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1. INTRODUCTION

Convex feasibility problems, which consist of find a common point in finite convex sets,
were studied extensively in Hilbert spaces due to its wide applications in various problem,
such as signal processing, image recovery and so on; see, e.g., [16, 17, 18]. Recently, various
resolvent-based iterative algorithms were introduced and studied; see, e.g., [8, 12, 13, 14] and
the references therein.

In this paper, we consider the following convex feasibility problem, which consists of finding
x ∈ H such that

x ∈ A−1(0)∩B−1(0), (1.1)

where A : D(A)⊂ H→ H, and B : D(B)⊂ H→ H are maximal monotone operators.
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To solve problem (1.1), the alternating resolvent algorithm (abbreviated as ARA) was proposed:
For any initial guess x0 ∈ H,

x2n+1 = JA
βn
(x2n + en), n = 0,1,2, . . . ,

x2n = JB
µn
(x2n−1 + e′n), n = 1,2,3, . . . ,

where JA
βn

= (I +βnA)−1 and JB
µn

= (I + µnB)−1 are resolvents of A and B, respectively, with
βn, µn > 0, and {en} and {e′n} are error sequences.

The ARA is an extension of the celebrated proximal point algorithm (abbreviated as PPA),
which was used to solve problem (1.1) with only one maximal monotone operator. However, PPA
generally only has weak convergence [10] in the framework of infinite dimensional spaces. In
order to improve the strong convergence (the convergence in norm) of PPA, researchers proposed
several modifications; see, e.g., [3, 4, 5, 7, 11, 15, 20, 22, 23, 25]. One modification is the
contraction proximal point algorithm (CPPA), which was introduced by Xu [23],

xn+1 = αnu+(1−αn)JA
βn
(xn)+ en, n≥ 0, (1.2)

where u, x0 ∈ H, αn ∈ (0,1), βn ∈ (0,∞), and {en} is an error sequence. He proved the strong
convergence of algorithm (1.2) under the following error criterion

∞

∑
n=0
‖en‖< ∞. (1.3)

In 2010, Boikanyo and Morosanu [3] generalized the results and further discussed the strong
convergence of algorithm (1.2) under the error criterion

‖en‖/αn→ 0. (1.4)

In 2008, Yao and Noor [25] generated PPA by the rule

xn+1 = αnu+δnxn + γnJA
βn

xn + en, n≥ 0, (1.5)

where u, x0 ∈H, αn, δn, γn ∈ (0,1), βn ∈ (0,∞), αn+δn+γn = 1, and {en} is an error sequence.
They proved the strong convergence of algorithm (1.5) under error criterion (1.3).

In 2017, Cui and Ceng [7] extended (1.5) as

xn+1 = αn f (xn)+δnxn + γnJA
βn

xn + en, n≥ 0, (1.6)

where x0 ∈ H, αn ∈ (0,1), δn ∈ (−1,1), γn ∈ (0,2), βn ∈ (0,∞), αn +δn + γn = 1, f : H → H
is a q-contraction for some q ∈ [0,1) and {en} is an error sequence. They proved the strong
convergence of algorithm (1.6) under error criterion (1.3) and (1.4).

Similar to PPA, ARA is also weakly convergent. Inspired by the modifications of PPA,
researchers [1, 2, 6, 19] modified the ARA to make it also have strong convergence.

In 2012, Boikanyo and Morosanu [3] modified ARA in the following form

x2n+1 = αnu+δnx2n + γnJA
βn

x2n + en, n = 0,1, . . . ,

x2n = λnu+ρnx2n−1 +σnJB
µn

x2n−1 + e′n, n = 1,2, . . . ,
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where u, x0 ∈ H, αn,δn,γn,λn,ρn,σn ∈ (0,1), αn +δn + γn = 1, λn +ρn +σn = 1 , βn, µn > 0
and {en}, {e′n} are error sequences that satisfy any of the following conditions:

∞

∑
n=0
‖en‖< ∞,

∞

∑
n=1
‖e′n‖< ∞ (1.7)

and ‖en‖/αn→ 0, ‖e′n‖/λn→ 0. (1.8)

They also gave the strong convergence of the algorithm. This algorithm unifies the results in
[5, 22, 25].

