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TURING INSTABILITY FOR A SPACE AND TIME DISCRETE DELAY
LOTKA-VOLTERRA COMPETITIVE MODEL WITH PERIODIC BOUNDARY

CONDITIONS
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Abstract. In this paper, a space and time discrete delay Lotka-Volterra competitive model with periodic
boundary conditions is considered. The stability analysis is investigated for the model by means of
Schur theorem, and the Turing instability conditions are obtained. Numerical simulations are performed
to verify the theoretical results.
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1. INTRODUCTION

According to the theory of evolution, competition within a species and between species plays
a fundamental and crucial role in natural selection. The study of competitive mechanism is im-
portant to understand the behavior and survival mechanism of natural selection. Lotka-Volterra
competition systems are hot and celebrated ecological models that can describe the interaction
among various competing species and have been extensively investigated; see, e.g., [1, 2, 3, 4, 5]
and the references therein. In earlier literature, the two-competing species competition models
were often formulated in the form of ordinary differential systems as follows:{

u′ (t) = u(t)(r1−a11u(t)−a12v(t)) ,
v′ (t) = v(t)(r2−a21v(t)−a22v(t)) ,

(1.1)

for t ∈ [0,+∞) ai j ≥ 0, i, j = 1,2, where u(t) and v(t) are the quantities of the two species at
time t, r1 > 0 and r2 > 0 are growth rates of the respective species, a11 and a22 represent the
strength of the intraspecific competition, and a12 and a21 represent the strength of the interspe-
cific competition.
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In the field of biology, numerous movements and changes for organisms occur in discrete
forms, and the data collected and recorded is also in discrete forms; the populations have non-
overlapping generations or the population statistics are compiled from given time intervals and
not continuously. Then it is reasonable to study discrete time models governed by difference
equations, and the discrete time models can also provide efficient computational models of con-
tinuous models for numerical simulations. By considering a variation with piecewise constant
arguments for certain terms on the right side for (1.1), the following difference equation can be
obtained: {

u(k+1) = u(k)exp(r1−a11u(k)−a12v(k)),
v(k+1) = v(k)exp(r2−a21u(k)−a22v(k)).

(1.2)

There are some reasons for introducing time delay into the real biological systems, such as the
maturation delay and digestion delay in the population system, which means that the evolution
of system depends on not only the present but also the historical information. Thus a kind of
delay discrete form from (1.2) can be listed as follows [6]{

u(k+1) = u(k)exp(r1−a11u(k− τ)−a12v(k− τ)),
v(k+1) = v(k)exp(r2−a21u(k− τ)−a22v(k− τ)),

where τ is the delay, and τ ≤ k,τ ∈ Z+.
In modeling population dynamics and interactions of biological species, it is significant to

investigate the interactions happened at different locations. The effect of spatial factors play a
crucial role in the stability of populations; see, e.g., [7, 8, 9, 10]. Then we can have a space and
time discrete delay Lotka-Volterra competitive model as follows. u

k+1

i j = u
k

i j exp{r1−a11u
k−τ

i j −a12v
k−τ

i j }+D1∇2uk
i j,

v
k+1

i j = vk
i j exp{r2−a21u

k−τ

i j −a22v
k−τ

i j }+D2∇2vk
i j,

(1.3)

with the periodic boundary conditions

uk
i,0 = uk

i,m,u
k
i,1 = uk

i,m+1,u
k
0, j = uk

m, j,u
k
1, j = uk

m+1, j, (1.4)

vk
i,0 = vk

i,m,v
k
i,1 = vk

i,m+1,v
k
0, j = vk

m, j,v
k
1, j = vk

m+1, j, (1.5)

where i, j ∈ {1,2, · · · ,m}= [1,m],m ∈ Z+,k ∈ Z+,u
k

i j is the density of first population in (i, j)

lattice at time kth generation, v
k

i j is the density of second population in (i, j) lattice at time kth
generation, and

∇
2uk

i j = uk
i+1, j +uk

i, j+1 +uk
i−1, j +uk

i, j−1−4uk
i j,

∇
2vk

i j = vk
i+1, j + vk

i, j+1 + vk
i−1, j + vk

i, j−1−4vk
i j.

After the pioneering work by Alan Turing on chemical morphogenesis [11], diffusion has
been identified as a source of the spontaneous creation of ordered structures, known as patterns,
which is connected to the occurrence of what he called a diffusion driven instability (Turing
instability). Turing instability has become an important mechanism for the emergence of inter-
esting patterns in many discrete or continuous reaction diffusion models, and has been widely
studied; see, e.g., [12, 13, 14, 15, 16, 17, 18] and the references therein.

