
J. Nonlinear Funct. Anal. 2024 (2024) 5 https://doi.org/10.23952/jnfa.2024.5

TWO SELF-ADAPTIVE CQ ALGORITHMS FOR THE SPLIT FEASIBILITY
PROBLEM WITH MULTIPLE OUTPUT SETS

YAXUAN ZHANG∗, LIQIAN QIN

College of Science, Civil Aviation University of China, Tianjin 300300, China

Abstract. The split feasibility problem with multiple output sets is to find a point x∗ ∈
⋂t

i=1Ci such that
A jx∗ ∈ Q j, j = 1,2, ...,r where Ci ⊂ H and Q j ⊂ H j are nonempty, convex, and closed subsets, H and
H j are Hilbert spaces, and A j : H → H j are linear and bounded operators. In this paper, we present two
self-adaptive ball-relaxed CQ algorithms. Under mild conditions, we establish strong convergence and
provide numerical experiments to illustrate the effectiveness of the proposed algorithms.
Keywords. Ball-relaxation; CQ Algorithm; Inverse problem; Split feasibility problem with multiple
output sets; Self-adaptive step-size.

1. INTRODUCTION

Let C and Q be nonempty, convex, and closed subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1→ H2 be a bounded and linear operator with its adjoint A∗. The split
feasibility problem (SFP) is to find a vector x∗ such that

x∗ ∈C, Ax∗ ∈ Q. (1.1)

The SFP was first introduced by Censor and Elfving [5] for modeling certain inverse problem,
which plays an important role in medical image reconstruction and in signal processing [3, 4].
Various algorithms for solving (1.1) have been presented and analyzed recently. Among them,
a classical method for solving the SFP is Bryne’s CQ algorithm [3, 4] which does not involve
inverse matrix. The CQ algorithm is as follows:

xn+1 = PC(xn− τA∗(I−PQ)Axn), (1.2)

where PC denotes the metric projection onto set C, and the step-size τ is in (0,2/‖A‖).
It is known that the projections onto a general convex and closed subsets might be hard

to be implemented. If the convex sets have some particular structures, such as hyperplanes,

∗Corresponding author.
E-mail address: bunnyxuan@tju.edu.cn (Y. Zhang)
Received December 15, 2023; Accepted February 4, 2024.

c©2024 Journal of Nonlinear Functional Analysis

1

2 Y. ZHANG, L. QIN

half-spaces, balls, and so on, then they can be calculated explicitly. From the viewpoint of
computation, Yang [25] defined two sequences of half-spaces {Cn} and {Qn} by

Cn = {x ∈ H1| c(xn)+ 〈ξn,x− xn〉 ≤ 0}, (1.3)

and
Qn = {y ∈ H2| q(Axn)+ 〈ηn,y−Axn〉 ≤ 0}, (1.4)

where ξn ∈ ∂c(xn), ηn ∈ ∂q(Axn), c : H1→ (−∞,+∞], and q : H2→ (−∞,+∞] are convex and
subdifferentiable functions such that

C = {x ∈ H1 : c(x)≤ 0}, Q = {y ∈ H2 : q(y)≤ 0}.
Yang proved that C⊂Cn and Q⊂Qn and proposed the half-space relaxed CQ algorithm below:

xn+1 = PCn(xn− τA∗(I−PQn)Axn), (1.5)

where τ ∈ (0,2/‖A‖).
Yu et al. [26] introduced another ball-relaxed CQ method for solving the SFP under the

condition that functions c and q are ν-strongly convex lower semi-continuous and γ-strongly
convex lower semi-continuous, respectively. They defined two sequences of closed balls by

Cb
n = {x ∈ H1 : c(xn)+ 〈ξn,x− xn〉+

ν

2
‖x− xn‖2 ≤ 0},

and
Qb

n = {y ∈ H2 : q(Axn)+ 〈ηn,y−Axn〉+
γ

2
‖y−Axn‖2 ≤ 0},

where ξn ∈ ∂c(xn) and ηn ∈ ∂q(Axn). The ball-relaxed CQ algorithm is formulated as follows:

xn+1 = PCb
n
(xn− τ

b
n A∗(I−PQb

n
)Axn),

where τb
n is the step-size.

Note that the step-size τ in (1.2) and (1.5) depends on ‖A‖, the operator norm, which is hard
to compute or estimate in practice. Hence, authors introduced variable step-sizes that does not
require the calculation of the operator norm. In particular, López et al. [10] introduced the
following variable step-size in (1.2):

τn =
ρn f (xn)

‖∇ f (xn)‖2 ,

where 0 < ρn < 4 and f (x) = 1
2‖(I−PQ)Ax‖2. They proved the weak convergence of their

algorithm.
Recently, Ma et al. [15] introduced another kind of step-size which is bounded away from

zero as follows:

τn+1 =

{
min{ 2δ fn(xn)

‖∇ fn(xn)‖2 ,Φnτn +Ψn}, ∇ fn(xn) 6= 0,

Φnτn +Ψn , otherwise;

where δ ∈ (0,1), fn(xn) =
1
2‖(I−PQn)Axn‖2, {Φn} and {Ψn} are sequences of nonnegative

numbers such that {Φn} ⊂ [1,∞), ∑
∞
n=1(Φn−1)< ∞ and ∑

∞
n=1 Ψn < ∞.

In order to improve the convergence rate of the algorithms, the inertial acceleration was
widely applied. It was firstly proposed by Polyak in 1964 [17] for solving smooth convex
minimization problems. Inertial algorithms are a two-step iterative method and the next iterative
is defined by making use of the previous two iterates.

TWO SELF-ADAPTIVE CQ ALGORITHMS 3

In [1], Alvarez and Attouch employed the inertial extrapolation technique for improving the
performance of the celebrated proximal point algorithm. In [7], Sun et al. proposed an inertial
relaxed CQ algorithm by applying the inertial extrapolation technique in (1.5):{

ωn = xn +θn(xn− xn−1),

xn+1 = PCn(ωn− τA∗(I−PQn)Aωn),
(1.6)

where τ ∈ (0,2/‖A‖), θn ∈ [0,θn], θn =min{θ ,(max{n2‖xn−xn−1‖2, n2‖xn−xn−1‖})−1},θ ∈
(0,1), Cn and Qn are the half-space relaxations defined by (1.3) and (1.4). It was proved that the
iterative sequence generated by (1.6) is weakly convergent to a solution of the SFP. There are
many inertial algorithms that greatly improved the performance of their non-inertial versions;
see, e.g., [8, 11, 14, 21]

The multiple-sets split feasibility problem (MSSFP), introduced by Censor et al. [6], is to
find a vector x∗ ∈Ci such that

x∗ ∈Ci, Ax∗ ∈ Q j, i = 1,2, ..., t, j = 1,2, ...,r, (1.7)

where Ci, i = 1,2, ..., t and Q j, j = 1,2, ...,r are nonempty, convex and closed subsets of real
Hilbert spaces H1 and H2, respectively, and A : H1→ H2 be bounded and linear operator. Note
that x∗ solves the MSSFP if and only if the distance from x∗ to Ci is zero and the distance from
Ax∗ to Q j is also zero. Based on this idea, Censor et al. [6] defined the following proximity
function g(x) to measure the distance of a point to all sets:

g(x) :=
1
2

t

∑
i=1

ρi‖(I−PCi)x‖
2 +

1
2

r

∑
j=1

π j‖(I−PQ j)Ax‖2,

where ρi, i= 1,2, ..., t and π j, j = 1,2, ...,r are all positive constants with ∑
t
i=1 ρi+∑

r
j=1 π j = 1.

