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NEW STRONGLY CONVERGENT ITERATIVE METHODS FOR NONEXPANSIVE
MAPPINGS

WANRONG ZHAN, HAI YU∗, FENGHUI WANG

Department of Mathematics, Luoyang Normal University, Luoyang 471022, China

Abstract. In this paper, we introduce two new iterative algorithms, Halpern-Krasnosel’skiı̆-Mann iteration (HKM)
and the Krasnosel’skiı̆-Mann-Halpern iteration (KMH) for fixed points of nonexpansive mappings. Under mild
conditions, we proved the strong convergence theorems of the algorithms for fixed points of nonexpansive map-
pings in Hilbert spaces. Finally, we give a numerical example for illustrating the efficiency of the given algorithms
in comparison with existing algorithms in the literatures.
Keywords. Convex feasibility problem; Halpern iteration; Krasnosel’skiı̆-Mann iteration; Nonexpansive mapping;
Strong convergence.

1. INTRODUCTION

Let C be a nonempty, convex and closed set in a real Hilbert apace H with inner product 〈·, ·〉
and induced norm ‖·‖. A mapping T : C→C is said to be nonexpansive if ‖T x−Ty‖ ≤ ‖x−y‖
for all x,y ∈C. The set of fixed points of a mapping T : C→C is defined by F(T ) := {x ∈C |
T x = x}.

Various efficient iterative methods for finding fixed points of nonexpansive mappings have
been investigated recently; see, e.g., [1, 3, 10, 14, 16] and the references therein. One of the
celebrated iterations is the Krasnosel’skiı̆-Mann iteration [8, 12], which generates, with an initial
point x0 ∈C arbitrarily chosen, a sequence {xn} by the iteration process:

xn+1 = (1−λn)xn +λnT xn, (1.1)

where {λn} is real sequence in [0,1]. It was proved in [15] that {xn} generated by iteration
(1.1) converges weakly to a fixed point of T provided that F(T ) is nonempty and λn satisfies
∑

∞
n=0 λn(1−λn) = ∞.
However, the Krasnosel’skiı̆-Mann iteration has only weak convergence, as noted by a coun-

terexample in [5]. In order to obtain strong convergence, in 1967, Halpern [6] proposed the
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Halpern iteration: x0 ∈C,

xn+1 = αnu+(1−αn)T xn, (1.2)

where u ∈C is an arbitrary (but fixed) point in C, and αn = n−a,a ∈ (0,1).
In 1977, Lions [9] proved the strong convergence of {xn} to a fixed point of T if {αn} satisfies

the following conditions:

(C1) limn→∞ αn = 0 and ∑
∞
n=0 αn = ∞;

(C2) limn→∞
|αn−αn−1|

α2
n

= 0.

But both Halpern’s and Lion’s conditions imposed on sequence {αn} excluded the natural and
important choice αn =

1
n+1 . To overcome this, Wittmann [21] in 1992 proved the strong con-

vergence of {xn} by using the control conditions (C1) and the following condition (C3):

(C3) ∑
∞
n=0 |αn+1−αn|< ∞.

In 2002, Xu [22, 23] proved the strong convergence of {xn} by replacing condition (C2) or
(C3) with the following condition (C4):

(C4) limn→∞
|αn−αn−1|

αn
= 0.

In order to further study the control condition on parameter αn, many authors modified the
Halpern iteration for nonexpansive mappings. C.E. Chidume and C.O. Chidume [2] and Suzuki
[18] gave the simpler modification of Halpern iteration: x0 ∈C,

xn+1 = αnu+(1−αn)
(
(1−δ )xn +δT xn

)
, (1.3)

where δ ∈ (0,1) is a constant, {αn} satisfies condition (C1) only. Kim and Xu [7] proposed the
following iteration method: x0 ∈C,{

yn = βnxn +(1−βn)T xn,
xn+1 = αnu+(1−αn)yn,

(1.4)

where {αn} and {βn} are two sequences in (0,1). Assume that {αn} satisfies conditions (C1)
and (C3), and {βn} satisfies the following condition (C5):

(C5) limn→∞ βn = 0,∑∞
n=0 βn = ∞ and ∑

∞
n=0 |βn+1−βn|< ∞.

