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A NEW INERTIAL ITERATIVE ALGORITHM FOR SPLIT NULL POINT AND
COMMON FIXED POINT PROBLEMS
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Abstract. In this paper, we present a new iterative scheme with a self-adaptive step size for finding
a common solution of the split null point and common fixed point problem for an infinite family of
multivalued demicontractive mappings between a Banach space and a Hilbert space. We demonstrate
strong convergence result with a self-adaptive step size without a priori estimate of the norm of the linear
operator under some suitable conditions. A numerical result is also presented to support our main results.
Keywords. Common fixed point; Multivalued demicontractive mapping; Split null point; Self-adaptive
step size; Strong convergence.

1. INTRODUCTION

Recently, fixed point methods have been investigated for various convex optimization prob-
lems; see, e.g., [2, 4, 9, 17, 18] and the references therein. The common future of these
problems is we can transfer them into a fixed point problem via their resolvents; see, e.g.,
[6, 13, 15, 16, 19] and the references therein. Let H1 and H2 be two real Hilbert spaces,
A : H1→ 2H1 and B : H2→ 2H2 be multivalued mappings, and T : H1→H2 be a bounded
linear operator. Byrne et al. [3] considered the following Split Null Point Problem (SNPP)

x∗ ∈ A−10
⋂

T−1(B−10), x∗ ∈H1. (1.1)

For solving SNPP (1.1) with two maximal monotone operators A and B in Hilbert spaces, they
proposed and studied the following algorithms{

x0 ∈H1,
xn+1 = JA

µ (xn +λT ∗(JB
µ − I)T xn),

(1.2)

and {
x0 ∈H1,
xn+1 = αnx0 +(1−αn)JA

µ (xn +λT ∗(JB
µ − I)T xn),

(1.3)
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where µ is a positive real constant , T ∗ is the adjoint of T , λ ∈ (0, 2
L), L = ‖T ∗T‖, and JA

µ

and JB
µ are the resolvent operators of A and B, respectively. Under some certain conditions,

they obtained a weak convergence result for algorithm (1.2) and a strong convergence result for
algorithm (1.3).

In 2017, Eslamian et al. [7] introduced an algorithm for solving the Split Common Null Point
Problem (SCNPP) and Fixed Point Problem (FPP) between a Banach space E and a Hilbert
space H . The proposed algorithm is as follows:

x1 ∈H is chosen arbitrarily,
zn,i = xn−λnT ∗JE(T xn−QBi

µnT xn),

un = βn,0xn +∑
m
i=1 βn,iJ

Ai
λn

zn,i,

yn = δn,0un +∑
m
i=1 δn,iSiun,

xn+1 = αnγ f (yn)+(I−αnD)yn,

(1.4)

where the step size λn satisfies 0 < λn‖T‖2 < 2. Under some conditions, they proved that
the sequence generated above converges strongly to a common solution of the SCNPP with
two finite families of maximal monotone operators {Ai}m

i=1 and {Bi}m
i=1, and FPP with a finite

family of single-valued demicontractive mappings {Si}m
i=1.

In 2019, Pachara and Suantai [14] considered the follwing Split Common Fixed Point Prob-
lem (SCFPP):

f ind x ∈ ∩∞
i=1Fix(Si) such that T x ∈ ∩∞

i=1Fix(Ui),

where T : H1 → H2 is a bounded linear operator. To solve the SCFPP, they proposed the
following algorithm in Hilbert spaces:

yn = xn +∑
n
i=1 βn,iλT ∗(ωn,i−T xn),

un = αn,0yn +∑
n
i=1 αn,izn,i,

xn+1 = ξn f (xn)+(1−ξn)un,
(1.5)

where zn,i ∈ Siyn, ωn,i ∈Ui(T xn) and λ ∈ (0, 1−ḱ
‖T‖2 ). They established the strong convergence of

algorithm (1.5).
We notice that the step size, λn(or λ ), of the above algorithms requires prior knowledge of

the operator norm, ‖T‖, which is not easy to implement because they require computation of
the operator norm, which is a difficult task.

To avoid this computation, in 2021, Wang et al. [25] introduced an algorithm for solving
(SNPP) and (FPP) for multivalued demicontractive mappings on a Hilbert space H . This
algorithm can be implemented easily since it has no need to know a priori information about
bounded linear operators. The proposed algorithm is as follows:

yn = JB1
λn
(xn− γnT ∗(I− JB2

λn
)T xn),

un = (1−δn)yn +δn ∑
N
i=1 wiz

(i)
n ,

xn+1 = αnτ f (xn)+(1−αnD)un, n≥ 1,
(1.6)

where z(i)n ∈ Siyn and

γn = ρn
gn(xn)

Fn(xn)+Gn(xn)
,



A NEW INERTIAL ITERATIVE ALGORITHM FOR SPLIT NULL POINT 3

where gn(x) = 1
2‖(I−JB2

λn
)T x‖2, Gn(x) = ‖T ∗(I−JB2

λn
)T x‖2, and Fn(x) = ‖(I−JB1

λn
)x‖2. Under

appropriate conditions, they obtained a strong convergence result without a priori estimate of
the norm of the linear operator.

In this paper, inspired and motivated by the works mentioned above, we propose a new al-
gorithm to solve the split null point and common fixed point problem between a Banach space
and a Hilbert space. We prove the strong convergence of the sequence generated by our algo-
rithm. A numerical experiment is also provided to demonstrate the efficiency of our proposed
algorithm.

2. PRELIMINARIES

In this section, we recall some known definitions and lemmas which will be used for our
convergence analysis in the sequel.

Let R be the set of real numbers and N∗ the set of positive integers. Let H be a real Hilbert
space with inner product 〈·, ·〉 and norm ‖·‖. Let C be a convex, closed, and nonempty subset
of H . We denote the weak and strong convergence of a sequence {xn} to a point x ∈H by
xn ⇀ x and xn→ x, respectively. The nearest point (metric) projection of H onto C is denoted
by PC, ‖x−PCx‖ ≤ ‖x− y‖ for all x ∈H and y ∈C. PC is called the metric projection of H
onto C. It is known that PC is firmly nonexpansive, i.e., ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉, for
all x,y ∈H . Moreover PCx ∈C,〈x−PCx,y−PCx〉 ≤ 0 for all x ∈H , y ∈C.