In studying the pattern formation of the competitive systems, the reaction-diffusion model
and Turing instability theory have been widely employed and numerous results have been ob-
tained; see, e.g., [10, 19, 20, 21, 22, 23, 24, 25, 26]. For example, in [19], the Turing bifurcation
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critical value and the condition of the occurrence of Turing pattern were obtained when control
parameters are selected by means of the linear stability analysis. By using the multiple scale
method on a Lotka-Volterra competitive system with nonlocal delay, the amplitude equations
of the different Turing patterns were obtained and spots pattern and stripes pattern arise in [20].
Linear stability analysis was applied to an exponential discrete Lotka-Volterra system, which
describes the competition between two identical species, and the conditions for the Turing in-
stability were obtained in [26]. However, as far as we know, there is no relevant research on the
Turing instability of space and time discrete delay models, including Lotka-Volterra competitive
ones. We, in this work, focus on the Turing instability analysis of system (1.3) - (1.5).

The rest of the paper is organized as follows. We state some basic preliminaries in Section 2.
The stability of the positive equilibrium and Turing instability analysis are discussed in Sections
3. In Section 4, some numerical simulations are done to verify our theoretical results. Section
5, which is also the last section of this paper, presents some concluding conclusions.

2. PRELIMINARIES

To guarantee that system (1.3) has always a positive equilibrium, throughout this paper, we
assume that the coefficients of system (1.3) satisfies r1a22− r2a12 > 0 and r2a11− r1a21 > 0,
and the unique positive equilibrium E∗(u∗,v∗) is

u∗ =
r1a22− r2a12

a11a22−a12a21
,v∗ =

r2a11− r1a21

a11a22−a12a21
.

To prove the main results in this paper, we transform system (1.3) into the following equiva-
lent system of 2τ +2 equations without delays

u
(0)

i j (k+1) = u
(0)

i j (k)exp{r1−a11u
(τ)

i j (k)−a12v
(τ)

i j (k)}+D1∇2u
(0)

i j (k),

v
(0)

i j (k+1) = v
(0)

i j (k)exp{r2−a21u
(τ)

i j (k)−a22v
(τ)

i j (k)}+D2∇2v
(0)

i j (k),

u
(p)

i j (k+1) = u
(p−1)

i j (k),

v
(p)

i j (k+1) = v
(p−1)

i j (k), p = 1,2, . . . ,τ,

(2.1)

where  u
(0)

i j (k) = u
k

i j,

v
(0)

i j (k) = v
k

i j,

whose positive equilibrium can be written as (u∗,v∗,u∗,v∗, . . . ,u∗,v∗) ∈ R2τ+2.
We also need some lemmas for our work.

Lemma 2.1. [25] For eigenvalue problem
−∇2xi j = λxi j,

x0, j = xm, j, x1, j = xm+1, j,

xi,0 = xi,m, xi,1 = xi,m+1, i, j ∈ [1,m],

one has

λkl = 4(sin2 (k−1)π
m

+ sin2 (l−1)π
m

),k, l ∈ [1,m],
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and the corresponding eigenvector

ϕ
kl
i j1 = sin

2i(k−1)π
m

sin
2 j(l−1)π

m
,

ϕ
kl
i j2 = cos

2i(k−1)π
m

cos
2 j(l−1)π

m
,

ϕ
kl
i j3 = sin

2i(k−1)π
m

cos
2 j(l−1)π

m
,

ϕ
kl
i j4 = cos

2i(k−1)π
m

sin
2 j(l−1)π

m
.

Lemma 2.2. [6, 27] The polynomial P(λ ) = λ τ+1− aλ τ + b, where a,b ∈ R, is of Schur type
(i.e., all its eigenvalues are inside the unit circle) if and only if one of the following conditions
hold

(1) if baτ+1 ≤ 0, then |a|+ |b|< 1;
(2) if baτ+1 > 0, then |a| ≤ τ+1

τ
|a|−1 < |b|< (a2 +1−2 |a|cosφ)

1
2 ,

where φ ∈ (0, τ+1
τ
) is the solution to |a|sinτφ = sin(τ +1)φ .