In 2013, another modification was proposed by Boikanyo and Morosanu in [6]. They modified
the ARA into the following form

x2n+1 = JA
βn
(αnu+(1−αn)x2n + en), n≥ 0,

x2n = JB
µn
(λnu+(1−λn)x2n−1 + e′n), n≥ 1,

where u, x0 ∈H, αn, λn ∈ (0,1), βn, µn ∈ (0,∞), {en} and {e′n} are error sequences that satisfy
(1.7) and (1.8). They proved the strong convergence of the sequences generated by the above
algorithm.

In 2015, Wang and Xu [19] modified the ARA into the following form

x2n+1 = αnu+δnx2n + γnJA
βn
(x2n + en), n = 0,1, . . . ,

x2n = λnu+ρnx2n−1 +σnJB
µn
(x2n−1 + e′n), n = 1,2, . . . ,

(1.9)

where u, x0 ∈H, αn,δn,γn,λn,ρn,σn ∈ (0,1), αn+δn+γn = 1, λn+ρn+σn = 1 and βn, µn > 0,
and {en} and {e′n} are error sequences which satisfy the following error criteria

‖en‖ ≤ ηn‖JA
βn
(x2n + en)− x2n‖with

∞

∑
n=0

ηn
2 < ∞,

‖e′n‖ ≤ η
′
n‖JB

µn
(x2n−1 + e′n)− x2n−1‖with

∞

∑
n=0

η
′
n

2 < ∞

(1.10)

and

‖en‖ ≤ ηn‖JA
βn
(x2n + en)− x2n‖, lim

n→∞

η2
n

αn
= 0,

‖e′n‖ ≤ η
′
n‖JB

µn
(x2n−1 + e′n)− x2n−1‖, lim

n→∞

(η ′n)
2

λn
= 0.

(1.11)

They proved the strong convergence of algorithm (1.9) under error criteria (1.10) and (1.11).
In 2019, Boikanyo and Makgoeng [1] modified ARA into the following form

x2n+1 = αn f (x2n)+ γnx2n +δnJA
βn
(x2n + en), n = 0,1, ...,

x2n = λn f (x2n−1)+ρnx2n−1 +σnJB
µn
(x2n−1 + e′n), n = 1,2, ...,

where f : H→ H is a q-contraction for some q ∈ [0,1), x0 ∈ H, αn,λn ∈ (0,1),γn,ρn ∈ (−1,1),
δn,σn ∈ (0,2),and αn + γn +δn = 1, λn +ρn +σn = 1, {en} and {e′n} are error sequences. They
proved that this algorithm is strongly convergent under the error criterion (1.10).
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In this paper, inspired by the results of Boikanyo and Morosanu [2], we consider a viscosity
of ARA with over relaxed factors. The algorithm that we study in this paper is stated as below:

x2n+1 = αn f (x2n)+δnx2n + γnJA
βn

x2n + en, n = 0,1, ..., (1.12)

x2n = λn f (x2n−1)+ρnx2n−1 +σnJB
µn

x2n−1 + e′n, n = 1,2, ..., (1.13)

where f : H → H is a q-contraction for some q ∈ [0,1), αn, λn ∈ (0,1), δn, ρn ∈ (−2,1),
γn, σn ∈ (0,2) satisfying αn + δn + γn = 1, λn + ρn + σn = 1, and {en} and {e′n} are error
sequences. We will give the strong convergence of the algorithm under more error criteria and
some mild conditions.

2. PRELIMINARIES

Throughout this paper, H is borrowed to denote a real Hilbert space with inner product 〈., .〉
and norm ‖.‖. The symbol xn ⇀ x presents that {xn} weakly converges to x in H and xn→ x
denotes that {xn} strongly converges to x in H. One uses C to stand for a nonempty, convex, and
closed subset of H, and uses PC to denote the nearest point projection onto C from H. That is,
for any x in H, its projection point satisfies:

‖x−PC‖= min
y∈C
‖x− y‖.