We denote by CB(H ) the family of all bounded and closed subsets of H . The Pompeiu
Hausdorff metric on CB(H ) is defined by H(A,B) = max{supx∈A d(x,B),supy∈B d(A,y)} for
all A,B ∈CB(H ), where d(x,B) = infb∈B ‖x−b‖.

Let T : H → 2H be a multivalued mapping. An element p ∈H is called a fixed point of
T i f p ∈ T p. The set of all fixed points of T is denoted by Fix(T ). We say that T satisfies the
endpoint condition if T p = {p} for all p ∈ Fix(T ).

Definition 2.1. Let S : H →CB(H ) be a multivalued. Mapping I−S is said to be demiclosed
at zero if, for any sequence {xn} ⊂H which converges weakly to q and the sequence {xn−un}
converges strongly to 0, where un ∈ Sxn, q ∈ Fix(S).

Definition 2.2. A multivalued mapping T : H →CB(H ) is said to be
(i) a contraction if there exists k ∈ (0,1) such that

H(T x,Ty)≤ k‖x− y‖ ∀ x,y ∈H ;

(ii) nonexpansive if
H(T x,Ty)≤ ‖x− y‖ ∀ x,y ∈H ;

(iii) quasi-nonexpansive if Fix(T ) 6= /0 and

H(T x,T p)≤ ‖x− p‖ ∀ x ∈H , p ∈ Fix(T );

(iv) k-demicontractive [8] if Fix(T ) 6= /0 and there exists k ∈ [0,1) such that

H(T x,T p)2 ≤ ‖x− p‖2 + kd(x,T x)2 ∀ x ∈H , p ∈ Fix(T ).

It is known that every multivalued quasi-nonexpansive mapping T with Fix(T ) 6= /0 is demi-
contractive, but not all multivalued demicontractive mappings are quasi-nonexpansive.

Example 2.3. Let H = R. For each i ∈ N∗, define
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Six =


[
− 2i

i+1x , − 3i
i+1x

]
, i f x≤ 0;[

− 3i
i+1x , − 2i

i+1x
]
, i f x > 0.

Then Si : R→CB(R) is a multivalued demicontractive mapping, which is not quasi-nonexpansive.
Moreover, I−Si is demiclosed at zero.

Proof. It is easy to see that Fix(Si) = {0}. For each 0 6= x ∈ R, H(Six,Si0)2 = |− 3i
i+1

x−0|2 =

|x−0|2 +(
9i2

(i+1)2 −1)|x|2 = |x−0|2 + 8i2−2i−1
i2 +2i+1

|x|2.
Clearly, Si is not quasi-nonexpansive. We also have

d(x,Six)2 = |x− (− 2i
i+1

x)|2 = (
3i+1
i+1

)2|x|2 = 9i2 +6i+1
i2 +2i+1

|x|2.

Therefore,

H(Six,Si0)2 = |x−0|2 +(
8i2−2i−1
9i2 +6i+1

)d(x,Six)2.

Hence Si is demicontractive with a constant ki =
8i2−2i−1
9i2+6i+1 ∈ (0,1). For any sequence {xn} ⊂ R,

which converges weakly to q and the sequence {xn− un} converges strongly to 0, where un ∈
Sixn, xn→ q and un→ q. Also

− 2i
i+1

xn ≤ un ≤−
3i

i+1
xn

or
− 3i

i+1
xn ≤ un ≤−

2i
i+1

xn,

so
− 2i

i+1
q≤ q≤− 3i

i+1
q

or
− 3i

i+1
q≤ q≤− 2i

i+1
q.

Therefore, q = 0 ∈ Fix(Si). Hence I−Si is demiclosed at zero. �

Let E be a real Banach space with norm ‖ · ‖, and let E∗ be the dual space of E. We denote
the value of y∗ ∈ E∗ at x ∈ E by 〈x,y∗〉. When {xn} is a sequence in E, we denote the strong
convergence of {xn} to x ∈ E by xn→ x and the weak convergence by xn ⇀ x. The modulus δE
of convexity of E is defined by

δE(ϕ) = inf{1− ‖x+ y‖
2

: ‖x‖= 1 = ‖y‖,‖x− y‖ ≥ ϕ}.

E is called uniformly convex if δE(ϕ)> 0 for any ϕ > 0. A uniformly convex Banach space is
strictly convex and reflexive. The normalized duality mapping J : E→ 2E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 = ‖x∗‖2} f or every x ∈ E.

Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable if for each
x,y ∈U, the limit

lim
t→0

‖x+ ty‖−‖x‖
t
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exists. In this case, E is called smooth. It is known that E is smooth if and only if J is a single-
valued mapping of E into E∗. It is also known that E is reflexive if and only if J is surjective,
and E is strictly convex and reflexive Banach space, then J is a single-valued bijection and in
this case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗.

Let E be a uniformly convex and smooth Banach space and B : E → 2E∗ be a maximal
monotone operator. Now, we consider the metric resolvent of B,

QB
µ = (I +µJ−1B)−1, µ > 0.

It is known that the operator QB
µ is firmly nonexpansive and the fixed points of the operator

QB
µ are the null points of B. The resolvent plays an essential role in the approximation theory

for zero points of maximal monotone operators in Banach spaces. According to the work of
Aoyama et al. [1], we have the following property

〈QB
µx− x∗,J(x−QB

µx)〉 ≥ 0, x ∈ E, x∗ ∈ B−1(0), (2.1)

if E is a real Hilbert space, then

〈JB
µ x− x∗,x− JB

µ x〉 ≥ 0, x ∈ E, x∗ ∈ B−1(0),

where JB
µ = (I + µB)−1 is the general resolvent, and B−1(0) = {z ∈ E : 0 ∈ Bz} is the set of

null points of B. It is well known that B−1(0) is convex and closed (see [21]). A Hilbert space
H satisfies the Opial’s condition, i.e., for any sequence {xn} with {xn}⇀ x, the following
inequality holds

liminf
n→∞

‖xn− x‖< liminf
n→∞

‖xn− y‖,

for every y∈H with y 6= x, which is also equivalent to limsupn→∞ ‖xn−x‖< limsupn→∞ ‖xn−
y‖.