3. TURING INSTABILITY

In order to study the Turing instability, we first recall the stability conditions for the discrete
reaction-diffusion system without diffusion part of the form

u
(0)
(k+1) = u

(0)
(k)exp{r1−a11u

(τ)
(k)−a12v

(τ)
(k)},

v
(0)
(k+1) = v

(0)
(k)exp{r2−a21u

(τ)
(k)−a22v

(τ)
(k)},

u
(p)
(k+1) = u

(p−1)
(k),

v
(p)
(k+1) = v

(p−1)
(k), p = 1,2, . . . ,τ,

(3.1)

where  u
(0)
(k) = u

k
,

v
(0)
(k) = v

k
,

which is the equivalent system of the following equation{
u

k+1
= u

k
exp{r1−a11u

k−τ −a12v
k−τ},

v
k+1

= vk exp{r2−a21u
k−τ −a22v

k−τ}.
(3.2)

From [6, Theorem 3.1], system (3.1) or (3.2) is asymptotically stable if and only if one of the
following conditions hold

(1) β ≤ α
2,β > 2cτα− c2

τ ,β > 0,cτ < α < 0. (3.3)

(2) β > α
2,β < hτ(α),cτ < α < 0. (3.4)

where cτ = −(2− 2cosφτ)
1
2 , φτ ∈ (0, π

τ+1) is the unique solution to sinτφ = sin(τ + 1)φ ,
hτ = (gτ |[0,c

τ2 ])
−1,gτ(α) = cos((τ +1)arccos 2−α

2 )−cos(τ arccos 2−α

2 ), α = 1
2tr(B), and β =

det(B) with B =

[
−a11u∗ −a12u∗

−a21v∗ −a22v∗

]
.
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If β ≤ α2, one sets

S11(α,β ) = {(α,β ) | β > 2cτα− c2
τ ,β > 0,cτ < α < 0}.

If β > α2, one sets

S21(α,β ) = {(α,β ) | β < hτ(α),cτ < α < 0}.

Next, we discuss the conditions for instability in systems with diffusion terms. We linearise
system (2.1) at the steady state E∗(u∗,v∗), and obtain

u(0)i j (k+1) = u(0)i j (k)−a11u∗u(τ)i j (k)−a12u∗v(τ)i j (k)+D1∇2u
(0)

i j (k),

v(0)i j (k+1) = v(0)i j (k)−a21v∗u(τ)i j (k)−a22v∗v(τ)i j (k)+D2∇2v
(0)

i j (k),

u(p)
i j (k+1) = u(p−1)

i j (k),

v(p)
i j (k+1) = v(p−1)

i j (k), p = 1,2, . . . ,τ,

(3.5)

Taking the inner product of (3.5) with the corresponding eigenfunction ϕ ls
i j of the eigenvalue

λls, respectively, we see that
U (0)(k+1) = (1−D1k2

ls)U
(0)(k)−a11u∗U (τ)(k)−a12u∗V (τ)(k),

V (0)(k+1) = (1−D2k2
ls)V

(0)(k)−a21v∗U (τ)(k)−a22v∗V (τ)(k),
U (p)(k+1) =U (p−1)(k),
V (p)(k+1) =V (p−1)(k), p = 1,2, . . . ,τ,

(3.6)

where 
U (0)(k) =

m
∑

i, j=1
ϕ ls

i j ui j(k),

V (0)(k) =
m
∑

i, j=1
ϕ ls

i j vi j(k),

whose Jacobian matrix is:

Jls =


A 0 0 · · · 0 B
E2 0 0 · · · 0 0
0 E2 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · E2 0


(2τ+2)×(2τ+2)

,

where

A =

[
1−D1k2

ls 0
0 D2k2

ls

]
, B =

[
−a11u∗ −a12u∗

−a21v∗ −a22v∗

]
, and E2 =

[
1 0
0 1

]
.

For simplicity, let D1 = D2 = D. Then we can obtain the characteristic equation for Jls

λ
2τ(λ −1+Dk2

ls)
2−2αλ

τ(λ −1+Dk2
ls)+β = 0.

Therefore, the eigenvalues of the matrix Jls are the solutions to the following two equations

λ
τ+1− (1−Dk2

ls)λ
τ = ηi, i = 1,2, (3.7)

where η1 and η2 are the eigenvalues of matrix B.
If 1−Dk2

ls = 0, then λ τ+1 = ηi, and |λ |> 1 holds if and only if |ηi|> 1.
We have the following results on the instability of the positive equilibrium.
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Theorem 3.1. |ηi|> 1 and {α,β ,D} ∈ S11(α,β ) or S21(α,β ) mean or show that the problem
(1.3) - (1.5) is diffusion-driven unstable or Turing unstable.

