) have symmetric mountain pass geometry structure.
(1) In fact, from (1.8) and Sobolev inequality, we obtain

J(u) =
1
4

∫
R3
(a|∇u|2 +u2)dx−C

∫
R3
|u|q+1 dx

≥ 1
4
‖u‖2−C1‖u‖q+1

=
1
4
‖u‖2(1−4C1‖u‖q−1).

Letting ρ = ( 1
8C1

)
1

q−1 > 0, we have

J(u)≥ 1
8

ρ
2 = α > 0, if ‖u‖= ρ.

Obviously, J(u)≥ 0 if ‖u‖ ≤ ρ.
(2) Following [5, Theorem 10], for any n ∈ N, we can find an odd continuous mapping

ζn : Sn−1→ H1
r (R3) such that ζn(δ ) 6= 0 for all δ ∈ Sn−1. (A4) implies

lim
t→∞

F(t)
|t|4

=+∞. (2.1)

Then, by (1.5), Fatou’s lemma and (2.1), one sees that there is

lim
t→∞

I(tζn(δ ))

t4

=
b
4

(∫
R3
|∇ζn(δ )|2 dx

)2

+
1
4

∫
R3

φζn(δ )ζ
2
n (δ )dx− lim

t→∞

1
t4

∫
R3

F(tζn(δ ))dx

≤ b
4

(∫
R3
|∇ζn(δ )|2 dx

)2

+
1
4

∫
R3

φζn(δ )ζ
2
n (δ )dx−

∫
R3

lim
t→∞

F(tζn(δ ))

|tζn(δ )|4
|ζn(δ )|4 dx

< 0.

So we take τ0n(δ )(x) = tζn(δ )(x) : Sn−1→ H1
r (R3) for t large such that I(τ0n)(δ )< 0.
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Step 2: Critical value. I(u) and J(u) have a symmetric mountain pass geometry, and we can
define symmetric mountain pass values. Here we follow [18, Chapter 9] essentially and set for
n ∈ N

an = inf
τ∈Γn

max
δ∈En

I(τ(δ )), bn = inf
τ∈Γn

max
δ∈En

J(τ(δ )), n ∈ N. (2.2)

Here En = {δ = (δ1, ...,δn) ∈ Rn : |δ | ≤ 1} and a family of mapping Γn is defined by

Γn = {τ ∈C(En,H1
r (R3)) : τ(δ ) = τ(−δ ), ∀δ ∈ En;τ(δ ) = τ0n(δ ), ∀δ ∈ ∂En}, (2.3)

where τ0n(δ ) : ∂En = Sn−1→ H1
r (R3) is given in Step 1.

Step 3: The (PS) condition. We define the map Φ : R×H1
r (R3)→ H1

r (R3) by Φ(θ ,v)(x) =
v(e−θ x). For θ ∈ R,v ∈ H1

r (R3), we remark Ĩ = I ◦Φ, and have

Ĩ(θ ,v) = I(Φ(θ ,v))

=
aeθ

2

∫
R3
|∇v|2 dx+

e3θ

2

∫
R3

v2 dx+
be2θ

4

(∫
R3
|∇v|2 dx

)2

+
e5θ

4

∫
R3

φvv2 dx

− e3θ

∫
R3

F(v)dx.

Obviously, by Step 1, Ĩ also has a symmetric mountain pass geometry. Therefor, we define

ãn = inf
τ̃∈Γ̃n

max
δ∈En

Ĩ(τ̃(δ )), (2.4)

where

Γ̃n = {τ̃ ∈C(En,H1
r (R3)) : τ̃(δ ) = (θ(δ ),ξ (δ ))}satisfies

{(θ(−δ ),ξ (−δ )) = (θ(δ ),−ξ (δ )), ∀δ ∈ En;(θ(δ ),ξ (δ )) = (0,τ0n(δ )), ∀δ ∈ ∂En}.

For any τ ∈ Γn, we can see that (0,τ(δ )) ∈ Γ̃n and we may regard Γn ⊂ Γ̃n. Thus, by the
definitions of an, ãn and Ĩ(0,v) = I(v), we have ãn ≤ an.

Next, for given τ̃(δ ) = (θ(δ ),ξ (δ )) ∈ Γ̃n, we set τ(δ ) = ξ (δ )(e−θ(δ )x). We can verify that
τ(δ ) ∈ Γn by Ĩ(θ ,v(x)) = I(v(e−θ x)), I(τ(δ )) = Ĩ(τ̃(δ )) for all δ ∈ En. Then we also have
ãn ≥ an, so an = ãn. From the definition of an, for any j ∈ N, there exists τ j ∈ Γn such that

max
δ∈En

I(τ j(δ ))≤ an +
1
j
.