Then the gradient descent method can be applied to the algorithms; see, e.g., [12, 23, 24] for
pertinent results.

In 2020, Reich and Tuyen [20] proposed and studied the following split problem: let X and
X j, j = 1,2, ...,N be Banach or Hilbert spaces, and let A j : X → X j, j = 1,2, ...,N be mappings
from X to X j. Suppose that (P) and (Pj), j = 1,2, ...,N are N + 1 problems on X and X j,
respectively. Find a vector x∗ ∈ X such that x∗ is a solution to (P) and A jx∗ is a solution to
(Pj) for all j = 1,2, ...,N. As a special case of the split problem above, Reich et al. [18, 19, 20]
proposed and studied the following split feasibility problem with multiple output sets in Hilbert
spaces: let C and Q j, j = 1,2, ...,N be nonempty, convex and closed subsets of real Hilbert
spaces H and H j, j = 1,2, ...,N, respectively, and let A j : H → H j, j = 1,2, ...,N be bounded
and linear operators. Find a vector x∗ such that

x∗ ∈C, A jx∗ ∈ Q j, j = 1,2, ...,N. (1.8)

In this paper, we investigate the following problem: let Ci, i = 1,2, ..., t and Q j, j = 1,2, ...,r
be nonempty, convex and closed subsets of real Hilbert spaces H and H j, j = 1,2, ...,r, respec-
tively, and let A j : H→H j, j = 1,2, ...,r be bounded and linear operators with their adjoint A∗j .
Find a vector x∗ ∈ H with the property

x∗ ∈Ci, A jx∗ ∈ Q j, i = 1,2, ..., t, j = 1,2, ...,r. (1.9)

If i = j = 1, then problem (1.9) is reduced to problem (1.1). If A j ≡ A, then problem (1.9) is
reduced to problem (1.7). If i = 1, then problem (1.9) is reduced to problem (1.8). Let Ω denote

4 Y. ZHANG, L. QIN

the set of solutions of problem (1.9). Throughout this paper, one always assumes that Ω 6= /0.
Note that x∗ is a solution to problem (1.9) if and only if the distance from x∗ to Ci is zero and the
distance from A jx∗ to Q j is also zero. Similar with MSSFP (1.7), we can also define a proximity
function h(x) to measure the distance of a point to all sets:

h(x) :=
1
2

t

∑
i=1

ρi‖(I−PCb
i
)x‖2 +

1
2

r

∑
j=1

β j‖(I−PQb
j
)A jx‖2,

where ρi, i= 1,2, ..., t and β j, j = 1,2, ...,r are all positive constants with ∑
t
i=1 ρi = 1, ∑

r
j=1 β j =

1, Cb
i and Qb

j here are the ball relaxations of Ci and Q j defined as in (1.10) and (1.11) below.
This proximity function is convex and differentiable with gradient

∇h(x) =
t

∑
i=1

ρi(I−PCb
i
)x+

r

∑
j=1

β jA∗j(I−PQb
j
)A jx.

In this paper, we assume that the nonempty, convex and closed subsets Ci and Q j are defined
by:

Ci = {x ∈ H : ci(x)≤ 0} and Q j = {y ∈ H j : q j(y)≤ 0},

where ci : H → (−∞,+∞], i = 1,2, ..., t, and q j : H j → (−∞,+∞], j = 1,2, ...,r are νi- and
γ j-strongly convex lower semi-continuous functions, respectively, and each ci and q j are subd-
ifferentiable on H and H j, respectively.

Motivated by the algorithm proposed in [22] and [26], we introduce two ball-relaxed CQ
algorithms for solving the problem (1.9) in which the metric projections were computed onto
the closed balls Cb

i and Qb
j instead of the closed set Ci and Q j, respectively. For all n ∈ N, the

balls Cb
i,n are defined by

Cb
i,n = {x ∈ H1 : ci(xn)+ 〈ξi,n,x− xn〉+

νi

2
‖x− xn‖2 ≤ 0}, (1.10)

where ξi,n ∈ ∂ci(xn) is the subgradient of ci at xn, and

Qb
j,n = {y ∈ H2 : q j(A jxn)+ 〈η j,n,y−A jxn〉+

γ j

2
‖y−A jxn‖2 ≤ 0}, (1.11)

where η j,n ∈ ∂q j(A jxn) is the subgradient of q j at A jxn. In our algorithms, the step-size is
motivated by Ma et al. [15], which is bounded from zero. Under some mild conditions, we
establish strong convergence theorems of the proposed algorithms.

The paper is arranged as follows. In Section 2, some basic concepts and lemmas are proposed.
The main results are presented in Section 3. Numerical experiments are provided in Section 4,
the last section.

2. PRELIMINARIES

In this section, we recall some definitions and basic results that are used in this paper.
Throughout this paper, we always assume that H is a real Hilbert space. We borrow the sym-
bols ⇀ and → to represent the weak and strong convergence, respectively. For any sequence
{xn}, let ωn(xn) be the set of the weak cluster points of {xn}, that is, ωn(xn) = {x | ∃{xni} ⊂
{xn} such that xni ⇀ x, ni→ ∞}.

TWO SELF-ADAPTIVE CQ ALGORITHMS 5

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty closed convex subset of H, and T : C→ H be a mapping and recall the following
definitions.
(1) T is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C.

(2) T is said to be firmly nonexpansive if

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T)x− (I−T)y‖2, ∀x,y ∈C,

which is equivalent to

‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉, ∀x,y ∈C,

where I denotes the identity mapping.
For each x ∈ H, there exists a unique point PCx ∈C such that

‖x−PCx‖= inf
u∈C
‖x−u‖. (2.1)

The mapping PC : H→C defined by (2.1) is called the metric projection of H onto C.
We denote the set of fixed points of operator T by Fix(T), that is, Fix(T) = {x ∈ C | T x =

x}. Clearly, Fix(PC) = C. Moreover, the metric projection PC has the following well-known
properties.

Lemma 2.1. [2] Let C be a nonempty, convex and closed subset of a real Hilbert space H, and
let PC be the metric projection from H onto C. Then, for all x,y ∈ H and z ∈C,
(1) 〈x−PCx,z−PCx〉 ≤ 0;
(2) ‖PCx−PCy‖ ≤ ‖x− y‖;
(3) ‖PCx−PCy‖2 ≤ 〈x− y,PCx−PCy〉;
(4) ‖PCx− z‖2 ≤ ‖x− z‖2−‖x−PCx‖2;
(5) ‖(I−PC)x− (I−PC)y‖2 ≤ 〈x− y,(I−PC)x− (I−PC)y〉.
Definition 2.2. [2] Let f : H→ (−∞,+∞] be a proper function.