Recall a mapping A is called monotone if

〈x− x′,y− y′〉 ≥ 0, ∀(x,y),(x′,y′) ∈ G(A),

where G(A) = {(x,y) ∈ H×H : x ∈ D(A),y ∈ Ax}. We say an operator A is said to be maxi-
mal monotone if, in addition to being monotone, its graph is not properly contained in the graph.
Note that if A is maximal monotone, then A−1 is maximal monotone. One says that a mapping
T is said to be nonexpansive if, for all x and y in H, ‖T x−Ty‖ ≤ ‖x− y‖ ; and T is said to be
firmly nonexpansive if

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖2. (2.1)

Let x ∈ H,y ∈C. Then y = PCx if and only if 〈y− x,y− z〉 ≤ 0 for all z ∈C.
Next, we present some lemmas that are helpful in the subsequent analysis.

Lemma 2.1. Letx,y ∈ H, and α ∈ R. Then
(i) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉,
(ii) ‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2.

Lemma 2.2. [24] Let A be a maximal monotone operator in H. Then ‖x− JA
β

x‖ ≤ 2‖x− JA
β ′x‖,

for all 0 < β ≤ β ′ and for all x ∈ H.

Lemma 2.3. [9] Let C be a nonempty, convex, and closed subset of H. Let T : C → H be
an nonexpansive mapping and Fix(T ) 6= /0. If {xn} is a sequence in C such that xn ⇀ x and
(I−T )xn→ 0, then (I−T )x = 0, i.e., x ∈ Fix(T ).

Lemma 2.4. [23] Let {sn} be a sequence of nonnegative real numbers such that

sn+1 ≤ (1−αn)sn +αnbn + cn, n≥ 0,

where {αn} , {bn} , and {cn} satisfy the conditions:
(i) αn ∈ (0,1), with ∑

∞
n=0 αn = ∞;
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(ii) limsup
n→∞

bn ≤ 0;

(iii) cn ≥ 0, for all n≥ 0 with ∑
∞
n=0 cn < ∞.

Then limn→∞ sn = 0.

3. MAIN RESULTS

In this section, we prove the convergence of the sequence generated by (1.12) and (1.13) under
more error criteria. We assume that problem (1.1) is consistent, and use S to denote its solution
set. We begin by proving the strong convergence of the algorithm which associated with the
following exact iterative process

v2n+1 = αn f (v2n)+δnv2n + γnJA
βn

v2n, n = 0,1, ..., (3.1)

v2n = λn f (v2n−1)+ρnv2n−1 +σnJB
µn

v2n−1, n = 1,2, ..., (3.2)

where f : H → H is a q-contraction for some q ∈ [0,1), αn, λn ∈ (0,1), δn, ρn ∈ (−2,1),
γn, σn ∈ (0,2) satisfying αn +δn + γn = 1, λn +ρn +σn = 1.

Theorem 3.1. Let A : D(A)⊂ H→ H and B : D(B)⊂ H→ H be maximal monotone operators
with S = A−1(0)∩B−1(0). If {vn} is the sequence generated by (3.1) and (3.2). Then {vn}
converges strongly to PS f (z), which is also the unique solution of the variational inequality:

z ∈ S, 〈(I− f )z,v− z〉 ≥ 0, v ∈ S,

provided that the following conditions are satisfied:
(i) lim

n→∞
αn = 0, ∑

∞
n=0 αn = ∞ and lim

n→∞
λn = 0, ∑

∞
n=0 λn = ∞;

(ii) βn ≥ β > 0, µn ≥ µ > 0, for all n > 0;
(iii) limsup

n→∞

γn < 2 and limsup
n→∞

σn < 2;

(iv) lim
n→∞

αn+λn
γn

= 0 and lim
n→∞

αn+λn
σn

= 0.

Proof. Let z = PS f (z) and denote Cn =
γn

1−αn
, C′n =

σn
1−λn

, yn =(1−Cn)v2n +CnJA
βn

v2n, and y′n =
(1−C′n)v2n−1 +C′nJB

µn
v2n−1. It follows that

v2n+1 = αn f (v2n)+(1−αn)yn,

v2n = λn f (v2n−1)+(1−λn)y′n.
In order to prove the strong convergence, we next divide it into the following steps.