Definition 2.4. Let E be a Banach space and B be a mapping of E into 2E∗ . The effective
domain of B denoted by dom(B) is given as dom(B) = {x ∈ E : Bx 6= /0}. Let B : E → 2E∗ be a
multivalued operator on E. Then

(i) The graph G(B) is defined by G(B) := {(x,u) ∈ E×E : u ∈ B(x)}.
(ii) The operator B is said to be monotone if 〈x− y,u− v〉 ≥ 0 for all x,y ∈ dom(B), u ∈

Bx and v ∈ By.
(iii) A monotone operator B on E is said to be maximal if its graph is not properly contained

in the graph of any other monotone operator on E.

Definition 2.5. A bounded linear operator G on H is called strongly positive if there exists a
constant γ̄ > 0 such that 〈Gx,x〉 ≥ γ̄‖x‖2, ∀ x ∈H .

Lemma 2.6. [12] Let D be a self-adjoint strongly positive bounded linear operator on a Hilbert
space H with coefficient γ̄ > 0 and 0 < µ ≤ ‖D‖−1. Then ‖I−µD‖ ≤ 1−µγ̄ .

Lemma 2.7. [22] For x,y∈H , the following statements hold: (i) ‖x+y‖2 ≤ ‖x‖2+2〈y,x+y〉;
(ii) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2.

Lemma 2.8. [5] Let H be a real Hilbert space, xi ∈H (1≤ i≤ m) and {αi}m
i=1 ⊂ (0,1) with

∑
m
i=1 αi = 1. Then

‖
m

∑
i=1

αixi‖2 =
m

∑
i=1

αi‖xi‖2−
m

∑
i, j=1,i 6= j

αiα j‖xi− x j‖2.
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Lemma 2.9. [24] Let C be a convex and closed subset of a real Hilbert space H and T : C→
CB(C) be a multivalued k-demicontractive mapping. Then,

(i) Fix(T ) is closed;
(ii) If T satisfies the endpoint condition, then Fix(T ) is convex.

Lemma 2.10. [26] Let {an} be a sequence of nonnegative real numbers satisfying the condition
an+1 ≤ (1− γn)an + γnσn, n≥ 0, where {γn} and {σn} are sequences of real numbers such that
(i) {γn} ⊂ [0,1] and ∑

∞
n=0 γn = ∞;

(ii) limsupn→∞ σn ≤ 0 or ∑
∞
n=1 γn|σn|< ∞.

Then, limn→∞ an = 0.

Lemma 2.11. [11] Let {an}, {cn} ⊂ R+, {σn} ⊂ (0,1) and {bn} ⊂ R be sequences such that
an+1 ≤ (1−σn)an + bn + cn for all n ≥ 0. Assume ∑

∞
n=0 |cn| < ∞. Then the following results

hold:
(i) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
(ii) If ∑

∞
n=0 σn = ∞ and limsupn→∞

bn
σn
≤ 0, then limn→∞ an = 0.

Lemma 2.12. [10] Let {Γn} be a real sequence which does not decrease at infinity in the
sense that there exists a subsequence {Γni} of {Γn} with Γni < Γni+1 for all i ∈ N∗. Define the
sequence {φ(n)}n≥n0 of integers by φ(n) = max{ j ≤ n0 : Γ j < Γ j+1}, where n0 ∈ N∗ such that
{ j ≤ n0 : Γ j < Γ j+1} 6= /0. Then, the following hold:

(i) φ(n0)≤ φ(n0 +1)≤ . . .and φ(n)→ ∞;
(ii) Γφ(n) ≤ Γφ(n)+1 and Γn ≤ Γφ(n)+1 ∀ n≥ n0.

3. MAIN RESULTS

In this section, we present our algorithm and discuss its strong convergence.
We make the following assumptions:
(A1) Let H be a Hilbert sapce and E be a uniformly convex and smooth Banach space. Let

T : H → E be a linear and bounded operator such that T 6= 0 and T ∗ is a adjoint operator of T .
(A2) For all i ∈ N∗, assume that Si : H → CB(H ) is a multivalued ki-demicontractive

mapping such that I−Si is demiclosed at zero and Si satisfies the endpoint condition.
(A3) Let A : H → 2H and B : E→ 2E∗ be two maximal monotone operators, and let JA

φn
be

the resolvent of A for liminfn→∞ φn > 0, and QB
ηn

be the metric resolvent of B for liminfn→∞ ηn >
0.
(A4) Let D : H → H be a strongly positive, bounded linear self-adjoint operator with

coefficient γ̄ > 0 such that ‖D‖≤ 1 and f : H →H be a contraction with coefficient ρ ∈ (0,1)
and 0 < γ < γ̄

ρ
.

(A5) Assume that Ω = A−1(0)∩T−1(B−10)∩
⋂

∞
i=1 Fix(Si) 6= /0.

Algorithm 3.1. Let {δn,i} be real sequences in (0,1) for i = 0,1,2, · · · , n≥ 2. Assume that {xn}
is a sequence generated iteratively by x1, x2 ∈H and

wn = xn +θn(xn− xn−1),
zn = wn−λnT ∗JE(I−QB

ηn
)Twn,

un = JA
φn

zn,

yn = δn,0un +∑
n
i=1 δn,ivn,i,

xn+1 = αnγ f (xn)+(I−αnD)yn,

(3.1)
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where vn,i ∈ Siun, and θn is defined by

θn =

{
min

{
ξn

‖xn−xn−1‖ ,
n−1

n+η−1

}
, i f xn 6= xn−1,

n−1
n+η−1 , otherwise,

where η ≥ 3 and the step size

λn = τn
gn(wn)

Gn(wn)+Fn(wn)
,

where gn(wn) =
1
2‖JE(I−QB

ηn
)Twn‖2,Gn(wn) = ‖T ∗JE(I−QB

ηn
)Twn‖2 and Fn(wn) = ‖(I−

JA
φn
)wn‖2. If Fn(wn) = Gn(wn) = 0, then wn = zn = un, i.e. 3.1 reduces to

wn = xn +θn(xn− xn−1),
yn = δn,0wn +∑

n
i=1 δn,ivn,i,

xn+1 = αnγ f (xn)+(I−αnD)yn.