(1) f is lower semi-continuous at x if xn→ x implies f (x)≤ liminfn→∞ f (xn).
(2) f is weakly lower semi-continuous at x if xn ⇀ x implies f (x)≤ liminfn→∞ f (xn).
(3) f is lower semi-continuous on H if it is lower semi-continuous at every point x ∈ H and

f is weakly lower semi-continuous on H if it is weakly lower semi-continuous at every point
x ∈ H.

Lemma 2.3. [2] Let f : H → (−∞,+∞] be a proper and convex function. Then f is lower
semi-continuous if and only if it is weakly lower semi-continuous.

Definition 2.4. Let f : H → (−∞,+∞] be a proper function. A vector u ∈ H is a subgradient
of f at point x if f (y) ≥ f (x)+ 〈u,y− x〉 for all y ∈ H. The set of all subgradients of f at x,
denoted by ∂ f (x), is called the subdifferential of f at x. If ∂ f (x) 6= /0, then f is said to be
subdifferentiable at x.

If the function f is continuously differentiable, then ∂ f (x) = {∇ f (x)}.
Lemma 2.5. Let g : H → (−∞,+∞] be a strongly convex function with constant β . Then, for
all x,y ∈ H,

g(y)≥ g(x)+ 〈ξ ,y− x〉+ β

2
‖y− x‖2, ξ ∈ ∂g(x).

6 Y. ZHANG, L. QIN

Lemma 2.6. Let H be a real Hilbert spaces. Then, for all x,y ∈ H,

(1) ‖x± y‖2 = ‖x‖2 +‖y‖2±2〈x,y〉;
(2) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉;
(3) ‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2, ∀α ∈ R;
(4) ‖∑

m
i=1 αixi‖2 = ∑

m
i=1 αi‖xi‖2−∑i< j αiα j‖xi− x j‖2, ∀αi ∈ R, ∑

m
i=1 αi = 1, xi ∈ H.

Lemma 2.7. [16] Let {ϕn} be a sequence of nonnegative numbers fulfilling:

ϕn+1 ≤Φnϕn +Ψn, ∀n ∈ N,
where {Φn} and {Ψn} are sequences of nonnegative numbers with {Φn} ⊂ [1,∞), ∑

∞
n=1(Φn−

1)< ∞, and ∑
∞
n=1 Ψn < ∞. Then limn→∞ ϕn exists.

Lemma 2.8. [9] Assume that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1−αn)sn +αnbn, n≥ 0,

sn+1 ≤ sn−δn + γn, n≥ 0,
where {αn} is a sequence in (0,1), {δn} is a sequence of nonnegative real numbers, {αn},{bn}
and {γn} are three sequences in R such that
(i) ∑

∞
n=0 αn = ∞;

(ii) limn→∞ γn = 0;
(iii) limi→∞ δni = 0 yields limsupi→∞ bni ≤ 0 for any subsequence {ni} of {n}.
Then limn→∞ sn = 0.

Lemma 2.9. [13] Let {sn} be a sequence of nonnegative real numbers such that sn+1 ≤ (1−
αn)sn +αnbn, n≥ 0, where {αn} is a sequence in (0,1) and {bn} is a sequence of nonnegative
real numbers such that
(i) ∑

∞
n=0 |αnbn|< ∞, or limsupn→∞ bn ≤ 0;

(ii) ∑
∞
n=0 αn = ∞.

Then limn→∞ sn = 0.

3. ALGORITHMS AND THEIR CONVERGENCE

In this section, we introduce two inertial Halpern-type ball-relaxed CQ algorithms for solving
the split feasibility problem with multiple output sets in Hilbert spaces, and prove their strong
convergence under some mild conditions.

Algorithm 3.1. Step 0. Take τ1 > 0, λ1 > 0, δ1,δ2,δ3 ∈ (0,1), {θn} ⊂ [0,θ) ⊂ [0,1) and
{αn} ∈ (0,1). Choose the sequence {Φn},{Φn} and {Ψn},{Ψn} satisfying Lemma 2.7. Give
x0, x1, and u ∈ H arbitrarily. Let the integer n≥ 1.
Step 1. Compute ωn = xn +θn(xn− xn−1).
Step 2. Compute ui,n = PCb

i,n
ωn for all i = 1,2, ..., t and set

d1,n = max
i=1,...,t

{‖ui,n−ωn‖}, (3.1)

L1,n = {i ∈ {1, ..., t} : ‖ui,n−ωn‖= d1,n}.
Step 3. Compute v j,n = PQb

j,n
A jωn for all j = 1,2, ...,r and set

d2,n = max
j=1,...,r

{‖v j,n−A jωn‖}, (3.2)

TWO SELF-ADAPTIVE CQ ALGORITHMS 7

L2,n = { j ∈ {1, ...,r} : ‖v j,n−A jωn‖= d2,n}.
Step 4. Let Γn := max{d1,n,d2,n}. If Γn = d1,n, compute

zn = ωn− τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn, ρi,n > δ3, ∑

i∈L1,n

ρi,n = 1,

where τ1 = τ0, and for n≥ 2,

τn+1 =

min{ 2δ1(d1,n)
2

‖∑i∈L1,n
ρi,n(I−P

Cb
i,n
)ωn‖2 ,Φnτn +Ψn}, ‖∑i∈L1,n ρi,n(I−PCb

i,n
)ωn‖2 6= 0,

Φnτn +Ψn , otherwise.
(3.3)

If Γn = d2,n, compute

zn = ωn−λn ∑
j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn, β j,n > δ3, ∑

j∈L2,n

β j,n = 1,

where λ1 = λ0, and for n≥ 2,

λn+1 =

min{ 2δ2(d2,n)
2

‖∑ j∈L2,n
β j,nA∗j(I−P

Qb
j,n
)A jωn‖2 ,Φnλn +Ψn}, ‖∑ j∈L2,n β j,nA∗j(I−PQb

j,n
)A jωn‖2 6= 0,

Φnλn +Ψn , otherwise.

Step 5. Compute
xn+1 = αnu+(1−αn) ∑

i∈L1,n

ρi,nPCb
i,n

zn,

set n← n+1, and go to Step 1.

The following proposition shows the property of sequences {τn} and {λn}, which is useful
to the proof of our convergence theorems.

Proposition 3.2. Let {τn} and {λn} be the sequences generated by Algorithm 3.1. Then
limn→∞ τn = τ , limn→∞ λn = λ with τ ≥ min{2δ1,τ1} > 0, λ ≥ min{2δ2

M2 ,λ1} > 0, where M =
max1≤ j≤n ‖A j‖.

Proof. The definition of d1,n yields that

d1,n = ∑
i∈L1,n

ρi,n||(I−PCb
i,n
)ωn‖ ≥ ‖ ∑

i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖.

In the case of ‖∑i∈L1,n ρi,n(I−PCb
i,n
)ωn‖2 6= 0, we obtain that

2δ1(d1,n)
2

‖∑i∈L1,n ρi,n(I−PCb
i,n
)ωn‖2 ≥ 2δ1 > 0.

This further yields that

τn+1 = min{
2δ1(d1,n)

2

‖∑i∈L1,n ρi,n(I−PCb
i,n
)ωn‖2 ,Φnτn +Ψn}

≥min{2δ1,τn},
where we used the assumptions Φn ≥ 1 and Ψn ≥ 0.