Step 1. Prove {vn} is bounded.
By (2.1), we have ∥∥∥JA

βn
v2n− z

∥∥∥2
≤ ‖v2n− z‖2−

∥∥∥v2n− JA
βn

v2n

∥∥∥2
. (3.3)

From Lemma 2.1 (ii), we have

‖ yn− z‖2 =(1−Cn)‖v2n− z‖2 + Cn‖JA
βn

v2n− z‖2

−Cn(1−Cn)‖JA
βn

v2n− v2n‖2. (3.4)

Substituting (3.3) into (3.4) yields

‖yn− z‖2 ≤ ‖v2n− z‖2−Cn(2−Cn)‖JA
βn

v2n− v2n‖2. (3.5)
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From the definition of Cn and C′n and condition (iii), we deduce that

limsup
n→∞

Cn < 2, limsup
n→∞

C′n < 2. (3.6)

Hence, ‖yn− z‖2 ≤ ‖v2n− z‖2. In particular, we have ‖yn− z‖ ≤ ‖v2n− z‖. In view of (3.1), we
find that

‖v2n+1− z‖ ≤αn‖ f (v2n)− f (z)‖+(1−αn)‖yn− z‖+αn‖ f (z)− z‖
≤(1−αn(1−q))‖v2n− z‖+αn‖ f (z)− z‖.

(3.7)

Take a similar approach, we have

‖v2n− z‖ ≤ (1−λn(1−q))‖v2n−1− z‖+λn‖ f (z)− z‖. (3.8)

Substitute (3.8) into (3.7) yields

‖v2n+1− z‖ ≤(1−αn(1−q))[(1−λn(1−q))‖v2n−1− z‖
+λn‖ f (z)− z‖]+αn‖ f (z)− z‖
≤(1−αn(1−q))(1−λn(1−q))‖v2n−1− z‖+(1−αn(1−q))λn‖ f (z)− z‖
+αn‖ f (z)− z‖

=(1−αn(1−q))(1−λn(1−q))‖v2n−1− z‖

+[ 1− (1−αn(1−q))(1−λn(1−q)) ]
‖ f (z)− z‖

1−q

≤ max
{
‖v1− z‖, ‖ f (z)− z‖

1−q

}
. (3.9)

Thus, by induction, we obtain that {v2n+1} is bounded. By inequality (3.8), we see that {v2n} is
bounded too. Theus {vn} is bounded.
Step 2. Prove the following inequality

‖v2n+1− z‖2 ≤ (1−θn)‖v2n−1− z‖2 +θnbn, (3.10)

where
θn = αn(1−q)+λn(1−q)−αnλn(1−q)2

and

bn =−
γn(2−Cn)

θn
‖ JA

βn
v2n− v2n ‖2 −σn(2−C′n)

θn
(1−αn(1−q)) ‖ JB

µn
v2n−1− v2n−1 ‖2

+2
αn

θn
〈 f (z)− z,v2n+1− z〉+2

λn

θn
(1−αn(1−q))〈 f (z)− z,v2n− z〉.

It follows from (3.1), (3.5) and Lemma 2.1 (i) that

‖v2n+1− z‖2 ≤‖αn( f (v2n)− f (z))+(1−αn)(yn− z)‖2 +2αn 〈 f (z)− z,v2n+1− z〉

≤αn‖ f (v2n)− f (z)‖2 +(1−αn)‖yn− z‖2 +2αn〈 f (z)− z,v2n+1− z〉

≤(1−αn(1−q))‖v2n− z‖2 +2αn〈 f (z)− z,v2n+1− z〉

− γn(2−Cn)‖JA
βn

v2n− v2n‖2.

