# TWO SELF-ADAPTIVE CQ ALGORITHMS FOR THE SPLIT FEASIBILITY PROBLEM WITH MULTIPLE OUTPUT SETS 

YAXUAN ZHANG*, LIQIAN QIN<br>College of Science, Civil Aviation University of China, Tianjin 300300, China


#### Abstract

The split feasibility problem with multiple output sets is to find a point $x^{*} \in \bigcap_{i=1}^{t} C_{i}$ such that $A_{j} x^{*} \in Q_{j}, j=1,2, \ldots, r$ where $C_{i} \subset H$ and $Q_{j} \subset H_{j}$ are nonempty, convex, and closed subsets, $H$ and $H_{j}$ are Hilbert spaces, and $A_{j}: H \rightarrow H_{j}$ are linear and bounded operators. In this paper, we present two self-adaptive ball-relaxed CQ algorithms. Under mild conditions, we establish strong convergence and provide numerical experiments to illustrate the effectiveness of the proposed algorithms.


Keywords. Ball-relaxation; CQ Algorithm; Inverse problem; Split feasibility problem with multiple output sets; Self-adaptive step-size.

## 1. Introduction

Let $C$ and $Q$ be nonempty, convex, and closed subsets of real Hilbert spaces $H_{1}$ and $H_{2}$, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a bounded and linear operator with its adjoint $A^{*}$. The split feasibility problem (SFP) is to find a vector $x^{*}$ such that

$$
\begin{equation*}
x^{*} \in C, \quad A x^{*} \in Q \tag{1.1}
\end{equation*}
$$

The SFP was first introduced by Censor and Elfving [5] for modeling certain inverse problem, which plays an important role in medical image reconstruction and in signal processing [3, 4]. Various algorithms for solving (1.1) have been presented and analyzed recently. Among them, a classical method for solving the SFP is Bryne's CQ algorithm [3, 4] which does not involve inverse matrix. The CQ algorithm is as follows:

$$
\begin{equation*}
x_{n+1}=P_{C}\left(x_{n}-\tau A^{*}\left(I-P_{Q}\right) A x_{n}\right) \tag{1.2}
\end{equation*}
$$

where $P_{C}$ denotes the metric projection onto set $C$, and the step-size $\tau$ is in $(0,2 /\|A\|)$.
It is known that the projections onto a general convex and closed subsets might be hard to be implemented. If the convex sets have some particular structures, such as hyperplanes,

[^0]half-spaces, balls, and so on, then they can be calculated explicitly. From the viewpoint of computation, Yang [25] defined two sequences of half-spaces $\left\{C_{n}\right\}$ and $\left\{Q_{n}\right\}$ by
\[

$$
\begin{equation*}
C_{n}=\left\{x \in H_{1} \mid c\left(x_{n}\right)+\left\langle\xi_{n}, x-x_{n}\right\rangle \leq 0\right\} \tag{1.3}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
Q_{n}=\left\{y \in H_{2} \mid q\left(A x_{n}\right)+\left\langle\eta_{n}, y-A x_{n}\right\rangle \leq 0\right\}, \tag{1.4}
\end{equation*}
$$

where $\xi_{n} \in \partial c\left(x_{n}\right), \eta_{n} \in \partial q\left(A x_{n}\right), c: H_{1} \rightarrow(-\infty,+\infty]$, and $q: H_{2} \rightarrow(-\infty,+\infty]$ are convex and subdifferentiable functions such that

$$
C=\left\{x \in H_{1}: c(x) \leq 0\right\}, \quad Q=\left\{y \in H_{2}: q(y) \leq 0\right\} .
$$

Yang proved that $C \subset C_{n}$ and $Q \subset Q_{n}$ and proposed the half-space relaxed CQ algorithm below:

$$
\begin{equation*}
x_{n+1}=P_{C_{n}}\left(x_{n}-\tau A^{*}\left(I-P_{Q_{n}}\right) A x_{n}\right), \tag{1.5}
\end{equation*}
$$

where $\tau \in(0,2 /\|A\|)$.
Yu et al. [26] introduced another ball-relaxed CQ method for solving the SFP under the condition that functions $c$ and $q$ are $v$-strongly convex lower semi-continuous and $\gamma$-strongly convex lower semi-continuous, respectively. They defined two sequences of closed balls by

$$
C_{n}^{b}=\left\{x \in H_{1}: c\left(x_{n}\right)+\left\langle\xi_{n}, x-x_{n}\right\rangle+\frac{v}{2}\left\|x-x_{n}\right\|^{2} \leq 0\right\}
$$

and

$$
Q_{n}^{b}=\left\{y \in H_{2}: q\left(A x_{n}\right)+\left\langle\eta_{n}, y-A x_{n}\right\rangle+\frac{\gamma}{2}\left\|y-A x_{n}\right\|^{2} \leq 0\right\},
$$

where $\xi_{n} \in \partial c\left(x_{n}\right)$ and $\eta_{n} \in \partial q\left(A x_{n}\right)$. The ball-relaxed CQ algorithm is formulated as follows:

$$
x_{n+1}=P_{C_{n}^{b}}\left(x_{n}-\tau_{n}^{b} A^{*}\left(I-P_{Q_{n}^{b}}\right) A x_{n}\right),
$$

where $\tau_{n}^{b}$ is the step-size.
Note that the step-size $\tau$ in (1.2) and (1.5) depends on $\|A\|$, the operator norm, which is hard to compute or estimate in practice. Hence, authors introduced variable step-sizes that does not require the calculation of the operator norm. In particular, López et al. [10] introduced the following variable step-size in (1.2):

$$
\tau_{n}=\frac{\rho_{n} f\left(x_{n}\right)}{\left\|\nabla f\left(x_{n}\right)\right\|^{2}}
$$

where $0<\rho_{n}<4$ and $f(x)=\frac{1}{2}\left\|\left(I-P_{Q}\right) A x\right\|^{2}$. They proved the weak convergence of their algorithm.

Recently, Ma et al. [15] introduced another kind of step-size which is bounded away from zero as follows:

$$
\tau_{n+1}= \begin{cases}\min \left\{\frac{2 \delta f_{n}\left(x_{n}\right)}{\left\|\nabla f_{n}\left(x_{n}\right)\right\|^{2}}, \Phi_{n} \tau_{n}+\Psi_{n}\right\}, & \nabla f_{n}\left(x_{n}\right) \neq 0 \\ \Phi_{n} \tau_{n}+\Psi_{n}, & \text { otherwise }\end{cases}
$$

where $\delta \in(0,1), f_{n}\left(x_{n}\right)=\frac{1}{2}\left\|\left(I-P_{Q_{n}}\right) A x_{n}\right\|^{2},\left\{\Phi_{n}\right\}$ and $\left\{\Psi_{n}\right\}$ are sequences of nonnegative numbers such that $\left\{\Phi_{n}\right\} \subset[1, \infty), \sum_{n=1}^{\infty}\left(\Phi_{n}-1\right)<\infty$ and $\sum_{n=1}^{\infty} \Psi_{n}<\infty$.

In order to improve the convergence rate of the algorithms, the inertial acceleration was widely applied. It was firstly proposed by Polyak in 1964 [17] for solving smooth convex minimization problems. Inertial algorithms are a two-step iterative method and the next iterative is defined by making use of the previous two iterates.