Theorem 3.2. Let the assumptions (A1)-(A5) be satisfied and the following conditions hold:
(C1) For all n≥ 2, ∑

n
i=0 δn,i = 1 and liminfn→∞(δn,0− k)δn,i > 0, i ∈ N∗, where

k = sup{ki : i ∈ N∗}< 1;
(C2) {αn} ⊂ (0,min{1, 1

γ̄
, 1

γ̄−γρ
}), limn→∞αn = 0, ∑

∞
n=0 αn = ∞ and limn→∞

ξn
αn

= 0;
(C3) liminfn→∞ τn > 0, liminfn→∞ τn(4− τn)> 0.
Then, the sequence {xn} generated by Algorithm 3.1 converges strongly to a point p∈Ω, which
is the unique solution to the following variational inequality problem:

〈(γ f −D)p,q− p〉 ≤ 0, ∀ q ∈Ω. (3.2)

Remark 3.3. From the definition of {θn} and the condition (C2), we have

lim
n→∞

θn‖xn− xn−1‖= 0 and lim
n→∞

θn

αn
‖xn− xn−1‖= 0.

Proof. According to the conditions (C1)-(C3), some inequalities in the following proof hold
when n is sufficiently large.

Step 1. We show that problem (3.2) has a unique solution p ∈Ω.
Since A and B are maximally monotone and T is bounded and linear, we reach the conclusion

that A−1(0) and T−1(B−10) are convex and closed. From Lemma 2.9, we obtain Fix(Si) (∀ i ∈
N∗) is convex and closed. Hence Ω is convex and closed. (3.2) is equivalent to the following
formula

〈(γ f +(I−D))p− p,q− p〉 ≤ 0, ∀ q ∈Ω,

so we just need to prove that exists a unique p∈Ω such that p=PΩ(γ f +(I−D))p, i.e.PΩ(γ f +
(I−D)) has a unique fixed point. For all x,y ∈H , by Lemma 2.6, we have

‖PΩ(γ f + I−D)x−PΩ(γ f + I−D)y‖
≤‖(γ f + I−D)x− (γ f + I−D)y‖
≤γ‖ f x− f y‖+‖(I−D)x− (I−D)y‖
≤(1− (γ̄− γρ))‖x− y‖.
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Hence, PΩ(γ f + I−D) is a contraction on H . By the Banach contraction principle, there exists
a unique element p ∈Ω such that p = PΩ(γ f +(I−D))p.

Step 2. We prove that {xn} is bounded.
Since p ∈Ω, we have Si p = {p}, p = JA

φn
p, and T p = QB

ηn
T p for all i ∈ N∗. From (3.1), we

have

‖zn− p‖2 = ‖wn− p‖2−2λn〈Twn−T p,JE(I−QB
ηn
)Twn〉+λ

2
n ‖T ∗JE(I−QB

ηn
)Twn‖2. (3.3)

From (2.1), we see that 〈QB
ηn

Twn− T p,JE(Twn−QB
ηn

Twn)〉 ≥ 0, T p ∈ B−1(0). Hence, we
obtain

〈Twn−T p,JE(I−QB
ηn
)Twn〉

=‖JE(I−QB
ηn
)Twn‖2 + 〈QB

ηn
Twn−T p,JE(I−QB

ηn
)Twn〉

≥‖JE(I−QB
ηn
)Twn‖2. (3.4)

By (3.3), (3.4), and condition (C3), we have

‖zn− p‖2 ≤‖wn− p‖2−2λn‖JE(I−QB
ηn
)Twn‖2 +λ

2
n ‖T ∗JE(I−QB

ηn
)Twn‖2

=‖wn− p‖2−4τn
g2

n(wn)

Fn(wn)+Gn(wn)
+ τ

2
n

g2
n(wn)

(Fn(wn)+Gn(wn))2 Gn(wn)

≤‖wn− p‖2− τn(4− τn)
g2

n(wn)

Fn(wn)+Gn(wn)
(3.5)

≤‖wn− p‖2. (3.6)

From (3.1) and (3.6), we have

‖un− p‖2 =‖JA
φn

zn− JA
φn

p‖2

≤‖zn− p‖2 (3.7)

≤‖wn− p‖2. (3.8)

By (3.1), Lemma 2.8, and condition (C1), we have

‖yn− p‖2 ≤δn,0‖un− p‖2 +
n

∑
i=1

δn,i‖vn,i− p‖2−
n

∑
i=1

δn,0δn,i‖vn,i−un‖2

≤δn,0‖un− p‖2 +
n

∑
i=1

δn,iH(Siun,Si p)2−
n

∑
i=1

δn,0δn,i‖vn,i−un‖2

≤δn,0‖un− p‖2 +
n

∑
i=1

δn,i(‖un− p‖2 + kid(un,Siun)
2)−

n

∑
i=1

δn,0δn,i‖vn,i−un‖2

≤δn,0‖un− p‖2 +
n

∑
i=1

δn,i(‖un− p‖2 + k‖un− vn,i‖2)−
n

∑
i=1

δn,0δn,i‖vn,i−un‖2

=‖un− p‖2−
n

∑
i=1

δn,i(δn,0− k)‖vn,i−un‖2 (3.9)

≤‖un− p‖2. (3.10)
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It follows from (3.1) that

‖wn− p‖ ≤‖xn− p‖+θn‖xn− xn−1‖= ‖xn− p‖+αn
θn

αn
‖xn− xn−1‖.

By Remark 3.3, limn→∞
θn
αn
‖xn− xn−1‖ = 0, it follows that there exists a constant M∗1 > 0 such

that
θn

αn
‖xn− xn−1‖ ≤M∗1

for all n ≥ 2. Hence, we obtain ‖wn− p‖ ≤ ‖xn− p‖+αnM∗1 , which together with By (3.1),
(3.8), and (3.10) yields

‖xn+1− p‖ ≤αn‖γ f (xn)−Dp‖+(1−αnγ̄)‖un− p‖
≤αn‖γ f (xn)− γ f (p)‖+αn‖γ f (p)−Dp‖+(1−αnγ̄)‖wn− p‖
≤αnγρ‖xn− p‖+αn‖γ f (p)−Dp‖+(1−αnγ̄)(‖xn− p‖+αnM∗1)

=(1−αn(γ̄− γρ))‖xn− p‖+αn(γ̄− γρ)(
‖γ f (p)−Dp‖

γ̄− γρ
+

(1−αnγ̄)

γ̄− γρ
M∗1)

≤(1−αn(γ̄− γρ))‖xn− p‖+αn(γ̄− γρ)M∗2 ,

where

M∗2 = sup
n≥2
{‖γ f (p)−Dp‖

γ̄− γρ
+

(1−αnγ̄)

γ̄− γρ
M∗1}.