(3.11)
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Taking a similar approach, one also has

‖v2n− z‖2 ≤ (1−λn(1−q))‖v2n−1− z‖2 +2λn〈 f (z)− z,v2n− z〉

−σn(2−C′n)‖JB
µn

v2n−1− v2n−1‖2.
(3.12)

Substituting (3.12) into (3.11), one can deduce that

‖v2n+1− z‖2

≤(1−αn(1−q))[(1−λn(1−q))‖v2n−1− z‖2 +2λn〈 f (z)− z,v2n− z〉

−σn(2−C′n)‖JB
µn

v2n−1− v2n−1‖2]

+2αn〈 f (z)− z,v2n+1− z〉− γn(2−Cn)‖JA
βn

v2n− v2n‖2

=(1−θn)‖v2n−1− z‖2 +θn[−
γn(2−Cn)

θn
‖ JA

βn
v2n− v2n ‖2

− σn(2−C′n)
θn

(1−αn(1−q)) ‖ JB
µn

v2n−1− v2n−1 ‖2

+2
αn

θn
〈 f (z)− z,v2n+1− z〉+2

λn

θn
(1−αn(1−q))〈 f (z)− z,v2n− z〉].

(3.13)

Step 3. Prove that {bn} is a bounded sequence in H. In particular, it satisfies

−δ ≤ limsup
n→∞

bn <+∞.

In view of the definition of bn, the definition of θn, (3.6), and the boundedness of {vn} , we
have αn

θn
, λn

θn
∈ (0, 1

1−q), and

sup
n≥0

bn ≤sup
n≥0

[2
αn

θn
‖ f (z)− z‖‖v2n+1− z‖+2

λn

θn
(1−αn(1−q))‖ f (z)− z‖‖v2n− z‖]< ∞.

Now we prove that −δ ≤ limsup
n→∞

bn. If limsupn→∞ bn <−δ , then there exits n0 such that, for all

n≥ n0, bn <−δ . According to (3.10), it can be concluded that

‖v2n+1− z‖2 ≤ (1−θn)‖v2n−1− z‖2−θnδ .

From the condition (i) and the definition of θn, it can be inferred that ∑
∞
n=0 θn =+∞. Thus

‖v2n+1− z‖2 ≤‖v2n−1− z‖2−θn(‖v2n−1− z‖2 +δ )

≤‖v2n−1− z‖2−θnδ

≤‖v1− z‖2−
n

∑
i=1

θiδ .

We immediately have limsupn→∞ ‖ v2n+1− z ‖2≤‖ v1− z ‖2 −∑
∞
i=1 θiδ =−∞, which contra-

dicts the fact that ‖v2n+1− z‖2 is nonnegative. Thus limsupn→∞ bn is finite.
Step 4. Prove that {vn} converges to z = PS f (z).
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By Step 3, we can take a subsequence {nk} such that

limsup
n→∞

bn = lim
k→∞

bnk = lim
k→∞

[−
γnk(2−Cnk)

θnk

‖ JA
βnk

v2nk− v2nk ‖
2

−
σnk(2−C′nk

)

θnk

(1−αnk(1−q)) ‖ JB
µnk

v2nk−1− v2nk−1 ‖2

+2
αnk

θnk

〈 f (z)− z,v2nk+1− z〉

+2
λnk

θnk

(1−αnk(1−q))〈 f (z)− z,v2nk− z〉].

(3.14)

According to the boundedness of {vn} and
αnk
θnk

,
λnk
θnk
∈ (0, 1

1−q), without loss of generality, we
assume these two limits

lim
k→∞

2
αnk

θnk

〈 f (z)− z,v2nk+1− z〉,

lim
k→∞

2
λnk

θnk

(1−αnk(1−q))〈 f (z)− z,v2nk− z〉

exit. By (3.14), we know that these two limits

lim
k→∞

γnk(2−Cnk)

θnk

‖ JA
βnk

v2nk− v2nk ‖
2,

lim
k→∞

σnk(2−C′nk
)

θnk

‖ JB
µnk

v2nk−1− v2nk−1 ‖2

exit, so there exit K1, K2 > 0 such that
γnk(2−Cnk)

θnk

‖ JA
βnk

v2nk− v2nk ‖
2≤ K1,

σnk(2−C′nk
)

θnk

‖ JB
µnk

v2nk−1− v2nk−1 ‖2≤ K2.