In [1], Alvarez and Attouch employed the inertial extrapolation technique for improving the performance of the celebrated proximal point algorithm. In [7], Sun et al. proposed an inertial relaxed CQ algorithm by applying the inertial extrapolation technique in (1.5):

$$
\left\{\begin{array}{l}
\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)  \tag{1.6}\\
x_{n+1}=P_{C_{n}}\left(\omega_{n}-\tau A^{*}\left(I-P_{Q_{n}}\right) A \omega_{n}\right)
\end{array}\right.
$$

where $\tau \in(0,2 /\|A\|), \theta_{n} \in\left[0, \overline{\theta_{n}}\right], \overline{\theta_{n}}=\min \left\{\theta,\left(\max \left\{n^{2}\left\|x_{n}-x_{n-1}\right\|^{2}, n^{2}\left\|x_{n}-x_{n-1}\right\|\right\}\right)^{-1}\right\}, \theta \in$ $(0,1), C_{n}$ and $Q_{n}$ are the half-space relaxations defined by (1.3) and (1.4). It was proved that the iterative sequence generated by (1.6) is weakly convergent to a solution of the SFP. There are many inertial algorithms that greatly improved the performance of their non-inertial versions; see, e.g., $[8,11,14,21]$

The multiple-sets split feasibility problem (MSSFP), introduced by Censor et al. [6], is to find a vector $x^{*} \in C_{i}$ such that

$$
\begin{equation*}
x^{*} \in C_{i}, \quad A x^{*} \in Q_{j}, \quad i=1,2, \ldots, t, j=1,2, \ldots, r \tag{1.7}
\end{equation*}
$$

where $C_{i}, i=1,2, \ldots, t$ and $Q_{j}, j=1,2, \ldots, r$ are nonempty, convex and closed subsets of real Hilbert spaces $H_{1}$ and $H_{2}$, respectively, and $A: H_{1} \rightarrow H_{2}$ be bounded and linear operator. Note that $x^{*}$ solves the MSSFP if and only if the distance from $x^{*}$ to $C_{i}$ is zero and the distance from $A x^{*}$ to $Q_{j}$ is also zero. Based on this idea, Censor et al. [6] defined the following proximity function $g(x)$ to measure the distance of a point to all sets:

$$
g(x):=\frac{1}{2} \sum_{i=1}^{t} \rho_{i}\left\|\left(I-P_{C_{i}}\right) x\right\|^{2}+\frac{1}{2} \sum_{j=1}^{r} \pi_{j}\left\|\left(I-P_{Q_{j}}\right) A x\right\|^{2}
$$

where $\rho_{i}, i=1,2, \ldots, t$ and $\pi_{j}, j=1,2, \ldots, r$ are all positive constants with $\sum_{i=1}^{t} \rho_{i}+\sum_{j=1}^{r} \pi_{j}=1$. Then the gradient descent method can be applied to the algorithms; see, e.g., [12, 23, 24] for pertinent results.

In 2020, Reich and Tuyen [20] proposed and studied the following split problem: let $X$ and $X_{j}, j=1,2, \ldots, N$ be Banach or Hilbert spaces, and let $A_{j}: X \rightarrow X_{j}, j=1,2, \ldots, N$ be mappings from $X$ to $X_{j}$. Suppose that $(P)$ and $\left(P_{j}\right), j=1,2, \ldots, N$ are $N+1$ problems on $X$ and $X_{j}$, respectively. Find a vector $x^{*} \in X$ such that $x^{*}$ is a solution to $(P)$ and $A_{j} x^{*}$ is a solution to $\left(P_{j}\right)$ for all $j=1,2, \ldots, N$. As a special case of the split problem above, Reich et al. [18, 19, 20] proposed and studied the following split feasibility problem with multiple output sets in Hilbert spaces: let $C$ and $Q_{j}, j=1,2, \ldots, N$ be nonempty, convex and closed subsets of real Hilbert spaces $H$ and $H_{j}, j=1,2, \ldots, N$, respectively, and let $A_{j}: H \rightarrow H_{j}, j=1,2, \ldots, N$ be bounded and linear operators. Find a vector $x^{*}$ such that

$$
\begin{equation*}
x^{*} \in C, \quad A_{j} x^{*} \in Q_{j}, \quad j=1,2, \ldots, N . \tag{1.8}
\end{equation*}
$$

In this paper, we investigate the following problem: let $C_{i}, i=1,2, \ldots, t$ and $Q_{j}, j=1,2, \ldots, r$ be nonempty, convex and closed subsets of real Hilbert spaces $H$ and $H_{j}, j=1,2, \ldots, r$, respectively, and let $A_{j}: H \rightarrow H_{j}, j=1,2, \ldots, r$ be bounded and linear operators with their adjoint $A_{j}^{*}$. Find a vector $x^{*} \in H$ with the property

$$
\begin{equation*}
x^{*} \in C_{i}, \quad A_{j} x^{*} \in Q_{j}, \quad i=1,2, \ldots, t, j=1,2, \ldots, r \tag{1.9}
\end{equation*}
$$

If $i=j=1$, then problem (1.9) is reduced to problem (1.1). If $A_{j} \equiv A$, then problem (1.9) is reduced to problem (1.7). If $i=1$, then problem (1.9) is reduced to problem (1.8). Let $\Omega$ denote
the set of solutions of problem (1.9). Throughout this paper, one always assumes that $\Omega \neq \emptyset$. Note that $x^{*}$ is a solution to problem (1.9) if and only if the distance from $x^{*}$ to $C_{i}$ is zero and the distance from $A_{j} x^{*}$ to $Q_{j}$ is also zero. Similar with $\operatorname{MSSFP}$ (1.7), we can also define a proximity function $h(x)$ to measure the distance of a point to all sets:

$$
h(x):=\frac{1}{2} \sum_{i=1}^{t} \rho_{i}\left\|\left(I-P_{C_{i}^{b}}\right) x\right\|^{2}+\frac{1}{2} \sum_{j=1}^{r} \beta_{j}\left\|\left(I-P_{Q_{j}^{b}}\right) A_{j} x\right\|^{2}
$$

where $\rho_{i}, i=1,2, \ldots, t$ and $\beta_{j}, j=1,2, \ldots, r$ are all positive constants with $\sum_{i=1}^{t} \rho_{i}=1, \sum_{j=1}^{r} \beta_{j}=$ $1, C_{i}^{b}$ and $Q_{j}^{b}$ here are the ball relaxations of $C_{i}$ and $Q_{j}$ defined as in (1.10) and (1.11) below. This proximity function is convex and differentiable with gradient

$$
\nabla h(x)=\sum_{i=1}^{t} \rho_{i}\left(I-P_{C_{i}^{b}}\right) x+\sum_{j=1}^{r} \beta_{j} A_{j}^{*}\left(I-P_{Q_{j}^{b}}\right) A_{j} x
$$

In this paper, we assume that the nonempty, convex and closed subsets $C_{i}$ and $Q_{j}$ are defined by:

$$
C_{i}=\left\{x \in H: c_{i}(x) \leq 0\right\} \quad \text { and } \quad Q_{j}=\left\{y \in H_{j}: q_{j}(y) \leq 0\right\}
$$

where $c_{i}: H \rightarrow(-\infty,+\infty], i=1,2, \ldots, t$, and $q_{j}: H_{j} \rightarrow(-\infty,+\infty], j=1,2, \ldots, r$ are $v_{i^{-}}$and $\gamma_{j}$-strongly convex lower semi-continuous functions, respectively, and each $c_{i}$ and $q_{j}$ are subdifferentiable on $H$ and $H_{j}$, respectively.

Motivated by the algorithm proposed in [22] and [26], we introduce two ball-relaxed CQ algorithms for solving the problem (1.9) in which the metric projections were computed onto the closed balls $C_{i}^{b}$ and $Q_{j}^{b}$ instead of the closed set $C_{i}$ and $Q_{j}$, respectively. For all $n \in \mathbb{N}$, the balls $C_{i, n}^{b}$ are defined by

$$
\begin{equation*}
C_{i, n}^{b}=\left\{x \in H_{1}: c_{i}\left(x_{n}\right)+\left\langle\xi_{i, n}, x-x_{n}\right\rangle+\frac{v_{i}}{2}\left\|x-x_{n}\right\|^{2} \leq 0\right\} \tag{1.10}
\end{equation*}
$$

where $\xi_{i, n} \in \partial c_{i}\left(x_{n}\right)$ is the subgradient of $c_{i}$ at $x_{n}$, and

$$
\begin{equation*}
Q_{j, n}^{b}=\left\{y \in H_{2}: q_{j}\left(A_{j} x_{n}\right)+\left\langle\eta_{j, n}, y-A_{j} x_{n}\right\rangle+\frac{\gamma_{j}}{2}\left\|y-A_{j} x_{n}\right\|^{2} \leq 0\right\} \tag{1.11}
\end{equation*}
$$

where $\eta_{j, n} \in \partial q_{j}\left(A_{j} x_{n}\right)$ is the subgradient of $q_{j}$ at $A_{j} x_{n}$. In our algorithms, the step-size is motivated by Ma et al. [15], which is bounded from zero. Under some mild conditions, we establish strong convergence theorems of the proposed algorithms.

The paper is arranged as follows. In Section 2, some basic concepts and lemmas are proposed. The main results are presented in Section 3. Numerical experiments are provided in Section 4, the last section.