8 Y. ZHANG, L. QIN

Next, we prove that sequence {τn} has a lower bound min{2δ1,τ1}. In fact, if n = 1, then
τ1 ≥ min{2δ1,τ1}. Suppose that the inequality τk ≥ min{2δ1,τ1} holds for n = k ≥ 1. When
n = k+1, one has

τk+1 ≥min{2δ1,τk} ≥min{2δ1,τ1}.
By induction, one sees that sequence {τn} has a lower bound min{2δ1,τ1}> 0. From (3.3), one
has τn+1 ≤Φnτn+Ψn. From Lemma 2.7, it follows that limn→∞ τn exists. Setting limn→∞ τn=τ ,
one has τ ≥min{2δ1,τ1}> 0.

Similarly, the definition of d2,n yields that

d2,n = ∑
j∈L2,n

β j,n‖(I−PQb
j,n
)A jωn‖ ≥ ‖ ∑

j∈L2,n

β j,n(I−PQb
j,n
)A jωn‖.

Thus
Md2,n ≥ ∑

j∈L2,n

β j,n‖A∗j‖‖(I−PQb
j,n
)A jωn‖

≥ ‖ ∑
j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖,

where M = max1≤ j≤n ‖A j‖. In the case of ‖∑ j∈L2,n β j,nA∗j(I−PQb
j,n
)A jωn‖2 6= 0, one concludes

that

λn+1 = min{
2δ2(d2,n)

2

‖∑ j∈L2,n β j,nA∗j(I−PQb
j,n
)A jωn‖2 ,Φnλn +Ψn}

≥min{2δ2

M2 ,λn}.

By induction, one can similarly obtains that {λn} has a lower bound min{2δ2
M2 ,λ1}> 0. Hence,

limn→∞ λn exists and

λ = lim
n→∞

λn ≥min{2δ2

M2 ,λ1}> 0.

�

Theorem 3.3. Assume that the solution set of (1.9) is nonempty, i.e., Ω 6= /0. Suppose that the
following conditions hold
(i) limn→∞ αn = 0, ∑

∞
n=1 αn = ∞;

(ii) limn→∞
θn‖xn−xn−1‖

αn
= 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to PΩu.

Proof. Let z = PΩu ∈ Ω. Since Ci ⊂Cb
i,n for all i = 1, ..., t and Q j ⊂ Qb

j,n for all j = 1, ...,r we
have z = PCiz = PCb

i,n
z and A jz = PQ jA jz = PQb

j,n
A jz. We consider the following two cases. Case

1. Γn = d1,n. From Lemma 2.1 (5), we have

〈ωn− z, ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn〉= 〈ωn− z, ∑

i∈L1,n

ρi,n(I−PCb
i,n
)ωn− ∑

i∈L1,n

ρi,n(I−PCb
i,n
)z〉

= ∑
i∈L1,n

ρi,n〈ωn− z,(I−PCb
i,n
)ωn− (I−PCb

i,n
)z〉

≥ ∑
i∈L1,n

ρi,n‖(I−PCb
i,n
)ωn‖2

= (d1,n)
2,

TWO SELF-ADAPTIVE CQ ALGORITHMS 9

which together with the definition of τn+1 yields that

‖zn− z‖2 = ‖ωn− z− τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2

= ‖ωn− z‖2 + τ
2
n‖ ∑

i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2−2τn〈ωn− z, ∑

i∈L1,n

ρi,n(I−PCb
i,n
)ωn〉

≤ ‖ωn− z‖2 + τ
2
n‖ ∑

i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2−2τn(d1,n)

2

≤ ‖ωn− z‖2 +2τn(d1,n)
2(

δ1τn

τn+1
−1).

Note that Proposition 3.2 indicates that

lim
n→∞

(1− δ1τn

τn+1
) = 1−δ1,

with δ1 ∈ (0,1). There exist a positive integer N and ρ ∈ (δ1,1) such that, for all n ≥ N,

1− δ1τn
τn+1

> 1−ρ > 0. Thus,

‖zn− z‖2 ≤ ‖ωn− z‖2 +2τn(d1,n)
2(ρ−1), n≥ N. (3.4)

Let yn = ∑i∈L1,n ρi,nPCb
i,n

zn. From Lemma 2.6 (4), Lemma 2.1 (4), and (3.4), we deduce that, for
all n≥ N,

‖yn− z‖2 = ‖ ∑
i∈L1,n

ρi,n(PCb
i,n

zn−PCb
i,n

z)‖2

≤ ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−PCb
i,n

z‖2

≤ ∑
i∈L1,n

ρi,n(‖zn− z‖2−‖(I−PCb
i,n
)zn‖2)

= ‖zn− z‖2− ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2

≤ ‖ωn− z‖2 +2τn(d1,n)
2(ρ−1)− ∑

i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2.

(3.5)
From the definition of ωn, it follows that

‖ωn− z‖= ‖xn +θn(xn− xn−1)− z‖
≤ ‖xn− z‖+θn‖xn− xn−1‖

= ‖xn− z‖+αn
θn

αn
‖xn− xn−1‖.

(3.6)

The condition (ii) reads that there is a constant M1 > 0 such that

θn

αn
‖xn− xn−1‖ ≤M1. (3.7)

Rearranging (3.5)-(3.7), we derive that, for all n≥ N,

‖yn− z‖ ≤ ‖xn− z‖+αnM1,

10 Y. ZHANG, L. QIN

and hence
‖xn+1− z‖ ≤ αn‖u− z‖+(1−αn)‖yn− z‖

≤ αn‖u− z‖+(1−αn)(‖xn− z‖+αnM1)

≤ αn(‖u− z‖+M1)+(1−αn)‖xn− z‖
≤max{‖xn− z‖,‖u− z‖+M1}
≤ · · · ≤max{‖xN− z‖,‖u− z‖+M1}.

This means that sequence {xn} is bounded, so {ωn} is bounded, too. By Lemma 2.6 (2) and
(3.5), we derive that, for all n≥ N,

‖xn+1− z‖2 ≤ (1−αn)‖yn− z‖2 +2αn〈u− z,xn+1− z〉

≤ (1−αn)(‖ωn− z‖2 +2τn(d1,n)
2(ρ−1)

− ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2)

+2αn〈u− z,xn+1− z〉.

(3.8)

By the definition of ωn, we have

‖ωn− z‖2 = ‖xn +θn(xn− xn−1)− z‖2

= ‖xn− z‖2 +θ
2
n ‖xn− xn−1‖2 +2θn〈xn− z,xn− xn−1〉

≤ ‖xn− z‖2 +θ
2
n ‖xn− xn−1‖2 +2θn‖xn− z‖‖xn− xn−1‖.

Let M2 = supn≥N{β‖xn− xn−1‖,‖xn− z‖}. For all n≥ N, we have

‖ωn− z‖2 ≤ ‖xn− z‖2 +3M2θn‖xn− xn−1‖. (3.9)

Substituting (3.9) into (3.8) yields that

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2−2(1−αn)τn(d1,n)
2(1−ρ)

+2αn〈u− z,xn+1− z〉+3M2θn‖xn− xn−1‖

− (1−αn) ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2.