Set an = ‖xn− p‖, bn = αn(γ̄−γρ)M∗2 , cn = 0, and σn = αn(γ̄−γρ). By Lemma 2.11, we have
that {‖xn− p‖} is bounded. Hence, {xn} is bounded. Additionally, {wn}, {zn}, {un}, and {yn}
are all bounded.

Step 3. We prove that sequence {xn} converges strongly to p.
Using (3.1) and Lemma 2.7, we have

‖xn+1− p‖2 ≤(1−αnγ̄)2‖yn− p‖2 +2αn〈γ f (xn)−Dp,xn+1− p〉

=(1−αnγ̄)2‖yn− p‖2 +2αnγ〈 f (xn)− f (p),xn+1− p〉
+2αn〈γ f (p)−Dp,xn+1− p〉, (3.11)

and

‖wn− p‖2 =‖xn− p+θn(xn− xn−1)‖2

=‖xn− p‖2 +θ
2
n ‖xn− xn−1‖2 +2θn〈xn− p,xn− xn−1〉

≤‖xn− p‖2 +θn‖xn− xn−1‖(θn‖xn− xn−1‖+2‖xn− p‖)

≤‖xn− p‖2 +3M∗3θn‖xn− xn−1‖

=‖xn− p‖2 +3M∗3αn
θn

αn
‖xn− xn−1‖, (3.12)

where

M∗3 = sup
n≥2
{‖xn− p‖,θn‖xn− xn−1‖}.
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Combining (3.5), (3.7), (3.9), (3.11), and (3.12) we obtain

‖xn+1− p‖2

≤ (1−αnγ̄)2(‖un− p‖2−
n

∑
i=1

δn,i(δn,0− k)‖vn,i−un‖2)

+2αnγ〈 f (xn)− f (p),xn+1− p〉+2αn〈γ f (p)−Dp,xn+1− p〉

≤ (1−αnγ̄)2(‖zn− p‖2−
n

∑
i=1

δn,i(δn,0− k)‖vn,i−un‖2)

+2αnγρ‖xn− p‖‖xn+1− p‖+2αn〈γ f (p)−Dp,xn+1− p〉

≤ (1−αnγ̄)2(‖wn− p‖2− τn(4− τn)
g2

n(wn)

Fn(wn)+Gn(wn)

−
n

∑
i=1

δn,i(δn,0− k)‖vn,i−un‖2)

+αnγρ(‖xn− p‖2 +‖xn+1− p‖2)+2αn〈γ f (p)−Dp,xn+1− p〉

≤ (1−αnγ̄)2‖xn− p‖2 +3M∗3(1−αnγ̄)2
αn

θn

αn
‖xn− xn−1‖

+αnγρ(‖xn− p‖2 +‖xn+1− p‖2)

− (1−αnγ̄)2
τn(4− τn)

g2
n(wn)

Fn(wn)+Gn(wn)
− (1−αnγ̄)2

n

∑
i=1

δn,i(δn,0− k)‖un− vn,i‖2

+2αn〈γ f (p)−Dp,xn+1− p〉.

Therefore,

‖xn+1− p‖2

≤ 1−2αnγ̄ +(αnγ̄)2 +αnγρ

1−αnγρ
‖xn− p‖2 +3M∗3

(1−αnγ̄)2

1−αnγρ
αn

θn

αn
‖xn− xn−1‖

− (1−αnγ̄)2

1−αnγρ
τn(4− τn)

g2
n(wn)

Fn(wn)+Gn(wn)
− (1−αnγ̄)2

1−αnγρ

n

∑
i=1

δn,i(δn,0− k)‖un− vn,i‖2

+
2αn

1−αnγρ
〈γ f (p)−Dp,xn+1− p〉

≤ (1− 2αn(γ̄− γρ)

1−αnγρ
)‖xn− p‖2 +

2αn(γ̄− γρ)

1−αnγρ
(

(αnγ̄)2

2αn(γ̄− γρ)
M∗

+3M∗3
(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
‖xn− xn−1‖

+
1

γ̄− γρ
〈γ f (p)−Dp,xn+1− p〉)− (1−αnγ̄)2

1−αnγρ
τn(4− τn)

g2
n(wn)

Fn(wn)+Gn(wn)

− (1−αnγ̄)2

1−αnγρ

n

∑
i=1

δn,i(δn,0− k)‖un− vn,i‖2,
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where M∗ = supn≥2{‖xn− p‖2}. From conditions (C1)-(C3), we obtain

‖xn+1− p‖2 ≤(1− 2αn(γ̄− γρ)

1−αnγρ
)‖xn− p‖2 +

2αn(γ̄− γρ)

1−αnγρ
(

(αnγ̄)2

2αn(γ̄− γρ)
M∗

+3M∗3
(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
‖xn− xn−1‖+

1
γ̄− γρ

〈γ f (p)−Dp,xn+1− p〉) (3.13)

and

(1−αnγ̄)2

1−αnγρ
τn(4− τn)

g2
n(wn)

Fn(wn)+Gn(wn)
+

(1−αnγ̄)2

1−αnγρ
δn,i(δn,0− k)‖un− vn,i‖2

≤(1−αnγ̄)2

1−αnγρ
τn(4− τn)

g2
n(wn)

Fn(wn)+Gn(wn)
+

(1−αnγ̄)2

1−αnγρ

n

∑
i=1

δn,i(δn,0− k)‖un− vn,i‖2

≤(1− 2αn(γ̄− γρ)

1−αnγρ
)‖xn− p‖2−‖xn+1− p‖2 +

2αn(γ̄− γρ)

1−αnγρ
(

(αnγ̄)2

2αn(γ̄− γρ)
M∗

+3M∗3
(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
‖xn− xn−1‖+

1
γ̄− γρ

〈γ f (p)−Dp,xn+1− p〉), (3.14)

for all 1≤ i≤ n.
Now we divide the rest of the proof into two cases.
Case 1. Let {‖xn− p‖} be monotonically decreasing. Then {‖xn− p‖} is convergent. Since
{xn} is bounded, by (3.14) and conditions (C1)-(C3), we get

lim
n→∞

g2
n(wn)

Fn(wn)+Gn(wn)
= 0. (3.15)

Since {wn} is bounded, T is bounded linear, and JA
φn

and QB
ηn

are firmly nonexpansive, there
exists a constant c > 0 such that Fn(wn)≤ c and Gn(wn)≤ c. Thus, from (3.15), we have