## 2. Preliminaries

In this section, we recall some definitions and basic results that are used in this paper. Throughout this paper, we always assume that $H$ is a real Hilbert space. We borrow the symbols $\rightharpoonup$ and $\rightarrow$ to represent the weak and strong convergence, respectively. For any sequence $\left\{x_{n}\right\}$, let $\omega_{n}\left(x_{n}\right)$ be the set of the weak cluster points of $\left\{x_{n}\right\}$, that is, $\omega_{n}\left(x_{n}\right)=\left\{x \mid \exists\left\{x_{n_{i}}\right\} \subset\right.$ $\left\{x_{n}\right\}$ such that $\left.x_{n_{i}} \rightharpoonup x, n_{i} \rightarrow \infty\right\}$.

Let $H$ be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let $C$ be a nonempty closed convex subset of $H$, and $T: C \rightarrow H$ be a mapping and recall the following definitions.
(1) $T$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

(2) $T$ is said to be firmly nonexpansive if

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C
$$

which is equivalent to

$$
\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle, \quad \forall x, y \in C
$$

where $I$ denotes the identity mapping.
For each $x \in H$, there exists a unique point $P_{C} x \in C$ such that

$$
\begin{equation*}
\left\|x-P_{C} x\right\|=\inf _{u \in C}\|x-u\| . \tag{2.1}
\end{equation*}
$$

The mapping $P_{C}: H \rightarrow C$ defined by (2.1) is called the metric projection of $H$ onto $C$.
We denote the set of fixed points of operator $T$ by $\operatorname{Fix}(T)$, that is, $\operatorname{Fix}(T)=\{x \in C \mid T x=$ $x\}$. Clearly, $\operatorname{Fix}\left(P_{C}\right)=C$. Moreover, the metric projection $P_{C}$ has the following well-known properties.
Lemma 2.1. [2] Let C be a nonempty, convex and closed subset of a real Hilbert space H, and let $P_{C}$ be the metric projection from $H$ onto $C$. Then, for all $x, y \in H$ and $z \in C$,
(1) $\left\langle x-P_{C} x, z-P_{C} x\right\rangle \leq 0$;
(2) $\left\|P_{C} x-P_{C} y\right\| \leq\|x-y\|$;
(3) $\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle x-y, P_{C} x-P_{C} y\right\rangle$;
(4) $\left\|P_{C} x-z\right\|^{2} \leq\|x-z\|^{2}-\left\|x-P_{C} x\right\|^{2}$;
(5) $\left\|\left(I-P_{C}\right) x-\left(I-P_{C}\right) y\right\|^{2} \leq\left\langle x-y,\left(I-P_{C}\right) x-\left(I-P_{C}\right) y\right\rangle$.

Definition 2.2. [2] Let $f: H \rightarrow(-\infty,+\infty]$ be a proper function.
(1) $f$ is lower semi-continuous at $x$ if $x_{n} \rightarrow x$ implies $f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)$.
(2) $f$ is weakly lower semi-continuous at $x$ if $x_{n} \rightharpoonup x \operatorname{implies} f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)$.
(3) $f$ is lower semi-continuous on $H$ if it is lower semi-continuous at every point $x \in H$ and $f$ is weakly lower semi-continuous on $H$ if it is weakly lower semi-continuous at every point $x \in H$.
Lemma 2.3. [2] Let $f: H \rightarrow(-\infty,+\infty$ ] be a proper and convex function. Then $f$ is lower semi-continuous if and only if it is weakly lower semi-continuous.
Definition 2.4. Let $f: H \rightarrow(-\infty,+\infty]$ be a proper function. A vector $u \in H$ is a subgradient of $f$ at point $x$ if $f(y) \geq f(x)+\langle u, y-x\rangle$ for all $y \in H$. The set of all subgradients of $f$ at $x$, denoted by $\partial f(x)$, is called the subdifferential of $f$ at $x$. If $\partial f(x) \neq \emptyset$, then $f$ is said to be subdifferentiable at $x$.

If the function $f$ is continuously differentiable, then $\partial f(x)=\{\nabla f(x)\}$.
Lemma 2.5. Let $g: H \rightarrow(-\infty,+\infty]$ be a strongly convex function with constant $\beta$. Then, for all $x, y \in H$,

$$
g(y) \geq g(x)+\langle\xi, y-x\rangle+\frac{\beta}{2}\|y-x\|^{2}, \xi \in \partial g(x)
$$

Lemma 2.6. Let $H$ be a real Hilbert spaces. Then, for all $x, y \in H$,
(1) $\|x \pm y\|^{2}=\|x\|^{2}+\|y\|^{2} \pm 2\langle x, y\rangle$;
(2) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(3) $\|\alpha x+(1-\alpha) y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha)\|x-y\|^{2}, \forall \alpha \in \mathbb{R}$;
(4) $\left\|\sum_{i=1}^{m} \alpha_{i} x_{i}\right\|^{2}=\sum_{i=1}^{m} \alpha_{i}\left\|x_{i}\right\|^{2}-\sum_{i<j} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2}, \forall \alpha_{i} \in \mathbb{R}, \sum_{i=1}^{m} \alpha_{i}=1, x_{i} \in H$.

Lemma 2.7. [16] Let $\left\{\varphi_{n}\right\}$ be a sequence of nonnegative numbers fulfilling:

$$
\varphi_{n+1} \leq \Phi_{n} \varphi_{n}+\Psi_{n}, \forall n \in \mathbb{N}
$$

where $\left\{\Phi_{n}\right\}$ and $\left\{\Psi_{n}\right\}$ are sequences of nonnegative numbers with $\left\{\Phi_{n}\right\} \subset[1, \infty), \sum_{n=1}^{\infty}\left(\Phi_{n}-\right.$ 1) $<\infty$, and $\sum_{n=1}^{\infty} \Psi_{n}<\infty$. Then $\lim _{n \rightarrow \infty} \varphi_{n}$ exists.

Lemma 2.8. [9] Assume that $\left\{s_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\begin{gathered}
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} b_{n}, \quad n \geq 0 \\
s_{n+1} \leq s_{n}-\delta_{n}+\gamma_{n}, \quad n \geq 0
\end{gathered}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1),\left\{\delta_{n}\right\}$ is a sequence of nonnegative real numbers, $\left\{\alpha_{n}\right\},\left\{b_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $\mathbb{R}$ such that
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $\lim _{n \rightarrow \infty} \gamma_{n}=0$;
(iii) $\lim _{i \rightarrow \infty} \delta_{n_{i}}=0$ yields $\limsup \operatorname{sim}_{i \rightarrow \infty} b_{n_{i}} \leq 0$ for any subsequence $\left\{n_{i}\right\}$ of $\{n\}$.

Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.9. [13] Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers such that $s_{n+1} \leq(1-$ $\left.\alpha_{n}\right) s_{n}+\alpha_{n} b_{n}, n \geq 0$, where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{b_{n}\right\}$ is a sequence of nonnegative real numbers such that
(i) $\sum_{n=0}^{\infty}\left|\alpha_{n} b_{n}\right|<\infty$, or $\lim \sup _{n \rightarrow \infty} b_{n} \leq 0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.

Then $\lim _{n \rightarrow \infty} s_{n}=0$.

## 3. Algorithms and Their Convergence

In this section, we introduce two inertial Halpern-type ball-relaxed CQ algorithms for solving the split feasibility problem with multiple output sets in Hilbert spaces, and prove their strong convergence under some mild conditions.