Then {xn} generated by (1.4) converges strongly to a fixed point of T . Yao [25] also proved
the same conclusion if {αn} satisfies condition (C1), and {βn} satisfies the following condition
(C6):

(C6) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1.

Song et al. [17] presented two new iteration methods: x0 ∈C,

xn+1 = βn(αnu+(1−αn)xn)+(1−βn)T xn, (1.5)

and

xn+1 = βnxn +(1−βn)T (αnu+(1−αn)xn). (1.6)

They proved that, under conditions (C1) and (C6), the sequences generated by (1.5) and (1.6)
converge strongly to a fixed point of T , respectively.

In this paper, inspired by the above research, we propose two new iteration processes for
finding a fixed point of T . Our method is different from (1.3)-(1.6). More precisely, the first
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iteration, called the Halpern-Krasnosel’skiı̆-Mann iteration (HKM iteration), is as follows: x0 ∈
C, {

yn = βnxn +(1−βn)T xn,
xn+1 = αnu+(1−αn)Tyn,

(1.7)

where u ∈ C denotes a fixed vector and {αn}, {βn} are in (0,1). The second iteration, called
the Krasnosel’skiı̆-Mann-Halpern iteration (KMH iteration), is defined as follows: x0 ∈C,{

yn = αnu+(1−αn)T xn,
xn+1 = βnyn +(1−βn)Tyn,

(1.8)

where u ∈ C denotes a fixed vector and {αn}, {βn} are in (0,1). Under conditions (C1) and
(C6), we prove the strong convergence theorems of the iterations for finding the fixed point of
the nonexpansive mappings in Hilbert spaces.

2. PRELIMINARIES

Throughout this paper, we always assume that H is a Hilbert space and I is its identity op-
erator. Let {xn} ⊆ H be a sequence. ωw(xn) (resp., ω(xn)) stands for the set of cluster points
in the weak (resp., strong) topology. ‘xn ⇀ x’ (resp.,‘xn→ x’) means the weak (resp., strong)
convergence of {xn} to x.

Lemma 2.1. [1] Let C ⊆ H be a nonempty, convex, and closed subset, and let PC : H →C be
the metric projection from H on C. Then, for all x ∈ H and y ∈C, 〈x−PCx,y−PCx〉 ≤ 0.

Lemma 2.2. Let X be a real inner product space. Then:
(i) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ X .

(ii) ‖tx+ sy‖2 = t(t + s)‖x‖2 + s(t + s)‖y‖2− st‖x− y‖2, ∀x,y ∈ X ,∀s, t ∈ R.

Lemma 2.3. [1] Let D be a nonempty, convex, and closed subset of H and let T : D→ D be a
nonexpansive mapping with F(T ) 6= /0. Let {xn} be a sequence in D and let x be a vector in H.
If xn ⇀ x and xn−T xn→ 0, then x ∈ F(T ).

Lemma 2.4. [23] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1−αn)an +αnσn + γn, n≥ 1,
where (a) {an} ⊂ [0,1], ∑

∞
n=1 αn = ∞; (b) limsupσn ≤ 0; and (c) γn ≥ 0(n≥ 1), ∑

∞
n=1 γn < ∞.

Then an→ 0 as n→ ∞.

Lemma 2.5. [11] Let {Γn} be a real sequence, which does not decrease at infinity, in the sense
that there exists a subsequence {Γn j} j≥0 of {Γn} such that

Γn j < Γn j+1 for all j ≥ 0.

Let the integer sequence {τ(n)}n≥n0 be defined by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞ τ(n) = ∞, and, for all n ≥ n0,
the following two estimates hold:

Γτ(n) ≤ Γτ(n)+1, Γn ≤ Γτ(n)+1.
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3. CONVERGENCE ANALYSIS

Firstly, we give the strong convergence proof of the HKM iteration.

Theorem 3.1. Let {xn} be generated by the HKM iteration (1.7). Assume that {αn} and {βn}
are real sequences in (0,1) and conditions (C1) and (C6) hold. Then {xn} strongly converges
to z, where z := PF(T )u.