(3.10)

Let
sn = ‖xn− z‖2,

γn = 3M2θn‖xn− xn−1‖+2αn〈u− z,xn+1− z〉,

bn = 3M2
θn

αn
‖xn− xn−1‖+2〈u− z,xn+1− z〉,

and

δn = 2(1−αn)τn(d1,n)
2(1−ρ)+(1−αn) ∑

i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn‖2.

Then (3.10) can be transformed to

sn+1 ≤ (1−αn)sn +αnbn, n≥ 0,

and
sn+1 ≤ sn−δn + γn, n≥ 0.

TWO SELF-ADAPTIVE CQ ALGORITHMS 11

Let {nk} be a subsequence of {n} such that limk→∞ δnk ≤ 0, which yields that

lim
k→∞

2(1−αnk)τnk(d1,nk)
2(1−ρ) = 0,

and
lim
k→∞

(1−αnk) ∑
i∈L1,nk

ρi,n‖PCb
i,nk

znk−ωnk + τnk ∑
i∈L1,nk

ρi,nk(I−PCb
i,nk

)ωnk‖
2 = 0.

By Proposition 3.2 and condition (i), we deduce that

lim
k→∞

d1,nk = 0,

and
lim
k→∞
‖PCb

i,nk
znk−ωnk + τnk ∑

i∈L1,nk

ρi,n(I−PCb
i,nk

)ωnk‖= 0.

Thus
lim
k→∞
‖(I−PCb

i,nk
)ωnk‖= 0, i = 1,2, ..., t,

and
lim
k→∞
‖(I−PQb

j,nk
)A jωnk‖= 0, j = 1,2, ...,r. (3.11)

Now, we prove that ωω(xnk) ⊂ Ω. Since {xnk} is bounded, then ωω(xnk) 6= /0. Take z∗ ∈
ωω(xnk) arbitrarily, there exists a subsequence {xnkm

} of {xnk} such that xnkm
⇀ z∗ and

limsup
k→∞

〈u− z,xnk− z〉= lim
k→∞
〈u− z,xnkm

− z〉.

The definition of ωnk and condition (ii) imply that

‖xnk−ωnk‖= θnk‖xnk− xnk−1‖= αnk

θnk

αnk

‖xnk− xnk−1‖→ 0, k→ ∞. (3.12)

Thus, ωnkm
⇀ z∗ and hence A jωnkm

⇀ A jz∗ for j = 1,2, ...,r. Since PQb
j,nkm

A jωnkm
∈ Qb

j,nkm
, it

follows from the definition of Qb
j,nkm

that, for each j = 1, ...,r,

q j(A jωnkm
)≤ 〈η j,nkm

,A jωnkm
−PQb

j,nkm
A jωnkm

〉−
γ j

2
‖A jωnkm

−PQb
j,nkm

A jωnkm
‖2, (3.13)

where η j,nkm
∈ ∂q j(A jωnkm

). Since ∂q j is bounded on bounded sets, there exists a constant
M3 > 0 such that ‖η j,nkm

‖ ≤M3. By (3.11) and (3.13), we obtain

q j(A jωnkm
)≤ ‖η j,nkm

‖‖(I−PQb
j,nkm

)A jωnkm
‖ ≤M3‖(I−PQb

j,nkm
)A jωnkm

‖→ 0, m→ ∞.

Thus q j being lower semi-continuous yields that

q j(A jz∗)≤ liminf
m→∞

q(A jωnkm
) = 0.

Therefore, A jz∗ ∈ Q j, j = 1,2, ...,r.
On the other hand, in view of PCb

i,nkm
ωnkm

∈Cb
i,nkm

, we obtain that

ci(ωnkm
)≤ 〈ξi,nkm

,ωnkm
−PCb

i,nkm
ωnkm
〉− νi

2
‖ωnkm

−PCb
i,nkm

ωnkm
‖2

≤ ‖ξi,nkm
‖‖(I−PCb

i,nkm
)ωnkm

‖

≤M4‖(I−PCb
i,nkm

)ωnkm
‖→ 0, m→ ∞,

12 Y. ZHANG, L. QIN

where M4 > 0 is a constant such that ‖ξi,nkm
‖ ≤M4, since ∂ci is bounded on bounded sets. This

together with ci being weakly lower semi-continuous yields

ci(z∗)≤ liminf
m→∞

c(ωnkm
) = 0, i = 1,2, ..., t.

Hence z∗ ∈Ci, i = 1,2, ..., t. Consequently, z∗ ∈Ω, and thus ωω(xnk)⊂Ω. Therefore, we obtain
by Lemma 2.1 (1) that

limsup
k→∞

〈u− z,xnk− z〉= lim
m→∞
〈u− z,xnkm

− z〉= 〈u− z,z∗− z〉 ≤ 0. (3.14)

Meanwhile, we also have
‖ynk−ωnk‖ ≤ ‖ynk−ωnk + τnk ∑

i∈L1,nk

ρi,nk(I−PCb
i,nk

)ωnk‖+ τnk ∑
i∈L1,nk

ρi,nk‖(I−PCb
i,nk

)ωnk‖→ 0

(3.15)
as k→ ∞. Thus condition (i), (3.12) and, (3.15) read that
‖xnk+1− xnk‖ ≤ ‖xnk+1−ωnk‖+‖ωnk− xnk‖

= ‖αnku+(1−αnk)ynk−ωnk‖+‖xnk−ωnk‖
≤ αnk‖u−ωnk‖+(1−αnk)‖ynk−ωnk‖+‖xnk−ωnk‖→ 0, k→ ∞.

(3.16)

Combining (3.14), (3.16), and condition (i), we obtain

lim
k→∞

supbnk = lim
k→∞

sup(2〈u− z,xnk+1− z〉+3M2
θnk

αnk

‖xnk− xnk−1‖)

= lim
k→∞

2〈u− z,xnk+1− xnk〉+ lim
k→∞

sup2〈u− z,xnk− z〉

+3M2 lim
k→∞

θnk

αnk

‖xnk− xnk−1‖ ≤ 0.

Therefore, it follows from Lemma 2.8 that {xn} converges strongly to the solution z = PΩu.
Case 2. Γn = d2,n. In this case, zn = ωn−λn ∑ j∈L2,n β j,nA∗j(I−PQb

j,n
)A jωn. From Lemma 2.1

(5), we have
〈ωn− z, ∑

j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn〉

= ∑
j∈L2,n

β j,n〈A jωn−A jz,(I−PQb
j,n
)A jωn− (I−PQb

j,n
)A jz〉

≥ ∑
j∈L2,n

β j,n‖(I−PQb
j,n
)A jωn‖2 = (d2,n)

2,

which together with the definition of λn+1 yields that

‖zn− z‖2

= ‖ωn− z−λn ∑
j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖2

= ‖ωn− z‖2 +λ
2
n ‖ ∑

j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖2−2λn〈ωn− z, ∑

j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn〉

≤ ‖ωn− z‖2 +λ
2
n ‖ ∑

j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖2−2λn(d2,n)

2

≤ ‖ωn− z‖2 +2λn(d2,n)
2(

δ2λn

λn+1
−1).