0≤ g2
n(wn)

2c
≤ g2

n(wn)

Fn(wn)+Gn(wn)
→ 0 (n→ ∞),

which implies that

lim
n→∞

gn(wn) = lim
n→∞

1
2
‖JE(I−QB

ηn
)Twn‖2 = 0. (3.16)

Similarly, from conditions (C1)-(C3) and (3.14), we obtain

lim
n→∞

n

∑
i=1

δn,i‖vn,i−un‖= 0 (3.17)

and

lim
n→∞
‖vn,i−un‖= 0 (i ∈ N∗). (3.18)
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It follows from (3.1), (3.15), (3.17), and Remark 3.3 that

‖zn−wn‖
=‖λnT ∗JE(I−QB

ηn
)Twn‖

=‖τn
gn(wn)

Fn(wn)+Gn(wn)
T ∗JE(I−QB

ηn
)Twn‖

=τn
gn(wn)

‖T ∗JE(I−QB
ηn)Twn‖2 +‖(I− JA

φn
)wn‖2‖T

∗JE(I−QB
ηn
)Twn‖

≤τn
gn(wn)

‖T ∗JE(I−QB
ηn)Twn‖2 +‖(I− JA

φn
)wn‖2

√
‖T ∗JE(I−QB

ηn)Twn‖2 +‖(I− JA
φn
)wn‖2

=τn
gn(wn)√

‖T ∗JE(I−QB
ηn)Twn‖2 +‖(I− JA

φn
)wn‖2

=τn
gn(wn)√

Fn(wn)+Gn(wn)
→ 0 as n→ ∞, (3.19)

lim
n→∞
‖yn−un‖= lim

n→∞

n

∑
i=1

δn,i‖vn,i−un‖= 0, (3.20)

and

lim
n→∞
‖wn− xn‖= lim

n→∞
θn‖xn− xn−1‖= 0. (3.21)

Since JA
φn

is firmly nonexpansive, from (3.1) and Lemma 2.7, we obtain

‖un− p‖2 =‖JA
φn
(wn−λnT ∗JE(I−QB

ηn
)Twn)− JA

φn
p‖2

≤〈JA
φn
(wn−λnT ∗JE(I−QB

ηn
)Twn)− JA

φn
p,wn−λnT ∗JE(I−QB

ηn
)Twn− p〉

=〈un− p,wn−λnT ∗JE(I−QB
ηn
)Twn− p〉

=
1
2
{‖un− p‖2 +‖wn−λnT ∗JE(I−QB

ηn
)Twn− p‖2

−‖un−wn +λnT ∗JE(I−QB
ηn
)Twn‖2}

=
1
2
{‖un− p‖2 +‖wn− p‖2 +‖λnT ∗JE(I−QB

ηn
)Twn‖2

−2〈wn− p,λnT ∗JE(I−QB
ηn
)Twn〉−‖un−wn‖2−‖λnT ∗JE(I−QB

ηn
)Twn‖2

−2〈un−wn,λnT ∗JE(I−QB
ηn
)Twn〉}

≤1
2
{‖un− p‖2 +‖wn− p‖2−‖un−wn‖2 +2‖un− p‖‖λnT ∗JE(I−QB

ηn
)Twn‖},

which implies that

‖un− p‖2 ≤‖wn− p‖2−‖un−wn‖2 +2‖un− p‖‖λnT ∗JE(I−QB
ηn
)Twn‖. (3.22)
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Combining (3.1), (3.10), (3.12), and (3.22), we arrive at

‖xn+1− p‖2

=‖αn(γ f (xn)−Dp)+(I−αnD)(yn− p)‖2

≤(1−αnγ̄)2‖un− p‖2 +α
2
n‖γ f (xn)−Dp‖2 +2αn(1−αnγ̄)‖γ f (xn)−Dp‖‖yn− p‖

≤(1−αnγ̄)2(‖wn− p‖2−‖un−wn‖2 +2‖un− p‖‖λnT ∗JE(I−QB
ηn
)Twn‖)

+α
2
n‖γ f (xn)−Dp‖2 +2αn(1−αnγ̄)‖γ f (xn)−Dp‖‖yn− p‖

≤(1−αnγ̄)2(‖xn− p‖2 +3M∗3αn
θn

αn
‖xn− xn+1‖−‖un−wn‖2

+2‖un− p‖‖λnT ∗JE(I−QB
ηn
)Twn‖)+α

2
n‖γ f (xn)−Dp‖2

+2αn(1−αnγ̄)‖γ f (xn)−Dp‖‖yn− p‖. (3.23)

Then from (3.19), (3.23), condition (C2) and Remark 3.3, we have

(1−αnγ̄)2‖un−wn‖2

≤(1−αnγ̄)2‖xn− p‖2−‖xn+1− p‖2 +(1−αnγ̄)23M∗3αn
θn

αn
‖xn− xn+1‖

+2(1−αnγ̄)2‖un− p‖‖λnT ∗JE(I−QB
ηn
)Twn‖+α

2
n‖γ f (xn)−Dp‖2

+2αn(1−αnγ̄)‖γ f (xn)−Dp‖‖yn− p‖

=(1−αnγ̄)2‖xn− p‖2−‖xn+1− p‖2 +(1−αnγ̄)23M∗3αn
θn

αn
‖xn− xn+1‖

+2(1−αnγ̄)2‖un− p‖‖zn−wn‖+α
2
n‖γ f (xn)−Dp‖2

+2αn(1−αnγ̄)‖γ f (xn)−Dp‖‖yn− p‖→ 0, as n→ ∞.