Proof. We first demonstrate that {xn} is a bounded sequence. Fix x̄ ∈ F(T ). It follows from
(1.7) and the nonexpansiveness of mapping T that

‖yn− x̄‖ ≤ βn‖xn− x̄‖+(1−βn)‖T xn− x̄‖
≤ ‖xn− x̄‖,

and

‖xn+1− x̄‖ ≤ αn‖u− x̄‖+(1−αn)‖Tyn− x̄‖
≤ αn‖u− x̄‖+(1−αn)‖yn− x̄‖
≤ αn‖u− x̄‖+(1−αn)‖xn− x̄‖
≤max{‖u− x̄‖,‖xn− x̄‖},

which indicates that
‖xn+1− x̄‖ ≤max{‖u− x̄‖,‖x0− x̄‖}.

Hence {xn} is bounded. Let Γn = ‖xn− z‖2. We now demonstrate that {xn} converges strongly
to z by considering two possible cases on {Γn}.

Case 1. Assume that there exists n0 ∈ N such that {Γn}∞
n=n0

is non-increasing. Thus {‖xn−
z‖}∞

n=1 converges, and we therefore obtain

‖xn− z‖−‖xn+1− z‖→ 0,n→ ∞. (3.1)

From Lemma 2.2 (i) and (ii), we have

‖xn+1− z‖2 ≤ (1−αn)
2‖Tyn− z‖2 +2αn〈u− z,xn+1− z〉

≤ (1−αn)‖yn− z‖2 +2αn〈u− z,xn+1− z〉

= (1−αn)‖βn(xn− z)+(1−βn)(T xn− z)‖2 +2αn〈u− z,xn+1− z〉

= (1−αn)
(
βn‖xn− z‖2 +(1−βn)‖T xn− z‖2−βn(1−βn)‖xn−T xn‖2)

+2αn〈u− z,xn+1− z〉

≤ (1−αn)‖xn− z‖2− (1−αn)βn(1−βn)‖xn−T xn‖2

+2αn〈u− z,xn+1− z〉. (3.2)

Using the boundedness of {xn}, one sees that

(1−αn)βn(1−βn)‖xn−T xn‖2

≤ (1−αn)‖xn− z‖2−‖xn+1− z‖2 +2αn〈u− z,xn+1− z〉

≤ ‖xn− z‖2−‖xn+1− z‖2 +2αn〈u− z,xn+1− z〉

≤ ‖xn− z‖2−‖xn+1− z‖2 +αnM1 (3.3)
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for some M1 > 0. By conditions (C1) and (C6), we can assume without loss of generality that
there exists ε1 > 0 such that (1−αn)βn(1−βn)≥ ε1 for all n≥ 0. Hence, we obtain from (3.3)
and (3.1) that

lim
n→∞
‖xn−T xn‖= 0. (3.4)

By the boundedness of {xn}, we can take a subsequence {xni} of {xn} such that

limsup
n→∞

〈u− z,xn− z〉= lim
i→∞
〈u− z,xni− z〉,

and xni ⇀ x∗. From Lemma 2.3 and (3.4), we obtain x∗ ∈ F(T ). This along with Lemma 2.1
implies that

limsup
n→∞

〈u− z,xn+1− z〉= limsup
n→∞

〈u− z,xn− z〉

= lim
i→∞
〈u− z,xni− z〉

= 〈u− z,x∗− z〉 ≤ 0.

It follows from (3.2) that

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2 +2αn〈u− z,xn+1− z〉. (3.5)

Applying Lemma 2.4 to (3.5), we obtain that limn→∞ ‖xn− z‖= 0. Thus, xn→ z = PF(T )u.
Case 2. Assume that there exists a subsequence {Γn j} of {Γn} such that Γn j < Γn j+1 for all

j ≥ 0. Let τ : N→ N be a mapping defined for all n≥ n0 (for some n0 large enough) by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then, according to Lemma 2.5, {τ(n)} is a non-decreasing sequence such that τ(n)→ ∞ as
n→ ∞ and

0≤ Γτ(n) ≤ Γτ(n)+1, ∀n≥ n0.