From the definition of θnk , we have 2−Cnk > m (∃ m > 0) and 1
θnk

> 1
(1−q)(αnk+λnk )

, from which
we can immediately obtain that

mγnk

(1−q)(αnk +λnk)
‖JA

βnk
v2nk− v2nk‖

2 ≤ K1.

In view of condition (iv), we have

lim
k→∞
‖ JA

βnk
v2nk− v2nk‖= 0.

Similarly,
lim
k→∞
‖ JB

µnk
v2nk−1− v2nk−1‖= 0.

By Lemma 2.2 and condition (ii), we have

‖v2nk− JA
β

v2nk‖ ≤ 2‖v2nk− JA
βnk

v2nk‖→ 0 (as k→ ∞).

Similarly,
‖v2nk−1− JB

µ v2nk−1‖ ≤ 2‖v2nk−1− JB
µnk

v2nk−1‖→ 0 (as k→ ∞).
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Lemma 2.3 implies that any weak cluster point of
{

v2nk

}
belongs to A−1(0) and any weak cluster

point of
{

v2nk−1
}

belongs to B−1(0). Based on the definition of
{

v2nk+1
}

, it can be inferred that

‖v2nk+1− v2nk‖ ≤ αnk

∥∥ f (v2nk)− v2nk

∥∥+ γnk‖J
A
βnk

v2nk− v2nk‖→ 0 (as k→ ∞).

This implies that any weak cluster point of {vnk} belongs to S. Without loss of generality, we
assume that {vnk} converges weakly to v∗ ∈ S. In view of (3.14) and z = PS f (z), we have

limsup
n→∞

bn = lim
k→∞

bnk ≤ lim
k→∞

[2
αnk

θnk

〈 f (z)− z,v2nk+1− z〉

+2
λnk

θnk

(1−αnk(1−q))〈 f (z)− z,v2nk− z〉]

≤ 2
1−q

〈 f (z)− z,v∗− z〉+ 2
1−q

〈 f (z)− z,v∗− z〉 ≤ 0.

(3.15)

Consequently, we conclude from (3.10), (3.15) and Lemma 2.4 that ‖v2n+1− z‖→ 0 (as n→∞),
which together with condition(i) and (3.8) yields ‖v2n− z‖→ 0 as n→ ∞. Thus ‖vn− z‖→ 0 as
n→ ∞. �

Inspired by [2], we next consider the error-sequenced version of algorithm (3.1)-(3.2), i.e.,
algorithm (1.12)-(1.13). By the arguments of the proof of Theorem 3.1 above and the ideas in
[2] and [21], we can obtain the following strong convergence result.

Theorem 3.2. Let {xn} be the sequence generated by (1.12)-(1.13). Assume that
(i) lim

n→∞
αn = 0, ∑

∞
n=0 αn = ∞ and lim

n→∞
λn = 0, ∑

∞
n=0 λn = ∞;

(ii) βn ≥ β > 0, µn ≥ µ > 0, for all n > 0;
(iii) limsupn→∞ γn < 2 and limsupn→∞ σn < 2;
(iv) lim n→ ∞

αn+λn
γn

= 0 and limn→∞
αn+λn

σn
= 0.

Then {xn} converges strongly to PS f (z), which is also the unique solution of the variational
inequality: find z∈ S such that 〈(I− f )z,x−z〉 ≥ 0 for all x∈ S provided that any of the following
error criteria is satisfied:

(a) ∑
∞
n=0 ‖en‖ ≤ ∞, ∑

∞
n=0 ‖e′n‖ ≤ ∞;

(b) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/αn→ 0;

(c) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/λn→ 0;

(d) ‖en‖/αn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞;

(e) ‖en‖/λn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞;