Algorithm 3.1. Step 0. Take $\tau_{1}>0, \lambda_{1}>0, \delta_{1}, \delta_{2}, \delta_{3} \in(0,1),\left\{\theta_{n}\right\} \subset[0, \bar{\theta}) \subset[0,1)$ and $\left\{\alpha_{n}\right\} \in(0,1)$. Choose the sequence $\left\{\Phi_{n}\right\},\left\{\overline{\Phi_{n}}\right\}$ and $\left\{\Psi_{n}\right\},\left\{\overline{\Psi_{n}}\right\}$ satisfying Lemma 2.7. Give $x_{0}, x_{1}$, and $u \in H$ arbitrarily. Let the integer $n \geq 1$.
Step 1. Compute $\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)$.
Step 2. Compute $u_{i, n}=P_{C_{i, n}^{b}} \omega_{n}$ for all $i=1,2, \ldots$, t and set

$$
\begin{gather*}
d_{1, n}=\max _{i=1, \ldots, t}\left\{\left\|u_{i, n}-\omega_{n}\right\|\right\}  \tag{3.1}\\
L_{1, n}=\left\{i \in\{1, \ldots, t\}:\left\|u_{i, n}-\omega_{n}\right\|=d_{1, n}\right\}
\end{gather*}
$$

Step 3. Compute $v_{j, n}=P_{Q_{j, n}^{b}} A_{j} \omega_{n}$ for all $j=1,2, \ldots, r$ and set

$$
\begin{equation*}
d_{2, n}=\max _{j=1, \ldots, r}\left\{\left\|v_{j, n}-A_{j} \omega_{n}\right\|\right\} \tag{3.2}
\end{equation*}
$$

$$
L_{2, n}=\left\{j \in\{1, \ldots, r\}:\left\|v_{j, n}-A_{j} \omega_{n}\right\|=d_{2, n}\right\} .
$$

Step 4. Let $\Gamma_{n}:=\max \left\{d_{1, n}, d_{2, n}\right\}$. If $\Gamma_{n}=d_{1, n}$, compute

$$
z_{n}=\omega_{n}-\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}, \quad \rho_{i, n}>\delta_{3}, \quad \sum_{i \in L_{1, n}} \rho_{i, n}=1
$$

where $\tau_{1}=\tau_{0}$, and for $n \geq 2$,

$$
\tau_{n+1}= \begin{cases}\min \left\{\frac{2 \delta_{1}\left(d_{1, n}\right)^{2}}{\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{c_{i, n}^{b}}\right) \omega_{n}\right\|^{2}}, \Phi_{n} \tau_{n}+\Psi_{n}\right\}, & \left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} \neq 0  \tag{3.3}\\ \Phi_{n} \tau_{n}+\Psi_{n}, & \text { otherwise }\end{cases}
$$

If $\Gamma_{n}=d_{2, n}$, compute

$$
z_{n}=\omega_{n}-\lambda_{n} \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}, \quad \beta_{j, n}>\delta_{3}, \sum_{j \in L_{2, n}} \beta_{j, n}=1
$$

where $\lambda_{1}=\lambda_{0}$, and for $n \geq 2$,

$$
\lambda_{n+1}= \begin{cases}\min \left\{\frac{2 \delta_{2}\left(d_{2, n}\right)^{2}}{\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2}}, \overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}}\right\}, & \left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2} \neq 0 \\ \overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}}, & \text { otherwise }\end{cases}
$$

Step 5. Compute

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n} P_{C_{i, n}^{b}} z_{n}
$$

set $n \leftarrow n+1$, and go to Step 1 .
The following proposition shows the property of sequences $\left\{\tau_{n}\right\}$ and $\left\{\lambda_{n}\right\}$, which is useful to the proof of our convergence theorems.

Proposition 3.2. Let $\left\{\tau_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be the sequences generated by Algorithm 3.1. Then $\lim _{n \rightarrow \infty} \tau_{n}=\tau, \lim _{n \rightarrow \infty} \lambda_{n}=\lambda$ with $\tau \geq \min \left\{2 \delta_{1}, \tau_{1}\right\}>0, \lambda \geq \min \left\{\frac{2 \delta_{2}}{M^{2}}, \lambda_{1}\right\}>0$, where $M=$ $\max _{1 \leq j \leq n}\left\|A_{j}\right\|$.
Proof. The definition of $d_{1, n}$ yields that

$$
d_{1, n}=\sum_{i \in L_{1, n}} \rho_{i, n}\left\|\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\| \geq\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\| .
$$

In the case of $\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} \neq 0$, we obtain that

$$
\frac{2 \delta_{1}\left(d_{1, n}\right)^{2}}{\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}} \geq 2 \delta_{1}>0 .
$$

This further yields that

$$
\begin{aligned}
\tau_{n+1} & =\min \left\{\frac{2 \delta_{1}\left(d_{1, n}\right)^{2}}{\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}}, \Phi_{n} \tau_{n}+\Psi_{n}\right\} \\
& \geq \min \left\{2 \delta_{1}, \tau_{n}\right\}
\end{aligned}
$$

where we used the assumptions $\Phi_{n} \geq 1$ and $\Psi_{n} \geq 0$.

Next, we prove that sequence $\left\{\tau_{n}\right\}$ has a lower bound $\min \left\{2 \delta_{1}, \tau_{1}\right\}$. In fact, if $n=1$, then $\tau_{1} \geq \min \left\{2 \delta_{1}, \tau_{1}\right\}$. Suppose that the inequality $\tau_{k} \geq \min \left\{2 \delta_{1}, \tau_{1}\right\}$ holds for $n=k \geq 1$. When $n=k+1$, one has

$$
\tau_{k+1} \geq \min \left\{2 \delta_{1}, \tau_{k}\right\} \geq \min \left\{2 \delta_{1}, \tau_{1}\right\}
$$

By induction, one sees that sequence $\left\{\tau_{n}\right\}$ has a lower bound $\min \left\{2 \delta_{1}, \tau_{1}\right\}>0$. From (3.3), one has $\tau_{n+1} \leq \Phi_{n} \tau_{n}+\Psi_{n}$. From Lemma 2.7, it follows that $\lim _{n \rightarrow \infty} \tau_{n}$ exists. Setting $\lim _{n \rightarrow \infty} \tau_{n}=\tau$, one has $\tau \geq \min \left\{2 \delta_{1}, \tau_{1}\right\}>0$.

Similarly, the definition of $d_{2, n}$ yields that

$$
d_{2, n}=\sum_{j \in L_{2, n}} \beta_{j, n}\left\|\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\| \geq\left\|\sum_{j \in L_{2, n}} \beta_{j, n}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\| .
$$

Thus

$$
\begin{aligned}
M d_{2, n} & \geq \sum_{j \in L_{2, n}} \beta_{j, n}\left\|A_{j}^{*}\right\|\left\|\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\| \\
& \geq\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|
\end{aligned}
$$

where $M=\max _{1 \leq j \leq n}\left\|A_{j}\right\|$. In the case of $\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2} \neq 0$, one concludes that

$$
\begin{aligned}
\lambda_{n+1} & =\min \left\{\frac{2 \delta_{2}\left(d_{2, n}\right)^{2}}{\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2}}, \overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}}\right\} \\
& \geq \min \left\{\frac{2 \delta_{2}}{M^{2}}, \lambda_{n}\right\} .
\end{aligned}
$$

By induction, one can similarly obtains that $\left\{\lambda_{n}\right\}$ has a lower bound $\min \left\{\frac{2 \delta_{2}}{M^{2}}, \lambda_{1}\right\}>0$. Hence, $\lim _{n \rightarrow \infty} \lambda_{n}$ exists and

$$
\lambda=\lim _{n \rightarrow \infty} \lambda_{n} \geq \min \left\{\frac{2 \delta_{2}}{M^{2}}, \lambda_{1}\right\}>0
$$

Theorem 3.3. Assume that the solution set of (1.9) is nonempty, i.e., $\Omega \neq \emptyset$. Suppose that the following conditions hold
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\lim _{n \rightarrow \infty} \frac{\theta_{n}\left\|x_{n}-x_{n-1}\right\|}{\alpha_{n}}=0$.

Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.1 converges strongly to $P_{\Omega} u$.
Proof. Let $z=P_{\Omega} u \in \Omega$. Since $C_{i} \subset C_{i, n}^{b}$ for all $i=1, \ldots, t$ and $Q_{j} \subset Q_{j, n}^{b}$ for all $j=1, \ldots, r$ we have $z=P_{C_{i}} z=P_{C_{i, n}^{b}} z$ and $A_{j} z=P_{Q_{j}} A_{j} z=P_{Q_{j, n}^{b}} A_{j} z$. We consider the following two cases. Case 1. $\Gamma_{n}=d_{1, n}$. From Lemma 2.1 (5), we have

$$
\begin{aligned}
\left\langle\omega_{n}-z, \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\rangle & =\left\langle\omega_{n}-z, \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}-\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) z\right\rangle \\
& =\sum_{i \in L_{1, n}} \rho_{i, n}\left\langle\omega_{n}-z,\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}-\left(I-P_{C_{i, n}^{b}}\right) z\right\rangle \\
& \geq \sum_{i \in L_{1, n}} \rho_{i, n}\left\|\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} \\
& =\left(d_{1, n}\right)^{2},
\end{aligned}
$$

which together with the definition of $\tau_{n+1}$ yields that

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} & =\left\|\omega_{n}-z-\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} \\
& =\left\|\omega_{n}-z\right\|^{2}+\tau_{n}^{2}\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}-2 \tau_{n}\left\langle\omega_{n}-z, \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\rangle \\
& \leq\left\|\omega_{n}-z\right\|^{2}+\tau_{n}^{2}\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}-2 \tau_{n}\left(d_{1, n}\right)^{2} \\
& \leq\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}\left(\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}-1\right) .
\end{aligned}
$$