TWO SELF-ADAPTIVE CQ ALGORITHMS 13

Since limn→∞(1− δ2λn
λn+1

) = 1−δ2, and δ2 ∈ (0,1), there exist a positive integer Ñ and ρ̃ ∈ (δ2,1)

such that ∀n≥ Ñ,1− δ2λn
λn+1

> 1− ρ̃ > 0. Thus,

‖zn− z‖2 ≤ ‖ωn− z‖2 +2λn(d2,n)
2(ρ̃−1), n≥ Ñ. (3.17)

Let yn = ∑i∈L1,n ρi,nPCb
i,n

zn. From (3.17), we deduce that, for all n≥ Ñ,

‖yn− z‖2 = ‖ ∑
i∈L1,n

ρi,n(PCb
i,n

zn−PCb
i,n

z)‖2

≤ ∑
i∈L1,n

ρi,n(‖zn− z‖2−‖(I−PCb
i,n
)zn‖2)

= ‖zn− z‖2− ∑
i∈L1,n

ρi,n‖(I−PCb
i,n
)zn‖2

≤ ‖ωn− z‖2 +2λn(d2,n)
2(ρ̃−1)− ∑

i∈L1,n

ρi,n‖PCb
i,n

zn−ωn

+λn ∑
j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖2.

Similar as in Case 1, we obtain

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2−2(1−αn)λn(d2,n)
2(1− ρ̃)

+2αn〈u− z,xn+1− z〉+3M2θn‖xn− xn−1‖

− (1−αn) ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn +λn ∑
j∈L2,n

β j,nA∗j(I−PQb
j,n
)A jωn‖2.

Employing Lemma 2.8 again, we can also conclude that {xn} converges strongly to the solution
z∗ = PΩu. �

Remark 3.4. If, in Case1, ‖∑i∈L1,n ρi,n(I−PCb
i,n
)ωn‖= 0, which means

0 = 〈 ∑
i∈L1,n

ρi,n(I−PCb
i,n
)ωn,ωn− z〉 ≥ ∑

i∈L1,n

ρi,n‖(I−PCb
i,n
)ωn‖2 = (d1,n)

2 ≥ 0,

then we have by the definition of d1,n that

‖(I−PCb
i,n
)ωn‖= 0, i = 1, ..., t, (3.18a)

‖(I−PQb
j,n
)A jωn‖= 0, j = 1, ...,r. (3.18b)

If, in Case2, ‖∑ j∈L2,n β j,nA∗j(I−PQb
j,n
)A jωn‖ = 0, (3.18) also holds. Note that (3.18) implies

that ωn ∈ Ω. Thus the algorithm stops after a finite number of iterates. So in the proof of the
theorem and proposition, we assume that ‖∑i∈L1,n ρi,n(I−PCb

i,n
)ωn‖ 6= 0 and ‖∑ j∈L2,n β j,nA∗j(I−

PQb
j,n
)A jωn‖ 6= 0, i.e., we assume that the sequence {xn} generated by Algorithm 3.1 contains

infinity number of iterates.

Next, we present the second algorithm of this paper. In the following algorithm, the inertial
parameter θn is chosen as the same as in Algorithm 3.1.

Algorithm 3.5. Step 0. Take τ1 > 0, λ1 > 0, δ1,δ2 ⊂ (0,1), {θn} ⊂ [0,θ)⊂ [0,1) and {αn} ∈
(0,1). Choose the sequence {Φn},{Φn} and {Ψn},{Ψn} satisfying the Lemma 2.7. Give x0, x1,

14 Y. ZHANG, L. QIN

and u ∈ H arbitrarily. Let the integer n≥ 1.
Step 1. Compute ωn = xn +θn(xn− xn−1).
Step 2. Compute ui,n = PCb

i,n
ωn for all i = 1,2, ..., t and set

d1,n = max
i=1,...,t

{‖ui,n−ωn‖},

L1,n = {i ∈ {1, ..., t} : ‖ui,n−ωn‖= d1,n}.
Sstep 3. Compute v j,n = PQb

j,n
A jωn for all j = 1,2, ...,r and set

d2,n = max
j=1,...,r

{‖v j,n−A jωn‖},

L2,n = { j ∈ {1, ...,r} : ‖v j,n−A jωn‖= d2,n}.
Step 4. Choose m ∈ L1,n and s ∈ L2,n, and compute

zn = ωn− τn(I−PCb
m,n
)ωn−λnA∗s (I−PQb

s,n
)Asωn,

where τ1 = τ0, λ1 = λ0 and for n≥ 2,

τn+1 =

min{ δ1(d1,n)
2

‖(I−P
Cb

m,n
)ωn‖2 ,Φnτn +Ψn}, ‖(I−PCb

m,n
)ωn‖2 6= 0,

Φnτn +Ψn, otherwise;
(3.19)

λn+1 =

min{ δ2(d2,n)
2

‖A∗s (I−P
Qb

s,n
)Asωn‖2 ,Φnλn +Ψn, ‖A∗s (I−PQb

s,n
)Asωn‖2 6= 0,

Φnλn +Ψn, otherwise.
(3.20)

Step 5. Compute
xn+1 = αnu+(1−αn) ∑

i∈L1,n

ρi,nPCb
i,n

zn,

set n← n+1, and go to Step 1.

Proposition 3.6. Let {τn}, {λn} be the sequences generated by Algorithm 3.5. Then limn→∞ τn =

τ , limn→∞ λn = λ with τ ≥min{δ1,τ1}> 0, λ ≥min{ δ2
‖M‖2 ,λ1}> 0, where M =max1≤ j≤n ‖A j‖.

Proof. In the case of ‖(I−PCb
m,n
)ωn‖2 6= 0, one has ‖(I−PCb

m,n
)ωn‖= d1,n, so

τn+1 = min{
δ1(d1,n)

2

‖(I−PCb
m,n
)ωn‖2 ,Φnτn +Ψn} ≥min{δ1,τn},

where Φn≥ 1 and Ψn≥ 0. By induction, sequence {τn} has a positive lower bound min{δ1,τ1}.
From (3.19), we have τn+1 ≤ Φnτn +Ψn. Lemma 2.7 then reads that limn→∞ τn exists and we
denote limn→∞ τn=τ . It is obvious that τ > 0. In the case of ‖A∗s (I−PQb

s,n
)Asωn‖2 6= 0, similarly,

we have
Md2,n ≥ ‖A∗s‖‖(I−PQb

s,n
)Asωn‖ ≥ ‖A∗s (I−PQb

s,n
)Asωn‖,

where M = max1≤ j≤r ‖A j‖. This further presents that

λn+1 = min{
δ2(d2,n)

2

‖A∗s (I−PQb
s,n
)Asωn‖2 ,Φnλn +Ψn} ≥min{ δ2

M2 ,λn}.

TWO SELF-ADAPTIVE CQ ALGORITHMS 15

By induction, we can also obtain that sequence {λn} has a lower bound min{ δ2
M2 ,λ1}. Hence,

limn→∞ λn=λ > 0. �

Theorem 3.7. Assume that the solution set of (1.9) is nonempty, i.e., Ω 6= /0. Suppose that the
conditions (i) and (ii) in Theorem 3.3 hold. Then the sequence {xn} generated by Algorithm 3.5
converges strongly to PΩu.