(f) ‖en‖/αn→ 0 and ‖e′n‖/αn→ 0;
(g) ‖en‖/αn→ 0 and ‖e′n‖/λn→ 0;
(h) ‖en‖/λn→ 0 and ‖e′n‖/αn→ 0;
(i) ‖en‖/λn→ 0 and ‖e′n‖/λn→ 0;
(j) ‖en‖/αn→ 0 and ‖e′n‖/αn−1→ 0;
(k) ‖en−1‖/λn→ 0 and ‖e′n‖/αn−1→ 0;
(l) ‖en−1‖/λn→ 0 and ‖e′n‖/λn→ 0;

(m) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/αn−1→ 0;

(n) ‖en−1‖/λn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞.
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Proof. Denote Cn =
γn

1−αn
and C′n =

σn
1−λn

. By the definition of {xn}, {vn} and Theorem 3.1, we
have limsupn→∞Cn < 2, limsupn→∞C′n < 2, and

‖x2n+1− v2n+1‖ ≤‖αn( f (x2n)− f (v2n))+δn(x2n− v2n)+ γn(JA
βn

x2n− JA
βn

v2n)‖+‖en‖
≤αnq‖x2n− v2n‖+(1−αn)‖(1−Cn)(x2n− v2n)

+Cn(JA
βn

x2n− JA
βn

v2n)‖+‖en‖ .
(3.16)

Since JA
βn

is 1
2−averaged, we have JA

βn
= 1

2 I + 1
2Tn, where Tn is nonexpansive for every n ∈ N,

so (3.16) can be transformed into
‖x2n+1− v2n+1‖ ≤αnq‖x2n− v2n‖+(1−αn)‖(1−Cn)(x2n− v2n)

+Cn[
1
2
(x2n− v2n)+

1
2
(T x2n−T v2n)]‖+‖en‖

≤αnq‖x2n− v2n‖+(1−αn)(1−
Cn

2
)‖x2n− v2n‖

+(1−αn)
Cn

2
‖T x2n−T v2n‖+‖en‖

≤(1−αn(1−q))‖x2n− v2n‖+‖en‖ .

(3.17)

Similarly,

‖x2n− v2n‖ ≤ (1−λn(1−q))‖x2n−1− v2n−1‖+
∥∥e′n

∥∥ . (3.18)

Substituting (3.18) into (3.17) yields

‖x2n+1− v2n+1‖ ≤ (1−αn(1−q))(1−λn(1−q))‖x2n−1− v2n−1‖+‖en‖+
∥∥e′n

∥∥ . (3.19)

It follows from condition (i) and Lemma 2.4 that ‖x2n+1− v2n+1‖→ 0 as n→ ∞. Similarly,

‖x2n− v2n‖ ≤(1−αn−1(1−q))(1−λn(1−q))‖x2n−2− v2n−2‖
+‖en−1‖+

∥∥e′n
∥∥→ 0 (as n→ ∞).

This completes the proof of the theorem. �

Remark 3.3. Theorem 3.2 gives the strong convergence of the ARA with viscosity and over
relaxed factors. The convergence of the ARA is accelerated under the influence of the over-
relaxed factors. This result can be seen as a generalization of the results in [2, 6].

If we replace the contraction map with u ∈H in (1.12)-(1.13) and the variation ranges of other
parameters are kept unchanged, we have the following algorithm

x2n+1 = αnu+δnx2n + γnJA
βn

x2n + en, n = 0,1, ..., (3.20)

x2n = λnu+ρnx2n−1 +σnJB
µn

x2n−1 + e′n, n = 1,2, ..., (3.21)

where u ∈H is given, A and B are maximal montone operators, αn, λn ∈ (0,1), δn, ρn ∈ (−2,1),
γn, σn ∈ (0,2) satisfying αn + δn + γn = 1, λn + ρn +σn = 1, and {en}, and {e′n} are error
sequences.