Note that Proposition 3.2 indicates that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}\right)=1-\delta_{1}
$$

with $\delta_{1} \in(0,1)$. There exist a positive integer $N$ and $\rho \in\left(\delta_{1}, 1\right)$ such that, for all $n \geq N$, $1-\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}>1-\rho>0$. Thus,

$$
\begin{equation*}
\left\|z_{n}-z\right\|^{2} \leq\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\rho-1), n \geq N \tag{3.4}
\end{equation*}
$$

Let $y_{n}=\sum_{i \in L_{1, n}} \rho_{i, n} P_{C_{i, n}^{b}} z_{n}$. From Lemma 2.6 (4), Lemma 2.1 (4), and (3.4), we deduce that, for all $n \geq N$,

$$
\begin{align*}
\left\|y_{n}-z\right\|^{2} & =\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(P_{C_{i, n}^{b}} z_{n}-P_{C_{i, n}^{b}} z\right)\right\|^{2} \\
& \leq \sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-P_{C_{i, n}^{b}} z\right\|^{2} \\
& \leq \sum_{i \in L_{1, n}} \rho_{i, n}\left(\left\|z_{n}-z\right\|^{2}-\left\|\left(I-P_{C_{i, n}^{b}}\right) z_{n}\right\|^{2}\right) \\
& =\left\|z_{n}-z\right\|^{2}-\sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} \\
& \leq\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\rho-1)-\sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} . \tag{3.5}
\end{align*}
$$

From the definition of $\omega_{n}$, it follows that

$$
\begin{align*}
\left\|\omega_{n}-z\right\| & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-z\right\| \\
& \leq\left\|x_{n}-z\right\|+\theta_{n}\left\|x_{n}-x_{n-1}\right\|  \tag{3.6}\\
& =\left\|x_{n}-z\right\|+\alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| .
\end{align*}
$$

The condition (ii) reads that there is a constant $M_{1}>0$ such that

$$
\begin{equation*}
\frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \leq M_{1} \tag{3.7}
\end{equation*}
$$

Rearranging (3.5)-(3.7), we derive that, for all $n \geq N$,

$$
\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|+\alpha_{n} M_{1},
$$

and hence

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left\|y_{n}-z\right\| \\
& \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|+\alpha_{n} M_{1}\right) \\
& \leq \alpha_{n}\left(\|u-z\|+M_{1}\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq \max \left\{\left\|x_{n}-z\right\|,\|u-z\|+M_{1}\right\} \\
& \leq \cdots \leq \max \left\{\left\|x_{N}-z\right\|,\|u-z\|+M_{1}\right\} .
\end{aligned}
$$

This means that sequence $\left\{x_{n}\right\}$ is bounded, so $\left\{\omega_{n}\right\}$ is bounded, too. By Lemma 2.6 (2) and (3.5), we derive that, for all $n \geq N$,

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|y_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n}\right)\left(\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\rho-1)\right. \\
& \left.-\sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}\right)  \tag{3.8}\\
& +2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle .
\end{align*}
$$

By the definition of $\omega_{n}$, we have

$$
\begin{aligned}
\left\|\omega_{n}-z\right\|^{2} & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-z\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\langle x_{n}-z, x_{n}-x_{n-1}\right\rangle \\
& \leq\left\|x_{n}-z\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\|x_{n}-z\right\|\left\|x_{n}-x_{n-1}\right\|
\end{aligned}
$$

Let $M_{2}=\sup _{n \geq N}\left\{\beta\left\|x_{n}-x_{n-1}\right\|,\left\|x_{n}-z\right\|\right\}$. For all $n \geq N$, we have

$$
\begin{equation*}
\left\|\omega_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\| . \tag{3.9}
\end{equation*}
$$

Substituting (3.9) into (3.8) yields that

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2}-2\left(1-\alpha_{n}\right) \tau_{n}\left(d_{1, n}\right)^{2}(1-\rho) \\
& +2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle+3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\|  \tag{3.10}\\
& -\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} .
\end{align*}
$$

Let

$$
\begin{gathered}
s_{n}=\left\|x_{n}-z\right\|^{2} \\
\gamma_{n}=3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\|+2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle \\
b_{n}=3 M_{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle u-z, x_{n+1}-z\right\rangle
\end{gathered}
$$

and

$$
\delta_{n}=2\left(1-\alpha_{n}\right) \tau_{n}\left(d_{1, n}\right)^{2}(1-\rho)+\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n} \sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2} .
$$

Then (3.10) can be transformed to

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} b_{n}, n \geq 0
$$

and

$$
s_{n+1} \leq s_{n}-\delta_{n}+\gamma_{n}, n \geq 0 .
$$

Let $\left\{n_{k}\right\}$ be a subsequence of $\{n\}$ such that $\lim _{k \rightarrow \infty} \delta_{n_{k}} \leq 0$, which yields that

$$
\lim _{k \rightarrow \infty} 2\left(1-\alpha_{n_{k}}\right) \tau_{n_{k}}\left(d_{1, n_{k}}\right)^{2}(1-\rho)=0
$$

and

$$
\lim _{k \rightarrow \infty}\left(1-\alpha_{n_{k}}\right) \sum_{i \in L_{1, n_{k}}} \rho_{i, n}\left\|P_{C_{i, n_{k}}^{b}} z_{n_{k}}-\omega_{n_{k}}+\tau_{n_{k}} \sum_{i \in L_{1, n_{k}}} \rho_{i, n_{k}}\left(I-P_{C_{i, n_{k}}^{b}}\right) \omega_{n_{k}}\right\|^{2}=0
$$

By Proposition 3.2 and condition (i), we deduce that

$$
\lim _{k \rightarrow \infty} d_{1, n_{k}}=0
$$

and

$$
\lim _{k \rightarrow \infty}\left\|P_{C_{i, n_{k}}^{b}} z_{n_{k}}-\omega_{n_{k}}+\tau_{n_{k}} \sum_{i \in L_{1, n_{k}}} \rho_{i, n}\left(I-P_{C_{i, n_{k}}^{b}}\right) \omega_{n_{k}}\right\|=0 .
$$

Thus

$$
\lim _{k \rightarrow \infty}\left\|\left(I-P_{C_{i, n_{k}}^{b}}\right) \omega_{n_{k}}\right\|=0, i=1,2, \ldots, t
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(I-P_{Q_{j, n_{k}}^{b}}\right) A_{j} \omega_{n_{k}}\right\|=0, j=1,2, \ldots, r . \tag{3.11}
\end{equation*}
$$

Now, we prove that $\omega_{\omega}\left(x_{n_{k}}\right) \subset \Omega$. Since $\left\{x_{n_{k}}\right\}$ is bounded, then $\omega_{\omega}\left(x_{n_{k}}\right) \neq \emptyset$. Take $z^{*} \in$ $\omega_{\omega}\left(x_{n_{k}}\right)$ arbitrarily, there exists a subsequence $\left\{x_{n_{k m}}\right\}$ of $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k m}} \rightharpoonup z^{*}$ and

$$
\limsup _{k \rightarrow \infty}\left\langle u-z, x_{n_{k}}-z\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-z, x_{n_{k_{m}}}-z\right\rangle .
$$

The definition of $\omega_{n_{k}}$ and condition (ii) imply that

$$
\begin{equation*}
\left\|x_{n_{k}}-\omega_{n_{k}}\right\|=\theta_{n_{k}}\left\|x_{n_{k}}-x_{n_{k-1}}\right\|=\alpha_{n_{k}} \frac{\theta_{n_{k}}}{\alpha_{n_{k}}}\left\|x_{n_{k}}-x_{n_{k-1}}\right\| \rightarrow 0, k \rightarrow \infty . \tag{3.12}
\end{equation*}
$$