Proof. Let z = PΩu. From Lemma 2.1 (5), we have

〈ωn− z,τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn〉

= τn〈ωn− z,(I−PCb
m,n
)ωn〉+λn〈ωn− z,A∗s (I−PQb

s,n
)Asωn〉

= τn〈ωn− z,(I−PCb
m,n
)ωn− (I−PCb

m,n
)z〉+λn〈Asωn−Asz,(I−PQb

s,n
)Asωn− (I−PQb

s,n
)z〉

≥ τn(d1,n)
2 +λn(d2,n)

2,

which together with (3.19) and (3.20) yields that

‖zn− z‖2 = ‖ωn− z‖2 +‖τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn‖2

−2〈ωn− z,τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn〉

≤ ‖ωn− z‖2 +2τ
2
n‖(I−PCb

m,n
)ωn‖2 +2λ

2
n ‖A∗s (I−PQb

s,n
)Asωn‖2

−2τn(d1,n)
2−2λn(d2,n)

2

≤ ‖ωn− z‖2 +2τn(d1,n)
2(

δ1τn

τn+1
−1)+2λn(d2,n)

2(
δ2λn

λn+1
−1).

Proposition 3.6 indicates that

lim
n→∞

(1− δ1τn

τn+1
) = 1−δ1, lim

n→∞
(1− δ2λn

λn+1
) = 1−δ2,

with δ1, δ2 ∈ (0,1). There exist a positive integer N and ρ ∈ (max{δ1, δ2},1) such that, for
all n≥ N, 1− δ1τn

τn+1
> 1−ρ > 0 and 1− δ2λn

λn+1
> 1−ρ > 0. Thus,

‖zn− z‖2 ≤ ‖ωn− z‖2 +2τn(d1,n)
2(ρ−1)+2λn(d2,n)

2(ρ−1), n≥ N. (3.21)

Let yn = ∑i∈L1,n ρi,nPCb
i,n

zn. From (3.21), we deduce that, for all n≥ N,

‖yn− z‖2 ≤ ∑
i∈L1,n

ρi,n(‖zn− z‖2−‖(I−PCb
i,n
)zn‖2)

≤ ‖ωn− z‖2 +2τn(d1,n)
2(ρ−1)+2λn(d2,n)

2(ρ−1)

− ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn‖2.

(3.22)

16 Y. ZHANG, L. QIN

Similar as in Algorithm 3.1, we have for all n≥ N that ‖yn− z‖ ≤ ‖xn− z‖+αnM1. It follows
that

‖xn+1− z‖ ≤ αn‖u− z‖+(1−αn)‖yn− z‖
≤ αn‖u− z‖+(1−αn)(‖xn− z‖+αnM1)

≤ αn(‖u− z‖+M1)+(1−αn)‖xn− z‖
≤max{‖xn− z‖,‖u− z‖+M1}
≤ · · · ≤max{‖xN− z‖,‖u− z‖+M1}.

This means that the sequence {xn} is bounded. Thus {ωn} is bounded, too. By (3.22) and
Lemma 2.6 (2), we derive that for all n≥ N

‖xn+1− z‖2 ≤ (1−αn)‖yn− z‖2 +2αn〈u− z,xn+1− z〉

≤ (1−αn)(‖ωn− z‖2 +2τn(d1,n)
2(ρ−1)+2λn(d2,n)

2(ρ−1)

− ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn‖2)

+2αn〈u− z,xn+1− z〉.
Observe that
‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2−2(1−αn)τn(d1,n)

2(1−ρ)−2(1−αn)λn(d2,n)
2(1−ρ)

+3M2θn‖xn− xn−1‖− (1−αn) ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn(I−PCb
m,n
)ωn

+λnA∗s (I−PQb
s,n
)Asωn‖2 +2αn〈u− z,xn+1− z〉.

(3.23)
where M2 = supn≥N{β‖xn− xn−1‖,‖xn− z‖}. Let

sn = ‖xn− z‖2,

γn = 3M2θn‖xn− xn−1‖+2αn〈u− z,xn+1− z〉,

bn = 2〈u− z,xn+1− z〉+3M2
θn

αn
‖xn− xn−1‖,

and
δn = 2(1−αn)(d1,n)

2(1−ρ)τn +2(1−αn)(d2,n)
2(1−ρ)λn

+(1−αn) ∑
i∈L1,n

ρi,n‖PCb
i,n

zn−ωn + τn(I−PCb
m,n
)ωn +λnA∗s (I−PQb

s,n
)Asωn‖2.

Then (3.23) can be transformed to the following inequlities:

sn+1 ≤ (1−αn)sn +αnbn, n≥ 0,

sn+1 ≤ sn−δn + γn, n≥ 0.
From Lemma 2.8, we see that the sequence {xn} generated by Algorithm 3.5 converges strongly
to z∗ = PΩu. �

Remark 3.8. In Algorithm 3.1 and Algorithm 3.5, one way to determine the inertial parameter
θn is

θn =

{
min{ εn

‖xn−xn−1‖ ,θ}, if xn 6= xn−1,

θ , otherwise;
(3.24)

TWO SELF-ADAPTIVE CQ ALGORITHMS 17

where {εn} is a positive sequence such that εn = o(αn), θ ∈ (0,1).

4. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments for the split feasibility problem with multi-
ple output sets in Hilbert spaces. Firstly, we compare our algorithms with the algorithm in [18]
and the algorithm in [19], which are denoted by MSP1 and MSP2, respectively. Secondly, we
both apply the ball-relaxed projection method and the half-space relaxation projection method
to our algorithm, which are denoted by BRM and HRM, respectively. All codes were writ-
ten in MATLAB R2018b and performed on a PC Desktop Intel(R) Core(TM) i7-8700 CPU @
3.20GHz 3.19 GHz, RAM 8.00 GB.

Example 4.1. Consider the following split feasibility problem with multiple output sets. Let
H1 = RN and H2 = RN(j+1) for each j = 1, ...,r. Let A j : RN → RN(j+1) be given by A j =
(apq)N×N(j+1) with randomly generated apq ∈ [−1,1]. Let N = 50 and r = 50. Find x∗ ∈ RN

with the property
x∗ ∈ ∩2

i=1Ci such that A jx∗ ∈ Q j, j = 1,2, ...,r,
where

C1 = {x ∈ RN :
N

∑
k=1

10
k−1
N−1 x2

k−1≤ 0},

C2 = {x ∈ RN :
N

∑
k=1

10
N−k
N−1 x2

k−1≤ 0},

and

Q j = {y ∈ RN(j+1) :
N(j+1)

∑
k= j

10
k−1

N(j+1)−1 y2
k−1≤ 0}.

Now, we investigate the numerical behavior of our proposed algorithms for different choices
of methods. For the convenience of comparison, we randomly generate an initial value x0,
which is used in the three algorithms simultaneously and set x−1 = x0. The inertial parameter
θn is defined in (3.24) with εn = 1

n2.1 and θ = 0.01. We use En = 1
2(d1,n + d2,n) to measure

the error of the n-th iterate, where d1,n and d2,n are defined by (3.1) and (3.2), respectively. If
En < 10−8, then the iteration progress stops.