Corollary 3.4. Let {xn} be the sequence generated by (3.20)-(3.21). Assume that
(i) limn→∞ αn = 0, ∑

∞
n=0 αn = ∞ and lim

n→∞
λn = 0, ∑

∞
n=0 λn = ∞;

(ii) βn ≥ β > 0, µn ≥ µ > 0, for all n > 0;
(iii) limsupn→∞ γn < 2 and limsupn→∞ σn < 2;
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(iv) limn→∞
αn+λn

γn
= 0 and limn→∞

αn+λn
σn

= 0.
Then {xn} converges strongly to PSu, which is also the unique solution of the variational
inequality: z ∈ S, 〈z−u,x− z〉 ≥ 0 for all x ∈ S, provided that any of the following error criteria
is satisfied:

(a) ∑
∞
n=0 ‖en‖ ≤ ∞, ∑

∞
n=0 ‖e′n‖ ≤ ∞;

(b) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/αn→ 0;

(c) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/λn→ 0;

(d) ‖en‖/αn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞;

(e) ‖en‖/λn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞;

(f) ‖en‖/αn→ 0 and ‖e′n‖/αn→ 0;
(g) ‖en‖/αn→ 0 and ‖e′n‖/λn→ 0;
(h) ‖en‖/λn→ 0 and ‖e′n‖/αn→ 0;
(i) ‖en‖/λn→ 0 and ‖e′n‖/λn→ 0;
(j) ‖en‖/αn→ 0 and ‖e′n‖/αn−1→ 0;
(k) ‖en−1‖/λn→ 0 and ‖e′n‖/αn−1→ 0;
(l) ‖en−1‖/λn→ 0 and ‖e′n‖/λn→ 0;

(m) ∑
∞
n=0 ‖en‖< ∞ and ‖e′n‖/αn−1→ 0;

(n) ‖en−1‖/λn→ 0 and ∑
∞
n=1 ‖e′n‖< ∞.
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[10] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control

Optim. 29 (1991) 403-419.



12 B. YAO, Y. WANG

[11] M. Giuseppe, and H. K. Xu, Convergence of generalized proximal point algorithms, Commun. Pure Appl.
Anal. 3 (2004) 791-808.

[12] O.T. Mewomo, C.C. Okeke, F.U. Ogbuisi, Iterative solutions of split fixed point and monotone inclusion
problems in Hilbert spaces, J. Appl. Numer. Optim. 5 (2023) 271-285.

[13] X. Qin, A weakly convergent method for splitting problems with nonexnpansive mappings, J. Nonlinear
Convex Anal. 24 (2023) 1033-1043.

[14] X. Qin, S.Y. Cho, L. Wang, Strong convergence of an iterative algorithm involving nonlinear mappings of
nonexpansive and accretive type, Optimization, 67 (2018) 1377-1388.

[15] C. Tian and F. Wang, The contraction-proximal point algorithm with square-summable errors, Fixed Point
Theory Appl. 2013 (2013) 1-10.

[16] B. Tan, S.Y. Cho, J.C. Yao, Acclerated inertial subgradient extragradient algorithms with non-monotonic step
sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal. 6 (2022) 89-122.

[17] B. Tan, X. Qin, J.C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split variational
inclusion problems with applications, J. Sci. Comput. 87 (2021) 20.

[18] B. Tan, X. Qin, S.Y. Cho, Revisiting subgradient extragradient methods for solving variational inequalities,
Numer. Algo. 90 (2022) 1593-1615.

[19] Y. Wang and H. K. Xu, A new accuracy criterion for the contraction proximal point algorithm with two
monotone operators, J. Nonlinear Convex Anal. 16 (2015) 273-287.

[20] Y. Wang, F. Wang and H. K. Xu, Error sensitivity for strongly convergent modifications of the proximal point
algorithm, J. Optim, 168 (2016) 901-916.

[21] Y. Wang and F. Wang, Strong convergence of the forward-backward splitting method with multiple parameters
in Hilbert spaces, Optimization, 67 (2018) 493-505.

[22] F. Wang and H. Cui, On the contraction-proximal point algorithms with multi-parameters, J. Global Optim. 54
(2012) 485-491.

[23] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240-256.
[24] H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006) 115-125.
[25] Y. H. Yao and M. A. Noor, On convergence criteria of generalized proximal point algorithms, J. Comput. Appl.

Math. 217 (2008) 46-55.


	1. Introduction
	2. Preliminaries
	3. Main Results
	References