It follows from (3.3) that

(1−ατ(n))βτ(n)(1−βτ(n))‖xτ(n)−T xτ(n)‖2

≤ Γτ(n)−Γτ(n)+1 +2ατ(n)〈u− z,xτ(n)+1− z〉
≤ 2ατ(n)〈u− z,xτ(n)+1− z〉,

which implies that

‖xτ(n)−T xτ(n)‖→ 0. (3.6)

From the boundedness of {xn} and condition (C1), we obtain

‖xτ(n)+1− xτ(n)‖ ≤ ατ(n)‖u− xτ(n)‖+(1−ατ(n))‖Tyτ(n)− xτ(n)‖
≤ ατ(n)‖u− xτ(n)‖+‖Tyτ(n)−T xτ(n)‖+‖T xτ(n)− xτ(n)‖
≤ ατ(n)‖u− xτ(n)‖+‖yτ(n)− xτ(n)‖+‖T xτ(n)− xτ(n)‖
≤ ατ(n)‖u− xτ(n)‖+(1−βτ(n))‖T xτ(n)− xτ(n)‖+‖T xτ(n)− xτ(n)‖
≤ ατ(n)‖u− xτ(n)‖+2‖T xτ(n)− xτ(n)‖→ 0, n→ ∞. (3.7)
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Since {xτ(n)} is bounded, one sees that there exists a subsequence of {xτ(n)}, still denoted by
{xτ(n)}, which converges weakly to some x∗. From Lemma 2.3 and (3.6), we have x∗ ∈ F(T ).
This along with Lemma 2.1 implies that

limsup
n→∞

〈u− z,xτ(n)− z〉= 〈u− z,x∗− z〉 ≤ 0.

It follows from (3.7) that limsupn→∞〈u− z,xτ(n)+1− z〉 ≤ 0. From (3.5), we obtain

Γτ(n)+1 ≤ (1−ατ(n))Γτ(n)+2ατ(n)〈u− z,xτ(n)+1− z〉.
Thus, we have

ατ(n)Γτ(n) ≤ Γτ(n)−Γτ(n)+1 +2ατ(n)〈u− z,xτ(n)+1− z〉
≤ 2ατ(n)〈u− z,xτ(n)+1− z〉,

which implies that Γτ(n) ≤ 2〈u− z,xτ(n)+1− z〉, and

limsup
n→∞

Γτ(n) ≤ 2limsup
n→∞

〈u− z,xτ(n)+1− z〉 ≤ 0.

Therefore limn→∞ Γτ(n) = 0. It follows from (3.7) that√
Γτ(n)+1 = ‖xτ(n)+1− z‖

≤ ‖xτ(n)+1− xτ(n)+ xτ(n)− z‖

≤
√

Γτ(n)+‖xτ(n)+1− xτ(n)‖→ 0.

By Lemma 2.5, we obtain for all sufficiently large n that 0≤ Γn ≤ Γτ(n)+1. Hence limn→∞ Γn =
0. Therefore, {xn} converges strongly to z. �

Remark 3.2. The HKM iteration is actually composed of one-step Krasnosel’skiı̆-Mann itera-
tion and one-step Halpern iteration.

Secondly, the strong convergence theorem of the KMH iteration is given as follows.

Theorem 3.3. Let {xn} be generated by the KMH iteration (1.8). Assume that {αn} and {βn}
are real sequences in (0,1) and conditions (C1) and (C6) hold. Then {xn} strongly converges
to z, where z := PF(T )u.

Proof. We first demonstrate that {xn} and {yn} are bounded sequences. Fix x̄ ∈ F(T ). We
obtain from (1.8) and the nonexpansiveness of mapping T that

‖yn− x̄‖ ≤ αn‖u− x̄‖+(1−αn)‖T xn− x̄‖
≤ αn‖u− x̄‖+(1−αn)‖xn− x̄‖
≤max{‖u− x̄‖,‖xn− x̄‖}. (3.8)

Thus, we have

‖xn+1− x̄‖ ≤ βn‖yn− x̄‖+(1−βn)‖Tyn− x̄‖
≤ ‖yn− x̄‖
≤max{‖u− x̄‖,‖xn− x̄‖}.