In BRM and HRM, we set τ1 = λ1 = 0.1, Φn = Φn = 1+ 104

n1.1 , Ψn = Ψn = 0, δ1 = δ2 = δ ∈
(0,1), and αn =

1
n .

In MSP1, the sequence {xn} is generated by
ωn = xn +θn(xn− xn−1),

zn = ωn− γnA∗j̄(I−PQ j̄,n
)A j̄ωn,

xn+1 =
1
2(PC1,nzn +PC2,nzn),

where j̄ denotes the index such that ‖A j̄xn−PQ j̄,n
A j̄xn‖= max

j=1,...,r
{‖A jxn−PQ j,nA jxn‖}, γ1 = 0.1,

and γn is defined by

γn =

2δ‖A j̄xn−PQ j̄,n

A j̄xn‖2

‖A∗j̄(I−PQ j̄,n
)A j̄xn‖2 , if ‖A∗j̄(I−PQ j̄,n

)A j̄xn‖> 0,

0, otherwise,

18 Y. ZHANG, L. QIN

where δ ∈ (0,1), Ci,n and Q j,n denote the half-space relaxation of Ci and Q j, i= 1,2, j = 1, ...,r.
In MSP2, {xn} is generated by

ωn = xn +θn(xn− xn−1),

zn = ωn− γn ∑
r
j=1 A∗j(I−PQ j,n)A jωn,

xn+1 = αnu+(1−αn)
1
2(PC1,nzn +PC2,nzn),

where γ1 = 0.1, γn =
1.9

r max j=1,...,r{‖A j‖2} , and αn =
1

n+2 .
We consider two cases whether u is in the solution set or not. In Table 1, we take u =

(0.01,0.01,0, ...,0), which belongs to the solution set; in Table 2, we take u=(0.01,0.018,0, ...,0),
which does not belong to the solution set.

It is observed from Table 1 and Table 2 that as δ increases, BRM, HRM, and MSP1 take
fewer steps and less time to reach the stopping criterion. For each fixed δ , our algorithm out-
performs MSP1 and MSP2 in terms of the number of iterations and CPU time, which supports
the superiority of the step-size selection of our algorithms. BRM is better than HRM in terms
of CPU time even though they have the same number of iterations, which shows the advantage
of the ball-relaxed projection method over the half-space relaxation projection method for this
example.

TABLE 1. Computational Results with BRM, HRM, MSP1, and MSP2

δ
Iteration CPU time

BRM HRM MSP1 MSP2 BRM HRM MSP1 MSP2
0.1 10 10 126

34

0.4294 0.8151 5.3266

3.3603
0.3 6 6 44 0.3139 0.6451 1.9208
0.5 5 5 22 0.3792 0.4487 0.9215
0.7 4 4 13 0.2039 0.3479 0.7243
0.9 3 3 9 0.1624 0.4964 0.4990

TABLE 2. Computational Results with BRM, HRM, MSP1, and MSP2

δ
Iteration CPU time

BRM HRM MSP1 MSP2 BRM HRM MSP1 MSP2
0.2 9 9 65

35

0.3930 0.7792 2.7077

3.4197
0.4 6 6 32 0.2999 0.5801 1.4353
0.6 4 5 16 0.2458 0.4137 0.8247
0.8 4 4 11 0.2064 0.3045 0.5066

REFERENCES

[1] F. Alvarez, H. Atooch, An inertial proximal method for maximal monotone operators via discretization of a
nonlinear oscillator with damping, Set-Valued Anal. 9 (2001) 3-11.

[2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer,
New York, 2011.

TWO SELF-ADAPTIVE CQ ALGORITHMS 19

[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse. Probl. 18
(2002) 441-453.

[4] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction,
Inverse. Probl. 20 (2004) 103-120.

[5] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algo.
8 (1994) 221-239.

[6] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for
inverse problems, Inverse. Probl. 21 (2005) 2071-2084.

[7] Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problems, J. Ind. Manag.
Optim. 13 (2017) 1383-1394.

[8] Q.L. Dong, L. Liu, X. Qin, J.C. Yao, An alternated inertial general splitting method with linearization for the
split feasibility problem, Optimmization, 72 (2023) 2585-2607.

[9] S. He, C. Yang, Solving the variational inequality problem defined on intersection of finite level sets, Abstr.
Appl. Anal. 2013 (2013) 942315.

[10] G. López, V. Martı́n, F. Wang, et al., Solving the split feasibility problem without prior knowledge of matrix
norms, Inverse. Probl. 28 (2012) 085004.

[11] D.A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging
Vis. 51 (2015) 311-325.

[12] H. Li, Y. Wu, F. Wang, New inertial relaxed CQ algorithms for solving split feasibility problems in Hilbert
spaces, J. Math. 2021 (2021) 6624509.

[13] L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach
spaces, J. Math. Anal. Appl. 194 (1995) 114-125.

[14] P.E. Maingé, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set. Valued
Anal. 15 (2007) 67-79.

[15] X. Ma, H. Liu, An inertial Halpern-type CQ algorithm for solving split feasibility problems in Hilbert spaces,
J. Appl. Math. Comput. 68 (2022) 1699-1717.

[16] M.O. Osilike, S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically
nonexpansive mappings, Math. Comput. Model. 32 (2000) 1181-1191.

[17] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math.
Math. Phys. 4 (1964) 1-17.

[18] S. Reich, T.M. Tuyen, M.T.N. Ha, An optimization approach to solving the split feasibility problem in Hilbert
spaces, J. Global Optim. 79 (2021) 837-852.

[19] S. Reich, T.M. Tuyen, M.T.N. Ha, The split feasibility problem with multiple output sets in Hilbert spaces,
Optim. Lett. 14 (2020) 2335-2353.

[20] S. Reich, T.M. Tuyen, Iterative methods for solving the generalized split common null point problem in
Hilbert spaces, Optimization 69 (2020) 1013-1038.

[21] B. Tan, S.Y. Cho, J.C. Yao, Acclerated inertial subgradient extragradient algorithms with non-monotonic step
sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal. 6 (2022) 89-122.

[22] G.H. Taddele, P. Kumam, A.G. Gebrie, Ball-relaxed projection algorithms for multiple-sets split feasibility
problem, Optimization 21 (2021) 3571-3601.

[23] F. Wang, H. Yu, An inertial relaxed CQ algorithm with an application to the LASSO and elastic net, Opti-
mization 18 (2020) 1101-1119.

[24] F. Wang, The split feasibility problem with multiple output sets for demicontractive mappings, J. Optim.
Theory Appl. 195 (2022) 837-853.

[25] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse. Probl. 20 (2004) 1261-1266.
[26] H. Yu, W. Zhan, F. Wang, The ball-relaxed CQ algorithms for the split feasibility problem, Optimization 67

(2018) 1687-1699.

	1. Introduction
	2. Preliminaries
	3. Algorithms and Their Convergence
	4. Numerical Experiments
	References