Next, let us discuss the case that 1−Dk2
ls 6= 0.

Case 1. β ≤ α2.
In this case, the eigenvalues ηi = α ±

√
α2−β of matrix B are real. Hence, we have the

following results.

Theorem 3.2. If β ≤ α2, then the positive equilibrium of (3.6) is asymptotically stable if and
only if η1, η2 ∈ (cD,τ ,1−

∣∣1−Dk2
ls

∣∣), where cD,τ = −(2−2cosφD,τ)
1
2 , and φD,τ is the unique

solution to the equation
∣∣1−Dk2

ls

∣∣sinτφ = sin(τ +1)φ .

Proof. Based on (3.7), one sees that the positive equilibrium of (3.6) is asymptotically stable if
and only if both polynomials Pi(λ ) = λ τ+1− (1−Dk2

ls)λ
τ +ηi, i = 1,2 are Schur polynomials.

Lemma 2.2 presents that this is true if and only if cD,τ < ηi < 1−
∣∣1−Dk2

ls

∣∣, or cD,τ < ηi <

Dk2
ls(1−Dk2

ls > 0),cD,τ < ηi < 2−Dk2
ls(1−Dk2

ls < 0). This completes the proof. �

Remark 3.3. It can be easily verified that the eigenvalues η1 and η2 of matrix B belong to the
interval (cD,τ ,1−

∣∣1−Dk2
ls

∣∣) if and only if the half-trace α and the determinant β of matrix B
verify the following set of inequalities

β > 2cD,τα− c2
D,τ ,β > 2(1−

∣∣1−Dk2
ls
∣∣)α− (1−

∣∣1−Dk2
ls
∣∣)2,cD,τ < α < 1−

∣∣1−Dk2
ls
∣∣ .

(3.8)
Hence, Theorem 3.2 provides that the positive equilibrium is asymptotically stable if and only
if inequalities (3.8) hold.

Let

S12(α,β ,D) = {(α,β ,D) | β > 2cD,τα− c2
D,τ ,β > 2(1−

∣∣1−Dk2
ls
∣∣)α− (1−

∣∣1−Dk2
ls
∣∣)2,

cD,τ < α < 1−
∣∣1−Dk2

ls
∣∣},

C11(α,β ,D) = {(α,β ,D) | Dk2
ls =±(α±

√
α2−β )},

We can obtain the following result.

Theorem 3.4. If β ≤ α2, {α,β ,D} ∈ S11 and {α,β ,D} /∈ {S12(α,β ,D)∪C11(α,β ,D)}, then
problem (1.3) - (1.5) is diffusion-driven unstable or Turing unstable.

Case 2. β > α2

In this case, the eigenvalues ηi = α ± i
√

β −α2 of matrix B are complex. The following
results hold.

Lemma 3.5. If β > α2, then matrix J has eigenvalues on the unit circle if and only if β ∈
[D2k4

ls,(2−Dk2
ls)

2] or β ∈ [(2−Dk2
ls)

2,D2k4
ls] and

α = cos((τ +1)arccos
1+(1−Dk2

ls)
2−β

2(1−Dk2
ls)

)

−(1−Dk2
ls)cos(τ arccos

1+(1−Dk2
ls)

2−β

2(1−Dk2
ls)

) (3.9)

hold.
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Proof. In this case, β > α2, η1 = η2 = α + i
√

β −α2. Suppose that the polynomial P1(λ ) =
λ τ+1− (1−Dk2

ls)λ
τ +η1 has a root on the unit circle, λ = eiθ , where θ ∈ [0,π]. Therefore,

eiτθ (eiθ −1+Dk2
ls) = η1 and

∣∣eiθ −1
∣∣2 = |η1|2 = β . Hence,

(1−
∣∣1−Dk2

ls
∣∣)2 ≤ β ≤ (1+

∣∣1−Dk2
ls
∣∣)2,

that is, β ∈ [D2k4
ls,(2−Dk2

ls)
2] or β ∈ [(2−Dk2

ls)
2,D2k4

ls], and θ = arccos 1+(1−Dk2
ls)

2−β

2(1−Dk2
ls)

.