Using induction, this implies that ‖xn+1− x̄‖ ≤ max{‖u− x̄‖,‖x0− x̄‖}. Therefore, {xn} is
bounded. From (3.8), one sees that {yn} is also bounded.
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Let Γn = ‖xn− z‖2. We now divide the proof into two possible cases.
Case 1. Suppose that there exists n0 ∈ N such that {Γn}∞

n=n0
is non-increasing. Then {‖xn−

z‖}∞
n=1 converges, and we therefore obtain

‖xn− z‖−‖xn+1− z‖→ 0,n→ ∞. (3.9)

From Lemma 2.2, we have

‖yn− z‖2 ≤ (1−αn)
2‖T xn− z‖2 +2αn〈u− z,yn− z〉

≤ (1−αn)‖xn− z‖2 +2αn〈u− z,yn− z〉

and

‖xn+1− z‖2 = βn‖yn− z‖2 +(1−βn)‖Tyn− z‖2−βn(1−βn)‖yn−Tyn‖2

≤ ‖yn− z‖2−βn(1−βn)‖yn−Tyn‖2

≤ (1−αn)‖xn− z‖2 +2αn〈u− z,yn− z〉−βn(1−βn)‖yn−Tyn‖2. (3.10)

It follows from the boundedness of {yn} that

βn(1−βn)‖yn−Tyn‖2 ≤ (1−αn)‖xn− z‖2−‖xn+1− z‖2 +2αn〈u− z,yn− z〉

≤ ‖xn− z‖2−‖xn+1− z‖2 +2αn〈u− z,yn− z〉

≤ ‖xn− z‖2−‖xn+1− z‖2 +αnM2 (3.11)

for some M2 > 0. From condition (C6), without loss of generality, we can assume that there
exists ε2 > 0 such that βn(1−βn) ≥ ε2 for all n ≥ 0. Hence, it follows from (3.11), (3.9), and
condition (C1) that

lim
n→∞
‖yn−Tyn‖= 0. (3.12)

By the boundedness of {yn}, we can take a subsequence {yni} of {yn} such that

limsup
n→∞

〈u− z,yn− z〉= lim
i→∞
〈u− z,yni− z〉,

and yni ⇀ y∗. From Lemma 2.3 and (3.12), we have y∗ ∈ F(T ). By Lemma 2.1, we obtain

limsup
n→∞

〈u− z,yn− z〉= lim
i→∞
〈u− z,yni− z〉= 〈u− z,y∗− z〉 ≤ 0.

It follows from (3.10) that

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2 +2αn〈u− z,yn− z〉. (3.13)

Applying Lemma 2.4 to (3.13) and using condition (C1), we have limn→∞ ‖xn− z‖= 0.
Case 2. Assume that there exists a subsequence {Γn j} of {Γn} such that Γn j < Γn j+1 for all

j ≥ 0. Let τ : N→ N be a mapping defined for all n≥ n0 (for some n0 large enough) by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then according to Lemma 2.5, {τ(n)} is a non-decreasing sequence such that τ(n)→ ∞ as
n→ ∞ and 0≤ Γτ(n) ≤ Γτ(n)+1 for all n≥ n0. It follows from (3.11) that

βτ(n)(1−βτ(n))‖yτ(n)−Tyτ(n)‖2 ≤ Γτ(n)−Γτ(n)+1 +2ατ(n)〈u− z,yτ(n)− z〉
≤ 2ατ(n)〈u− z,yτ(n)− z〉.
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This implies that

‖yτ(n)−Tyτ(n)‖→ 0. (3.14)

By the boundedness of {yτ(n)}, we can take a subsequence of {yτ(n)}, without loss of generality,
still denoted by {yτ(n)}, such that yτ(n) ⇀ y∗. This along with Lemma 2.3 and (3.14) implies
that y∗ ∈ F(T ). It follows from Lemma 2.1 that

limsup
n→∞

〈u− z,yτ(n)− z〉= 〈u− z,y∗− z〉 ≤ 0.