Since ãn = an, τ̃ j(δ ) = (0,τ j(δ )) ∈ Γ̃n satisfies maxδ∈En Ĩ(τ̃ j(δ )) ≤ ãn +
1
j . By [22, Theorem

2.8], we can find a (θ j,v j) ∈ R×H1
r (R3) such that

distH1
r (R3)((θ j,v j), τ̃ j(En))≤

2√
j
, (2.5)

Ĩ(θ j,v j) ∈ [an−
1
j
,an +

1
j
], (2.6)

‖DĨ(θ j,v j)‖H1
r (R3) ≤

2√
j
. (2.7)
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Since τ̃ j(En) ⊂ {0}×H1
r (R3), (2.5) implies |θ j| ≤ 2√

j , that is, θ j → 0. In other words, there

exists sequence (θ j,v j) ∈ R×H1
r (R3) such that

Ĩ(θ j,v j)→ an, (2.8)

‖Ĩ′(θ j,v j)‖H1
r (R3)→ 0, (2.9)

θ j→ 0. (2.10)

Letting u j = Φ(θ j,v j), we have I(u j)→ an by (2.8). For any (h,w) ∈ R×H1
r (R3),

〈Ĩ′(θ j,v j),(h,w)〉= 〈I′(u j),Φ(θ j,w)〉+H(u j)h→ 0,

where

H(u j) = 2〈I′(u j),u j〉−P(u j)

=
3a
2

∫
R3
|∇u j|2 dx+

1
2

∫
R3

u2
j dx+

3b
2

(∫
R3
|∇u j|2 dx

)2

+
3
4

∫
R3

φu ju
2
j dx

+
∫
R3
(3F(u j)−2 f (u j)u j)dx.

Letting h = 1,w = 0, we get H(u j)→ 0. For any v ∈ H1
r (R3), we set w(x) = v(eθ jx),h = 0 and

have

〈I′(u j),v〉= 〈Ĩ′(θ j,v j),(0,w)〉= o(1)‖v(eθ jx)‖= o(1)‖v‖.

Thus I′(u j)→ 0 and

I(u j)→ an > 0, (2.11)

I′(u j)→ 0, (2.12)

H ′(u j)→ 0. (2.13)

From (2.11), (2.13), and (A4), we obtain

an ≥ I(u j)−
1
µ
〈I′(u j),u j〉

= (
1
2
− 1

µ
)‖u j‖2 +b(

1
4
− 1

µ
)

(∫
R3
|∇u j|2 dx

)2

+(
1
4
− 1

µ
)
∫
R3

φu ju
2
j dx

+
∫
R3
(

1
µ

f (u j)u j−F(u j))dx

≥ µ−2
2µ
‖u j‖2.

So, {u(n)j } is bounded in H1
r (R3). Going if necessary to a subsequence, still denoted by {u(n)j },

we may assume that

u j ⇀ u in H1
r (R3),

u j→ u in Lp(R3), where 2 < p < 6,

u j(x)→ u(x) a.e. x ∈ R3. (2.14)
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As I′(u j)→ 0 and u j→ u in Lp(R3), we have

I′(u j)(u j−u)→ 0,

I′(u)(u j−u)→ 0. (2.15)

Then, as j→ ∞,

o(1) = 〈I′(u j)− I′(u),u j−u〉

= ‖u j−u‖2 +
∫
R3
(φu ju j−φuu)(u j−u)dx+

∫
R3
( f (u j)− f (u))(u j−u)dx

+ b
∫
R3
|∇u j|2 dx

∫
R3

∇u j ·∇(u j−u)dx−b
∫
R3
|∇u|2 dx

∫
R3

∇u ·∇(u j−u)dx

= ‖u j−u‖2 +
∫
R3
(φu ju j−φuu)(u j−u)dx+

∫
R3
( f (u j)− f (u))(u j−u)dx

+ b(
∫
R3
|∇u j|2 dx−

∫
R3
|∇u|2 dx)

∫
R3

∇u ·∇(u j−u)dx

+ b
∫
R3
|∇u j|2 dx

∫
R3
|∇(u j−u)|2 dx. (2.16)

It is easy to see that

b
∫
R3
|∇u j|2 dx

∫
R3
|∇(u j−u)|2 dx≥ 0. (2.17)

From (2.14), we have u j ⇀ u in D1,2(R3). Then it follows that

b(
∫
R3
|∇u j|2 dx−

∫
R3
|∇u|2 dx)

∫
R3

∇u ·∇(u j−u)dx→ 0. (2.18)

Thanks to the definition of φu j , we have

‖φu j‖
2
D1,2 =

∫
R3
|∇φu j |

2 dx =
∫
R3

φu j(u j)
2 dx≤ ‖φu j‖L6‖u j‖2

L
12
5
≤ S−

1
2‖u j‖2

L
12
5
‖φu j‖D1,2,

which implies that ‖φu j‖D1,2 ≤ S−
1
2‖u j‖2

L
12
5
. Combining the Hölder inequality and the Sobolev

inequality, there is∣∣∣∣∫R3
φu ju j(u j−u)dx

∣∣∣∣ ≤ ‖φu j‖L6‖u j‖
L

12
5
‖u j−u‖

L
12
5

≤ S−
1
2‖φu j‖D1,2‖u j‖

L
12
5
‖u j−u‖

L
12
5

≤ S−1‖u j‖3

L
12
5
‖u j−u‖

L
12
5
→ 0, j→ ∞.