Thus, $\omega_{n_{k_{m}}} \rightharpoonup z^{*}$ and hence $A_{j} \omega_{n_{k_{m}}} \rightharpoonup A_{j} z^{*}$ for $j=1,2, \ldots, r$. Since $P_{Q_{j, n_{k m}}^{b}} A_{j} \omega_{n_{k_{m}}} \in Q_{j, n_{k_{m}}}^{b}$, it follows from the definition of $Q_{j, n_{k m}}^{b}$ that, for each $j=1, \ldots, r$,

$$
\begin{equation*}
q_{j}\left(A_{j} \omega_{n_{k_{m}}}\right) \leq\left\langle\eta_{j, n_{k m}}, A_{j} \omega_{n_{k_{k}}}-P_{Q_{j, n_{k m}}^{b}} A_{j} \omega_{n_{k_{k m}}}\right\rangle-\frac{\gamma_{j}}{2}\left\|A_{j} \omega_{n_{k_{m}}}-P_{Q_{j, n_{k m}}^{b}} A_{j} \omega_{n_{k_{m}}}\right\|^{2}, \tag{3.13}
\end{equation*}
$$

where $\eta_{j, n_{k_{m}}} \in \partial q_{j}\left(A_{j} \omega_{n_{k_{m}}}\right)$. Since $\partial q_{j}$ is bounded on bounded sets, there exists a constant $M_{3}>0$ such that $\left\|\eta_{j, n_{k m}}\right\| \leq M_{3}$. By (3.11) and (3.13), we obtain

$$
q_{j}\left(A_{j} \omega_{n_{k_{m}}}\right) \leq\left\|\eta_{j, n_{k_{m}}}\right\|\left\|\left(I-P_{Q_{j, n_{k m}}^{b}}\right) A_{j} \omega_{n_{k_{m}}}\right\| \leq M_{3}\left\|\left(I-P_{Q_{j, n_{k m}}^{b}}\right) A_{j} \omega_{n_{k_{m}}}\right\| \rightarrow 0, m \rightarrow \infty .
$$

Thus $q_{j}$ being lower semi-continuous yields that

$$
q_{j}\left(A_{j} z^{*}\right) \leq \liminf _{m \rightarrow \infty} q\left(A_{j} \omega_{n_{k_{m}}}\right)=0 .
$$

Therefore, $A_{j} z^{*} \in Q_{j}, j=1,2, \ldots, r$.
On the other hand, in view of $P_{C_{i, n_{k m}}^{b}} \omega_{n_{k_{m}}} \in C_{i, n_{k m}}^{b}$, we obtain that

$$
\begin{aligned}
c_{i}\left(\omega_{n_{k m}}\right) & \leq\left\langle\xi_{i, n_{k m}}, \omega_{n_{k_{m}}}-P_{C_{i, n_{k m}}^{b}} \omega_{n_{k_{m}}}\right\rangle-\frac{v_{i}}{2}\left\|\omega_{n_{k_{m}}}-P_{C_{i, n_{k m}}^{b}} \omega_{n_{k_{m}}}\right\|^{2} \\
& \leq\left\|\xi_{i, n_{k_{m}}}\right\|\left\|\left(I-P_{C_{i, n_{k m}}^{b}}\right) \omega_{n_{k_{m}}}\right\| \\
& \leq M_{4}\left\|\left(I-P_{C_{i, n_{k m}}^{b}}\right) \omega_{n_{k_{k}}}\right\| \rightarrow 0, m \rightarrow \infty,
\end{aligned}
$$

where $M_{4}>0$ is a constant such that $\left\|\xi_{i, n_{k m}}\right\| \leq M_{4}$, since $\partial c_{i}$ is bounded on bounded sets. This together with $c_{i}$ being weakly lower semi-continuous yields

$$
c_{i}\left(z^{*}\right) \leq \liminf _{m \rightarrow \infty} c\left(\omega_{n_{k_{m}}}\right)=0, i=1,2, \ldots, t
$$

Hence $z^{*} \in C_{i}, i=1,2, \ldots, t$. Consequently, $z^{*} \in \Omega$, and thus $\omega_{\omega}\left(x_{n_{k}}\right) \subset \Omega$. Therefore, we obtain by Lemma 2.1 (1) that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle u-z, x_{n_{k}}-z\right\rangle=\lim _{m \rightarrow \infty}\left\langle u-z, x_{n_{k_{m}}}-z\right\rangle=\left\langle u-z, z^{*}-z\right\rangle \leq 0 \tag{3.14}
\end{equation*}
$$

Meanwhile, we also have

$$
\begin{equation*}
\left\|y_{n_{k}}-\omega_{n_{k}}\right\| \leq\left\|y_{n_{k}}-\omega_{n_{k}}+\tau_{n_{k}} \sum_{i \in L_{1, n_{k}}} \rho_{i, n_{k}}\left(I-P_{C_{i, n_{k}}^{b}}\right) \omega_{n_{k}}\right\|+\tau_{n_{k}} \sum_{i \in L_{1, n_{k}}} \rho_{i, n_{k}}\left\|\left(I-P_{C_{i, n_{k}}^{b}}\right) \omega_{n_{k}}\right\| \rightarrow 0 \tag{3.15}
\end{equation*}
$$

as $k \rightarrow \infty$. Thus condition (i), (3.12) and, (3.15) read that

$$
\begin{align*}
\left\|x_{n_{k}+1}-x_{n_{k}}\right\| & \leq\left\|x_{n_{k}+1}-\omega_{n_{k}}\right\|+\left\|\omega_{n_{k}}-x_{n_{k}}\right\| \\
& =\left\|\alpha_{n_{k}} u+\left(1-\alpha_{n_{k}}\right) y_{n_{k}}-\omega_{n_{k}}\right\|+\left\|x_{n_{k}}-\omega_{n_{k}}\right\|  \tag{3.16}\\
& \leq \alpha_{n_{k}}\left\|u-\omega_{n_{k}}\right\|+\left(1-\alpha_{n_{k}}\right)\left\|y_{n_{k}}-\omega_{n_{k}}\right\|+\left\|x_{n_{k}}-\omega_{n_{k}}\right\| \rightarrow 0, k \rightarrow \infty
\end{align*}
$$

Combining (3.14), (3.16), and condition (i), we obtain

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \sup b_{n_{k}}= & \lim _{k \rightarrow \infty} \sup \left(2\left\langle u-z, x_{n_{k}+1}-z\right\rangle+3 M_{2} \frac{\theta_{n_{k}}}{\alpha_{n_{k}}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\|\right) \\
= & \lim _{k \rightarrow \infty} 2\left\langle u-z, x_{n_{k}+1}-x_{n_{k}}\right\rangle+\lim _{k \rightarrow \infty} \sup 2\left\langle u-z, x_{n_{k}}-z\right\rangle \\
& +3 M_{2} \lim _{k \rightarrow \infty} \frac{\theta_{n_{k}}}{\alpha_{n_{k}}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\| \leq 0
\end{aligned}
$$

Therefore, it follows from Lemma 2.8 that $\left\{x_{n}\right\}$ converges strongly to the solution $z=P_{\Omega} u$.
Case 2. $\Gamma_{n}=d_{2, n}$. In this case, $z_{n}=\omega_{n}-\lambda_{n} \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}$. From Lemma 2.1 (5), we have

$$
\begin{aligned}
& \left\langle\omega_{n}-z, \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\rangle \\
= & \sum_{j \in L_{2, n}} \beta_{j, n}\left\langle A_{j} \omega_{n}-A_{j} z,\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}-\left(I-P_{Q_{j, n}^{b}}\right) A_{j} z\right\rangle \\
\geq & \sum_{j \in L_{2, n}} \beta_{j, n}\left\|\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2}=\left(d_{2, n}\right)^{2},
\end{aligned}
$$

which together with the definition of $\lambda_{n+1}$ yields that

$$
\begin{aligned}
& \left\|z_{n}-z\right\|^{2} \\
& =\left\|\omega_{n}-z-\lambda_{n} \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2} \\
& =\left\|\omega_{n}-z\right\|^{2}+\lambda_{n}^{2}\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2}-2 \lambda_{n}\left\langle\omega_{n}-z, \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\rangle \\
& \leq\left\|\omega_{n}-z\right\|^{2}+\lambda_{n}^{2}\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2}-2 \lambda_{n}\left(d_{2, n}\right)^{2} \\
& \leq\left\|\omega_{n}-z\right\|^{2}+2 \lambda_{n}\left(d_{2, n}\right)^{2}\left(\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}-1\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left(1-\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}\right)=1-\delta_{2}$, and $\delta_{2} \in(0,1)$, there exist a positive integer $\tilde{N}$ and $\tilde{\rho} \in\left(\delta_{2}, 1\right)$ such that $\forall n \geq \tilde{N}, 1-\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}>1-\tilde{\rho}>0$. Thus,

$$
\begin{equation*}
\left\|z_{n}-z\right\|^{2} \leq\left\|\omega_{n}-z\right\|^{2}+2 \lambda_{n}\left(d_{2, n}\right)^{2}(\tilde{\rho}-1), n \geq \tilde{N} . \tag{3.17}
\end{equation*}
$$