Therefore, limn→∞ ‖un−wn‖= 0. Also, from (3.20) and (3.21), we have

‖yn− xn‖→ 0, ‖un− xn‖→ 0, ‖yn−wn‖→ 0, as n→ ∞. (3.24)

By (3.24) and condition (C2) , we obtain

‖xn+1− xn‖=‖αn(γ f (xn)−Dxn)+(I−αnD)(yn− xn)‖
≤αn‖γ f (xn)−Dxn‖+(1−αnγ̄)‖yn− xn‖→ 0, as n→ ∞. (3.25)

Since {xn} is bounded, there exists a subsequence {xn j} such that xn j ⇀ x∗ and

limsup
n→∞

〈γ f (p)−Dp,xn− p〉= lim
j→∞
〈γ f (p)−Dp,xn j − p〉= 〈γ f (p)−Dp,x∗− p〉. (3.26)

It easily follows from (3.24) that wn j ⇀ x∗, un j ⇀ x∗, yn j ⇀ x∗. Since I− Si (∀ i ∈ N∗) is
demiclosed at zero and un j ⇀ x∗, from (3.18), we obtain x∗ ∈

⋂
∞
i=1 Fix(Si). Since T is bounded

and linear, we get Twn j ⇀ T x∗. From (3.16) we have QB
ηn j

Twn j ⇀ T x∗. Since QB
ηn j

is the metric

resolvent of B, then we have that
JE(I−QB

ηn j
)Twn j

ηn j
∈ BQB

ηn j
Twn j . By the monotonicity of B, it

follows that

〈v−
JE(I−QB

ηn j
)Twn j

ηn j

,u−QB
ηn j

Twn j〉 ≥ 0



14 Y. ZHANG, Y. WANG

⇒ 〈v,u−QB
ηn j

Twn j〉 ≥−〈
JE(I−QB

ηn j
)Twn j

ηn j

,QB
ηn j

Twn j −u〉

≥−
‖JE(I−QB

ηn j
)Twn j‖

ηn j

‖QB
ηn j

Twn j −u‖,

for all (u,v) ∈G(B). From (3.16), liminf j→∞ ηn j > 0, and QB
ηn j

Twn j ⇀ T x∗, one has 〈v−0,u−
T x∗〉 ≥ 0. Since B is maximally monotone, we have that T x∗ ∈ B−1(0), which concludes that
x∗ ∈ T−1(B−1(0)). Observe that

‖un j − JA
φn j

un j‖ ≤‖un j − JA
φn j

wn j‖+‖J
A
φn j

wn j − JA
φn j

un j‖

≤‖JA
φn j

zn j − JA
φn j

wn j‖+‖wn j −un j‖

≤‖zn j −wn j‖+‖wn j −un j‖. (3.27)

By (3.19) and (3.27), we see that ‖un j − JA
φn j

un j‖→ 0 as j→ ∞. Again, we have

‖un j − JA
φn j

x∗‖ ≤‖un j − JA
φn j

un j‖+‖J
A
φn j

un j − JA
φn j

x∗‖

≤‖un j − JA
φn j

un j‖+‖un j − x∗‖.

Hence, we have limsup j→∞ ‖un j − JA
φn j

x∗‖ ≤ limsup j→∞ ‖un j − x∗‖. It follows from the Opial

property of the Hilbert space H that JA
φn j

x∗ = x∗. Therefore, x∗ ∈ A−1(0), which implies that

x∗ ∈Ω. On account of (3.2), (3.25), and (3.26), we obtain that

limsup
n→∞

〈γ f (p)−Dp,xn+1− p〉
γ̄− γρ

≤ limsup
n→∞

〈γ f (p)−Dp,xn− p〉
γ̄− γρ

=
〈γ f (p)−Dp,x∗− p〉

γ̄− γρ
≤ 0.

(3.28)

Therefore, from (3.13), (3.28), condition (C2), Remark 3.3, and Lemma 2.10, one sees that {xn}
converges strongly to p.

Case 2. Let {‖xn− p‖} be not monotonically decreasing. Put Γn = ‖xn− p‖2 and suppose that
there exists a subsequence {Γki}⊂ {Γn} such that Γki < Γki+1 for all i∈N∗. Let ψ : N∗→N∗ be
a mapping for all n≥ n0 (for some n0 large enough) by ψ(n) = max{k ≤ n : Γk < Γk+1}. Then
we have from Lemma 2.12 that Γψ(n) ≤ Γψ(n)+1 and Γn ≤ Γψ(n)+1, {ψ(n)} is a nondecreasing
sequence that ψ(n)→∞ as n→∞. From (3.14), conditions (C2) and (C3), and Γψ(n)≤ Γψ(n)+1,
we obtain

lim
n→∞

g2
ψ(n)(wψ(n))

Fψ(n)(wψ(n))+Gψ(n)(wψ(n))
= 0.

Furthermore, similar to the proof of (3.16), (3.17), and (3.18) we see that

lim
n→∞

gψ(n)(wψ(n)) = lim
n→∞

1
2
‖JE(I−QB

ηψ(n)
)Twψ(n)‖2 = 0,

lim
n→∞

ψ(n)

∑
i=1

δψ(n),i‖vψ(n),i−uψ(n)‖= 0,
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and

lim
n→∞
‖vψ(n),i−uψ(n)‖= 0 (i ∈ N∗).

Due to Γψ(n) ≤ Γψ(n)+1, we also have limn→∞ ‖xψ(n)+1− xψ(n)‖ = 0. According to Γψ(n) ≤
Γψ(n)+1, similar to the proof of Case 1, we obtain

1
γ̄− γρ

〈γ f (p)−Dp,x∗− p〉 ≤ 0. (3.29)

From (3.13), we have

Γψ(n)+1 ≤(1−
2αψ(n)(γ̄− γρ)

1−αψ(n)γρ
)Γψ(n)+

2αψ(n)(γ̄− γρ)

1−αψ(n)γρ
(

(αψ(n)γ̄)
2

2αψ(n)(γ̄− γρ)
M∗

+3M∗3
(1−αψ(n)γ̄)

2

2(γ̄− γρ)

θψ(n)

αψ(n)
‖xψ(n)− xψ(n)−1‖+

1
γ̄− γρ

〈γ f (p)−Dp,xψ(n)+1− p〉).

(3.30)

Set

σψ(n) =
(αψ(n)γ̄)

2

2αψ(n)(γ̄− γρ)
M∗+3M∗3

(1−αψ(n)γ̄)
2

2(γ̄− γρ)

θψ(n)

αψ(n)
‖xψ(n)− xψ(n)−1‖

+
1

γ̄− γρ
〈γ f (p)−Dp,xψ(n)+1− p〉. (3.31)

By Condition (C2), Remark 3.3, (3.29) and (3.31), we conclude that

limsup
n→∞

σψ(n) = limsup
n→∞

(αψ(n)γ̄)
2

2αψ(n)(γ̄− γρ)
M∗+ limsup

n→∞

3M∗3
(1−αψ(n)γ̄)

2

2(γ̄− γρ)

θψ(n)

αψ(n)
‖xψ(n)− xψ(n)−1‖

+ limsup
n→∞

1
γ̄− γρ

〈γ f (p)−Dp,xψ(n)+1− p〉

≤ 1
γ̄− γρ

〈γ f (p)−Dp,x∗− p〉

≤0.