On the other hand, we also have that Re(eiτθ (eiθ −1+Dk2
ls)) = Re(η1) = α . Then we obtain

(3.9). This completes the proof. �

Lemma 3.6. The (τ+1) degree polynomial function gD,τ : [(1−
∣∣1−Dk2

ls

∣∣)2,(1+
∣∣1−Dk2

ls

∣∣)2]→
R defined by

gD,τ(β ) = cos((τ +1)arccos
1+(1−Dk2

ls)
2−β

2(1−Dk2
ls)

)

−(1−Dk2
ls)cos(τ arccos

1+(1−Dk2
ls)

2−β

2(1−Dk2
ls)

),

is strictly decreasing on [(1−
∣∣1−Dk2

ls

∣∣)2,c2
D,τ ], and gD,τ [(1−

∣∣1−Dk2
ls

∣∣)2,c2
D,τ ] = [cD,τ ,1−∣∣1−Dk2

ls

∣∣]. Moreover, |gD,τ(β )| ≤
√

β and (1−
∣∣1−Dk2

ls

∣∣)2 ≤ β ≤ (1+
∣∣1−Dk2

ls

∣∣)2.

Based on the lemmas above, the stability results of the positive equilibrium can be obtained
immediately.

Theorem 3.7. If β > α2, then the positive equilibrium of (3.6) is asymptotically stable if and
only if the following inequalities hold

β < gD,τ(α),cD,τ < α < 1−
∣∣1−Dk2

ls
∣∣ .

Let
S22(α,β ,D) = {(α,β ,D) | β < gD,τ(α),cD,τ < α < 1−

∣∣1−Dk2
ls
∣∣},

and

C21(α,β ,D) = {(α,β ,D) | α = cos((τ +1)arccos
1+(1−Dk2

ls)
2−β

2(1−Dk2
ls)

)

−(1−Dk2
ls)cos(τ arccos

1+(1−Dk2
ls)

2−β

2(1−Dk2
ls)

).

We have the following result immediately.

Theorem 3.8. If β > α2, {α,β ,D} ∈ S21, and {α,β ,D} /∈ {S22(α,β ,D)∪C21(α,β ,D)}, then
problem (1.3) - (1.5) is diffusion-driven unstable or Turing unstable.

4. A NUMERICAL EXAMPLE

In this section, numerical simulation is presented to verify the efficiency of our theoretical
analysis.

Let τ = 1,r1 = 1,r2 = 0.9,a11 = 4,a12 = 0.5,a21 = 1,a22 = 2, and D = 0.25. Then r1a22−
r2a12 = 1.55> 0,r2a11−r1a21 = 2.6> 0, u∗= r1a22−r2a12

a11a22−a12a21
= 0.2067> 0, and v∗= r2a11−r1a21

a11a22−a12a21
= 0.3467 > 0.
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We first verify the stability conditions (3.3) or (3.4) for system (3.2). In this case, α =
1
2tr(B) = −0.7601,β = det(B) = 0.5375, and φ = π

3 , cτ = −(2− 2cosφτ)
1
2 = −1, then β =

0.5375≤ α2 = (−0.7601)2 = 0.5778,β = 0.5375 > 2cτα−c2
τ = 2×(−1)×(−0.7601)−12 =

0.5202,β > 0, and cτ =−1<α =−0.7601< 0. Thus condition (3.3) is satisfied, so the positive
equilibrium of system (3.2) is asymptotically stable.

Letting m = 200, l = 101,s = 100, and k2
ls = λls = 4(sin2 (l−1)π

m + sin2 (s−1)π
m ) = 7.999, we

can obtain α = −0.7601 > 1−
∣∣1−Dk2

ls

∣∣ = −0.99975, that is, condition (3.8) is not satisfied,
so the positive equilibrium of the system (1.3)-(3.1) is not asymptotically stable, and Turing
stability will emerge.

Let

u−1
i j = u0

i j = 0.2067+0.001cos
2i(101−1)π

200
cos

2 j(100−1)π
200

,

v−1
i j = v0

i j = 0.3467+0.001cos
2i(101−1)π

200
cos

2 j(100−1)π
200

.

We performed simulations for the discrete reaction-diffusion system, a stable pattern of square
shapes, namely, stationary wave, as Figure 1.

FIGURE 1. Stationary pattern snapshots of contour pictures of the time evolu-
tion on u, when τ = 1,r1 = 1,r2 = 0.9,a11 = 4,a12 = 0.5,a21 = 1,a22 = 2,D =
0.25, and iteration times k = 100000.

5. CONCLUSIONS

The stability analysis of a space and time discrete delay Lotka-Volterra competitive model
with periodic boundary conditions reveals the existence of Turing instability for certain param-
eter values that are chosen. A concrete example is given to verify our theoretical results.
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