Similarly,
∣∣∫

R3 φuu(u j−u)dx
∣∣→ 0 as j→ ∞. Then we obtain∫

R3
(φu ju j−φuu)(u j−u)dx→ 0 as j→ ∞. (2.19)
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From the Holder inequality, one has∣∣∣∣∫R3
( f (u j)− f (u))(u j−u)dx

∣∣∣∣ ≤ ∫
R3
(ε|u j|+Cε |u j|q + ε|u|+Cε |u|q)(u j−u)dx

≤ 2ε[‖u j‖2
L2 +‖u‖2

L2 ]+Cε [‖u j|qLq+1 +‖u‖
q
Lq+1]‖u j−u‖Lq+1

≤ c(ε +Cε‖u j−u‖Lq+1)→ 0, j→ ∞. (2.20)

Consequently, by (2.16)-(2.20), we obtain ‖u j−u‖→ 0. Thus u j→ u in H1
r (R3) and u satisfies

I(u) = an and I′(u) = 0.

So, an is a critical value of I(u).
Step 4: Infinitely many high energy radial solutions. By (1) of Step 1, (1.10), and (2.2), there

is an ≥ bn ≥ α > 0. In order to prove an→ ∞ as n→ ∞, we prove that bn is a critical value of
J(u) and bn→ ∞ as n→ ∞. Let {u j} ⊂ H1

r (R3) be a sequence satisfying

J(u j)→ bn,J′(u j)→ 0.

First, we prove that {u j} is bounded. Observe that

bn = J(u j)−
1

q+1
〈J′(u j),u j〉 ≥

(
1
4
− 1

2(q+1)

)
‖u j‖2.

So, {u j} is bounded in H1
r (R3). Going if necessary to a subsequence, still denoted by {u j}, we

may assume that

u j ⇀ u0 in H1
r (R3),

u j→ u0 in Lp(R3), where 2 < p < 6,

u j(x)→ u0(x) a.e. x ∈ R3. (2.21)

As J′(u j)→ 0 and u j→ u0 in Lp(R3), we have

J′(u j)(u j−u0)→ 0,

J′(u0)(u j−u0)→ 0. (2.22)

Then, as j→ ∞,

o(1) = 〈J′(u j)− J′(u0),u j−u0〉

=
1
4
‖u j−u0‖2−C(q+1)

∫
R3
(|u j|q−|u0|q)(u j−u0)dx. (2.23)

Due to (2.21), we have u j ⇀ u in D1,2(R3). Then it follows that

〈u0,u j−u0〉=
∫
R3

∇u0 ·∇(u j−u0)dx→ 0.

From (2.21), we have u j ⇀ u0 in H1
r (R3). Then it follows that

〈u0,u j−u0〉=
∫
R3

∇u0 ·∇(u j−u0)+u0 · (u j−u0)dx→ 0,

so ∫
R3

u0 · (u j−u0)dx→ 0,
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and ∫
R3
|u0|q−1u0(u j−u0)dx→ 0. (2.24)

Using the Holder inequality, we have∣∣∣∣∫R3
|u j|q(u j−u0)dx

∣∣∣∣≤ ∫R3

∣∣|u j|q(u j−u0)
∣∣ dx≤ ‖u j‖q

Lq+1‖u j−u0‖Lq+1 → 0. (2.25)

Combining (2.23)-(2.25), we conclude ‖u j−u0‖→ 0, which implies u j→ u0 in H1
r (R3). There-

fore, J(u) satisfies Palais-Smale condition, and then bn is a critical value of J(u). We apply an
argument in [18, Chapter 9]. We set

Γn = {h(Em\Y ) : h ∈ Γm,m≥ n,Y ∈ Bm and genus(Y )≤ m−n}.

where Bm is the family of closed sets A ∈ Rm\{0} such that −A = A and genus(A) is the Kras-
noselski’s genus of A. We define another sequence of minimax values by

cn = inf
A∈Γn

max
u∈A

J(u).

Then we have bn ≥ cn for all n ∈ N,c1 ≤ c2 ≤ ... ≤ cn ≤ cn+1 ≤ ·· · . Moreover, since J(u)
satisfies the Palais-Smale condition, by modifying the argument in [18, Chapter 9], we have
cn → ∞ as n→ ∞. Thus bn → ∞ as n→ ∞. Then we obtain an → ∞ as n→ ∞. The proof is
completed.
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