Let $y_{n}=\sum_{i \in L_{1, n}} \rho_{i, n} P_{C_{i, n}^{b}} z_{n}$. From (3.17), we deduce that, for all $n \geq \tilde{N}$,

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2}= & \left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(P_{C_{i, n}^{b}} z_{n}-P_{C_{i, n}^{b}} z\right)\right\|^{2} \\
\leq & \sum_{i \in L_{1, n}} \rho_{i, n}\left(\left\|z_{n}-z\right\|^{2}-\left\|\left(I-P_{C_{i, n}^{b}}\right) z_{n}\right\|^{2}\right) \\
= & \left\|z_{n}-z\right\|^{2}-\sum_{i \in L_{1, n}} \rho_{i, n}\left\|\left(I-P_{C_{i, n}^{b}}\right) z_{n}\right\|^{2} \\
\leq & \left\|\omega_{n}-z\right\|^{2}+2 \lambda_{n}\left(d_{2, n}\right)^{2}(\tilde{\rho}-1)-\sum_{i \in L_{1, n}} \rho_{i, n} \| P_{C_{i, n}^{b}} z_{n}-\omega_{n} \\
& +\lambda_{n} \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n} \|^{2} .
\end{aligned}
$$

Similar as in Case 1, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2}-2\left(1-\alpha_{n}\right) \lambda_{n}\left(d_{2, n}\right)^{2}(1-\tilde{\rho}) \\
& +2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle+3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& -\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\lambda_{n} \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|^{2} .
\end{aligned}
$$

Employing Lemma 2.8 again, we can also conclude that $\left\{x_{n}\right\}$ converges strongly to the solution $z^{*}=P_{\Omega} u$.

Remark 3.4. If, in Case $1,\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|=0$, which means

$$
0=\left\langle\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}, \omega_{n}-z\right\rangle \geq \sum_{i \in L_{1, n}} \rho_{i, n}\left\|\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\|^{2}=\left(d_{1, n}\right)^{2} \geq 0
$$

then we have by the definition of $d_{1, n}$ that

$$
\begin{align*}
\left\|\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\| & =0, i=1, \ldots, t  \tag{3.18a}\\
\left\|\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\| & =0, j=1, \ldots, r . \tag{3.18b}
\end{align*}
$$

If, in Case2, $\left\|\sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}\left(I-P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n}\right\|=0$, (3.18) also holds. Note that (3.18) implies that $\omega_{n} \in \Omega$. Thus the algorithm stops after a finite number of iterates. So in the proof of the theorem and proposition, we assume that $\left\|\sum_{i \in L_{1, n}} \rho_{i, n}\left(I-P_{C_{i, n}^{b}}\right) \omega_{n}\right\| \neq 0$ and $\| \sum_{j \in L_{2, n}} \beta_{j, n} A_{j}^{*}(I-$ $\left.P_{Q_{j, n}^{b}}\right) A_{j} \omega_{n} \| \neq 0$, i.e., we assume that the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.1 contains infinity number of iterates.

Next, we present the second algorithm of this paper. In the following algorithm, the inertial parameter $\theta_{n}$ is chosen as the same as in Algorithm 3.1.

Algorithm 3.5. Step 0. Take $\tau_{1}>0, \lambda_{1}>0, \delta_{1}, \delta_{2} \subset(0,1),\left\{\theta_{n}\right\} \subset[0, \bar{\theta}) \subset[0,1)$ and $\left\{\alpha_{n}\right\} \in$ $(0,1)$. Choose the sequence $\left\{\Phi_{n}\right\},\left\{\overline{\Phi_{n}}\right\}$ and $\left\{\Psi_{n}\right\},\left\{\overline{\Psi_{n}}\right\}$ satisfying the Lemma 2.7. Give $x_{0}, x_{1}$,
and $u \in H$ arbitrarily. Let the integer $n \geq 1$.
Step 1. Compute $\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)$.
Step 2. Compute $u_{i, n}=P_{C_{i, n}^{b}} \omega_{n}$ for all $i=1,2, \ldots$, t and set

$$
\begin{gathered}
d_{1, n}=\max _{i=1, \ldots, t}\left\{\left\|u_{i, n}-\omega_{n}\right\|\right\} \\
L_{1, n}=\left\{i \in\{1, \ldots, t\}:\left\|u_{i, n}-\omega_{n}\right\|=d_{1, n}\right\}
\end{gathered}
$$

Sstep 3. Compute $v_{j, n}=P_{Q_{j, n}^{b}} A_{j} \omega_{n}$ for all $j=1,2, \ldots, r$ and set

$$
\begin{gathered}
d_{2, n}=\max _{j=1, \ldots, r}\left\{\left\|v_{j, n}-A_{j} \omega_{n}\right\|\right\} \\
L_{2, n}=\left\{j \in\{1, \ldots, r\}:\left\|v_{j, n}-A_{j} \omega_{n}\right\|=d_{2, n}\right\} .
\end{gathered}
$$

Step 4. Choose $m \in L_{1, n}$ and $s \in L_{2, n}$, and compute

$$
z_{n}=\omega_{n}-\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}-\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}
$$

where $\tau_{1}=\tau_{0}, \lambda_{1}=\lambda_{0}$ and for $n \geq 2$,

$$
\begin{gather*}
\tau_{n+1}= \begin{cases}\min \left\{\frac{\delta_{1}\left(d_{1, n}\right)^{2}}{\|\left(I-P_{C_{m, n}^{b}}\right.} \omega_{n} \|^{2}\right. \\
\left.\Phi_{n} \tau_{n}+\Phi_{n} \tau_{n}+\Psi_{n}\right\}, & \left\|\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\|^{2} \neq 0, \\
\text { otherwise } ;\end{cases}  \tag{3.19}\\
\lambda_{n+1}= \begin{cases}\min \left\{\frac{\delta_{2}\left(d_{2, n}\right)^{2}}{\left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2}}, \overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}},\right. & \left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} \neq 0, \\
\overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}}, & \text { otherwise } .\end{cases} \tag{3.20}
\end{gather*}
$$

Step 5. Compute

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n} P_{C_{i, n}^{b}} z_{n}
$$

set $n \leftarrow n+1$, and go to Step 1 .
Proposition 3.6. Let $\left\{\tau_{n}\right\}$, $\left\{\lambda_{n}\right\}$ be the sequences generated by Algorithm 3.5. Then $\lim _{n \rightarrow \infty} \tau_{n}=$ $\tau, \lim _{n \rightarrow \infty} \lambda_{n}=\lambda$ with $\tau \geq \min \left\{\delta_{1}, \tau_{1}\right\}>0, \lambda \geq \min \left\{\frac{\delta_{2}}{\|M\|^{2}}, \lambda_{1}\right\}>0$, where $M=\max _{1 \leq j \leq n}\left\|A_{j}\right\|$.
Proof. In the case of $\left\|\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\|^{2} \neq 0$, one has $\left\|\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\|=d_{1, n}$, so

$$
\tau_{n+1}=\min \left\{\frac{\delta_{1}\left(d_{1, n}\right)^{2}}{\left\|\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\|^{2}}, \Phi_{n} \tau_{n}+\Psi_{n}\right\} \geq \min \left\{\delta_{1}, \tau_{n}\right\}
$$

where $\Phi_{n} \geq 1$ and $\Psi_{n} \geq 0$. By induction, sequence $\left\{\tau_{n}\right\}$ has a positive lower bound $\min \left\{\delta_{1}, \tau_{1}\right\}$. From (3.19), we have $\tau_{n+1} \leq \Phi_{n} \tau_{n}+\Psi_{n}$. Lemma 2.7 then reads that $\lim _{n \rightarrow \infty} \tau_{n}$ exists and we denote $\lim _{n \rightarrow \infty} \tau_{n}=\tau$. It is obvious that $\tau>0$. In the case of $\left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} \neq 0$, similarly, we have

$$
M d_{2, n} \geq\left\|A_{s}^{*}\right\|\left\|\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\| \geq\left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|
$$

where $M=\max _{1 \leq j \leq r}\left\|A_{j}\right\|$. This further presents that

$$
\lambda_{n+1}=\min \left\{\frac{\delta_{2}\left(d_{2, n}\right)^{2}}{\left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2}}, \overline{\Phi_{n}} \lambda_{n}+\overline{\Psi_{n}}\right\} \geq \min \left\{\frac{\delta_{2}}{M^{2}}, \lambda_{n}\right\} .
$$

By induction, we can also obtain that sequence $\left\{\lambda_{n}\right\}$ has a lower bound $\min \left\{\frac{\delta_{2}}{M^{2}}, \lambda_{1}\right\}$. Hence, $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda>0$.