Thus, from (3.30) and (3.31), we have

2αψ(n)(γ̄− γρ)

1−αψ(n)γρ
Γψ(n) ≤ Γψ(n)−Γψ(n)+1 +

2αψ(n)(γ̄− γρ)

1−αψ(n)γρ
σψ(n) ≤

2αψ(n)(γ̄− γρ)

1−αψ(n)γρ
σψ(n),

which implies that Γψ(n) ≤ σψ(n). Since limsupn→∞ σψ(n) ≤ 0, we obtain limn→∞ Γψ(n) = 0.
From (3.29), (3.30), Remark 3.3, and Condition (C2), we have limn→∞ Γψ(n)+1 = 0, and then
limn→∞ Γn = 0 due to Γn ≤ Γψ(n)+1, i.e. the sequence {xn} converges strongly to p. This com-
pletes the proof. �

Remark 3.4. Theorem 3.2 extends and develops [25, Theorem 3.2] from the following acpects:
(a) Inertia techniques are used in our proposed algorithm;
(b) A Hilbert space is extended to a Banach space;
(c) A finite family of multivalued demicontractive mappings is extended to an infinite family
of multivalued demicontractive mappings.
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4. NUMERICAL EXAMPLE

In this section, we present a numerical example to demonstrate the efficiency of our algo-
rithm.

Example 4.1. Let H = R, E = R3. For ∀ i ∈ N∗, we define the multivalued mapping Si : R→
CB(R) as follows:

Six =


[
− 2i

i+1x , − 3i
i+1x

]
, i f x≤ 0;[

− 3i
i+1x , − 2i

i+1x
]
, i f x > 0.

We also define a bounded linear operator T : R→ R3 by T x := (2x,−5x,3x)T . For each i =
0,1,2, · · · , n≥ 2, let

δn,i =


1− n

n+1
(
1− k

2
)∑

n
j=1

1
2 j , i f i = 0,

n
n+1

(
1− k

2
)

1
2i , i f 1≤ i≤ n,

0, i f i > n.

Let A : R→ 2R be defined by

A(x) =
{
{u ∈ R : z2 + xz−2x2 ≥ (z− x)u, ∀ z ∈ [−9,3]}, i f x ∈ [−9,3],
/0, otherwise.

Define a maximal monotone mapping B : R3→ 2R3
by B := ∂g, where g : R3→ R is a function

defined by g(x) = 1
2‖Px‖2, where

P =

(
−6 1 5
2 −7 8

)
.

Define a strongly positive bounded linear operator D by Dx = x with a constant γ̄ = 1 and a
contraction f by f (x) = 1

8x with ρ = 1
8 . Furthermore, take γ = 2 which satisfies 0 < γ < γ̄

ρ
.Take

η = 3, ξn =
1

(n+1)2 , φn = ηn =
8n

n+1 , τn =
3n

n+1 , and αn =
1

n+1 , ∀ n≥ 2. Then the sequence {xn}
generated by Algorithm 3.1 converges strongly to 0.

Solution: From Example 2.3, for all i∈N∗, we know taht Si is a multivalued ki-demicontractive
mapping with ki =

8i2−2i−1
9i2+6i+1 ∈ (0,1). Thus k = supi∈N∗ki = supi∈N∗

8i2−2i−1
9i2+6i+1 = 8

9 < 1, and I−Si
is demiclosed at zero. By [20, Theorem 4.2], A is maximal monotone. The resolvents of A and B
can be written by JA

φn
x= x

3φn+1 and QB
ηn

z=(I+ηnPT P)−1z, respectively, for all x∈R and z∈R3.
From the definition of T , we can obtain T ∗ = T T = (2,−5,3). Then, scheme 3.1 reduces to the
following form: 

wn = xn +θn(xn− xn−1),

zn = wn− 3n
n+1

gn(wn)
Fn(wn)+Gn(wn)

T ∗[I− (I +ηnPT P)−1]Twn,

un =
1

3φn+1zn,

yn = [1− n
18(n+1)(1−

1
2n )]un +

n
18(n+1) ∑

n
i=1

1
2i vn,i,

xn+1 =
1

4(n+1)xn +
n

n+1yn,

(4.1)

for all n≥ 2, where

gn(wn) =
1
2
‖(I− (I +ηnPT P)−1)Twn‖2,
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Gn(wn) = ‖T ∗(I− (I +ηnPT P)−1)Twn‖2,

Fn(wn) = ‖wn−
wn

3φn +1
‖2,

and

vn,i =


− 3i

i+1un, i f un ≤ 0,

− 2i
i+1un, i f un > 0.

Hence, from Theorem 3.2, the sequence {xn} generated by (4.1) converges strongly to 0.

We choose different initials to demonstrates the efficiency of our algorithm.
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(a) Initial values x1 = 2, x2 = 1.5
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(b) Initial values x1 = 9, x2 = 7

FIGURE 1. Numerical results for Example 4.1

TABLE 1. Computational results for Example 4.1

n xn xn
n = 1 2 9
n = 2 1.5 7
n = 3 0.007867 0.072633
n = 4 0.006303 -0.002082
n = 5 -0.006643 -0.002082
n = 6 0.006752 0.006173
n = 7 -0.006650 -0.006657
n = 8 0.007012 0.006907
n = 9 -0.006828 0.007094
n = 10 0.007237 -0.006964
n = 11 -0.007070 0.007349
n = 12 0.007442 -0.007158
n = 13 -0.007232 0.007520
n = 14 0.007586 -0.007294
n = 15 0.007520 0.007642
n = 16 0.007691 -0.007393
n = 17 -0.007434 0.007734
n = 18 0.007772 -0.007470
n = 19 -0.007502 0.007806
n = 20 0.007836 -0.007530
n = 21 -0.007555 0.007863

Thus, we can obtain that the sequence {xn} which is generated by (4.1) converges to 0∈Ω =
{0}. And we can see both Figure 1 and Table 1 that the {xn} converges to 0. Therefore, the
iterative algorithm of Theorem 3.2 is well defined and efficient.
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