From (3.13), we obtain

Γτ(n)+1 ≤ (1−ατ(n))Γτ(n)+2ατ(n)〈u− z,yτ(n)− z〉. (3.15)

Thus, we have

ατ(n)Γτ(n) ≤ Γτ(n)−Γτ(n)+1 +2ατ(n)〈u− z,yτ(n)− z〉
≤ 2ατ(n)〈u− z,yτ(n)− z〉.

This implies that
limsup

n→∞

Γτ(n) ≤ 2limsup
n→∞

〈u− z,yτ(n)− z〉 ≤ 0,

and hence limn→∞ Γτ(n) = 0. This together with (3.15) implies that limn→∞ Γτ(n)+1 = 0. By
Lemma 2.5, we obtain for all sufficiently large n that 0≤ Γn ≤ Γτ(n)+1. Hence limn→∞ Γn = 0.
Therefore, {xn} converges strongly to z. �

Remark 3.4. The KMH iteration is actually composed of one-step Halpern iteration and one-
step Krasnosel’skiı̆-Mann iteration.

Remark 3.5. The two results in this paper remain true if one replaces the iteration with the
so-called viscosity process defined as follows: x0 ∈C,{

yn = βnxn +(1−βn)T xn,
xn+1 = αn f (yn)+(1−αn)Tyn,

(3.16)

or {
yn = αn f (xn)+(1−αn)T xn,
xn+1 = βnyn +(1−βn)Tyn,

(3.17)

where f is a contraction with coefficient ρ(0 < ρ < 1). Let {xn} be generated by (3.16) or
(3.17). Then, under conditions (C1) and (C6), {xn} strongly converges to z, where z is the
unique fixed point of PF(T ) f . For the proof technique, we refer to [13, 19, 24].

4. NUMERICAL EXPERIMENT

In this section, we present a numerical experiment to illustrate the performance of the pro-
posed algorithms. All algorithms are performed in MATLAB R2016a on an Intel(R) Core(TM)
i7-8565U laptop with 16 GB RAM.

Example 4.1. In this example, we apply our Algorithms to solve the classic two-sets convex
feasibility problem in finite-dimensional Euclidean space [4]. This problem is formally stated
as follows:

Find x∗ ∈ A∩B,
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where the feasible sets A,B ⊆ Rm are nonempty, convex, and closed sets. Let T = PAPB. It is
easy to verify that T is a nonexpansive mapping and F(T ) = A∩B.

We consider a two-sets convex feasibility problem where the two nonempty, convex, and
closed sets are A = {x ∈Rm | ‖x−O1‖ ≤ r1} and B = {x ∈Rm | ‖x−O2‖ ≤ r2}, which are both
balls, where Oi ∈ Rm and ri ∈ R+, i = 1,2.

We apply algorithms (1.3)-(1.8) to solve Example 4.1. In this example, we choose O1 =
(0,0, · · · ,0)T , O2 = (1,1,0,0, · · · ,0)T and r1 = r2 = 1. In all these algorithms, we take u =
(0,0, · · · ,0)T , αn =

1
n+1 , βn =

1
n+1 +

1
6 , and δ = 1

6 . We choose different values of m and x0, and
plot the graphs of Error = ‖xn+1− xn‖ against number of iterations n. The stopping criterion
is Error = ‖xn+1− xn‖ < ε = 10−6. The results are shown in Figure 1. From Figure 1, our
algorithms demonstrates better performance than the algorithms (1.3)-(1.6).
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FIGURE 1. Example 4.1: (a): m = 50, x0 ∈ Rm is generated from uniform dis-
tribution in the interval [0,1]; (b): m = 50, x0 ∈ Rm is generated from uniform
distribution in the interval [0,100]; (c): m = 100, x0 ∈Rm is generated from uni-
form distribution in the interval [0,1]; (d): m = 100, x0 ∈ Rm is generated from
uniform distribution in the interval [0,100].
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