Theorem 3.7. Assume that the solution set of (1.9) is nonempty, i.e., $\Omega \neq \emptyset$. Suppose that the conditions (i) and (ii) in Theorem 3.3 hold. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.5 converges strongly to $P_{\Omega} u$.

Proof. Let $z=P_{\Omega} u$. From Lemma 2.1 (5), we have

$$
\begin{aligned}
& \left\langle\omega_{n}-z, \tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\rangle \\
= & \tau_{n}\left\langle\omega_{n}-z,\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\rangle+\lambda_{n}\left\langle\omega_{n}-z, A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\rangle \\
= & \tau_{n}\left\langle\omega_{n}-z,\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}-\left(I-P_{C_{m, n}^{b}}\right) z\right\rangle+\lambda_{n}\left\langle A_{s} \omega_{n}-A_{s} z,\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}-\left(I-P_{Q_{s, n}^{b}}\right) z\right\rangle \\
\geq & \tau_{n}\left(d_{1, n}\right)^{2}+\lambda_{n}\left(d_{2, n}\right)^{2},
\end{aligned}
$$

which together with (3.19) and (3.20) yields that

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2}= & \left\|\omega_{n}-z\right\|^{2}+\left\|\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} \\
& -2\left\langle\omega_{n}-z, \tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{\left.Q_{s, n}^{b}\right)} A_{s} \omega_{n}\right\rangle\right. \\
\leq & \left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}^{2}\left\|\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}\right\|^{2}+2 \lambda_{n}^{2}\left\|A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} \\
& -2 \tau_{n}\left(d_{1, n}\right)^{2}-2 \lambda_{n}\left(d_{2, n}\right)^{2} \\
\leq & \left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}\left(\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}-1\right)+2 \lambda_{n}\left(d_{2, n}\right)^{2}\left(\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}-1\right) .
\end{aligned}
$$

Proposition 3.6 indicates that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}\right)=1-\delta_{1}, \quad \lim _{n \rightarrow \infty}\left(1-\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}\right)=1-\delta_{2}
$$

with $\delta_{1}, \delta_{2} \in(0,1)$. There exist a positive integer $\bar{N}$ and $\bar{\rho} \in\left(\max \left\{\boldsymbol{\delta}_{1}, \delta_{2}\right\}, 1\right)$ such that, for all $n \geq \bar{N}, 1-\frac{\delta_{1} \tau_{n}}{\tau_{n+1}}>1-\bar{\rho}>0$ and $1-\frac{\delta_{2} \lambda_{n}}{\lambda_{n+1}}>1-\bar{\rho}>0$. Thus,

$$
\begin{equation*}
\left\|z_{n}-z\right\|^{2} \leq\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\bar{\rho}-1)+2 \lambda_{n}\left(d_{2, n}\right)^{2}(\bar{\rho}-1), n \geq \bar{N} \tag{3.21}
\end{equation*}
$$

Let $y_{n}=\sum_{i \in L_{1, n}} \rho_{i, n} P_{C_{i, n}^{b}} z_{n}$. From (3.21), we deduce that, for all $n \geq \bar{N}$,

$$
\begin{align*}
\left\|y_{n}-z\right\|^{2} \leq & \sum_{i \in L_{1, n}} \rho_{i, n}\left(\left\|z_{n}-z\right\|^{2}-\left\|\left(I-P_{C_{i, n}^{b}}\right) z_{n}\right\|^{2}\right) \\
\leq & \left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\bar{\rho}-1)+2 \lambda_{n}\left(d_{2, n}\right)^{2}(\bar{\rho}-1)  \tag{3.22}\\
& -\sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} .
\end{align*}
$$

Similar as in Algorithm 3.1, we have for all $n \geq \bar{N}$ that $\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|+\alpha_{n} M_{1}$. It follows that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left\|y_{n}-z\right\| \\
& \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|+\alpha_{n} M_{1}\right) \\
& \leq \alpha_{n}\left(\|u-z\|+M_{1}\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq \max \left\{\left\|x_{n}-z\right\|,\|u-z\|+M_{1}\right\} \\
& \leq \cdots \leq \max \left\{\left\|x_{N}-z\right\|,\|u-z\|+M_{1}\right\} .
\end{aligned}
$$

This means that the sequence $\left\{x_{n}\right\}$ is bounded. Thus $\left\{\omega_{n}\right\}$ is bounded, too. By (3.22) and Lemma 2.6 (2), we derive that for all $n \geq \bar{N}$

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|y_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n}\right)\left(\left\|\omega_{n}-z\right\|^{2}+2 \tau_{n}\left(d_{1, n}\right)^{2}(\bar{\rho}-1)+2 \lambda_{n}\left(d_{2, n}\right)^{2}(\bar{\rho}-1)\right. \\
& \left.-\sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle .
\end{aligned}
$$

Observe that

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2}-2\left(1-\alpha_{n}\right) \tau_{n}\left(d_{1, n}\right)^{2}(1-\bar{\rho})-2\left(1-\alpha_{n}\right) \lambda_{n}\left(d_{2, n}\right)^{2}(1-\bar{\rho}) \\
& +3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\|-\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n} \| P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n} \\
& +\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n} \|^{2}+2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle . \tag{3.23}
\end{align*}
$$

where $M_{2}=\sup _{n \geq N}\left\{\beta\left\|x_{n}-x_{n-1}\right\|,\left\|x_{n}-z\right\|\right\}$. Let

$$
\begin{gathered}
s_{n}=\left\|x_{n}-z\right\|^{2}, \\
\gamma_{n}=3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\|+2 \alpha_{n}\left\langle u-z, x_{n+1}-z\right\rangle, \\
b_{n}=2\left\langle u-z, x_{n+1}-z\right\rangle+3 M_{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|,
\end{gathered}
$$

and

$$
\begin{aligned}
\delta_{n}= & 2\left(1-\alpha_{n}\right)\left(d_{1, n}\right)^{2}(1-\bar{\rho}) \tau_{n}+2\left(1-\alpha_{n}\right)\left(d_{2, n}\right)^{2}(1-\bar{\rho}) \lambda_{n} \\
& +\left(1-\alpha_{n}\right) \sum_{i \in L_{1, n}} \rho_{i, n}\left\|P_{C_{i, n}^{b}} z_{n}-\omega_{n}+\tau_{n}\left(I-P_{C_{m, n}^{b}}\right) \omega_{n}+\lambda_{n} A_{s}^{*}\left(I-P_{Q_{s, n}^{b}}\right) A_{s} \omega_{n}\right\|^{2} .
\end{aligned}
$$

Then (3.23) can be transformed to the following inequlities:

$$
\begin{gathered}
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} b_{n}, n \geq 0 \\
s_{n+1} \leq s_{n}-\delta_{n}+\gamma_{n}, n \geq 0
\end{gathered}
$$

From Lemma 2.8, we see that the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.5 converges strongly to $z^{*}=P_{\Omega} u$.

Remark 3.8. In Algorithm 3.1 and Algorithm 3.5, one way to determine the inertial parameter $\theta_{n}$ is

$$
\theta_{n}= \begin{cases}\min \left\{\frac{\varepsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}, \bar{\theta}\right\}, & \text { if } x_{n} \neq x_{n-1}  \tag{3.24}\\ \bar{\theta}, & \text { otherwise }\end{cases}
$$

where $\left\{\varepsilon_{n}\right\}$ is a positive sequence such that $\varepsilon_{n}=o\left(\alpha_{n}\right), \bar{\theta} \in(0,1)$.

## 4. Numerical Experiments

In this section, we provide numerical experiments for the split feasibility problem with multiple output sets in Hilbert spaces. Firstly, we compare our algorithms with the algorithm in [18] and the algorithm in [19], which are denoted by MSP1 and MSP2, respectively. Secondly, we both apply the ball-relaxed projection method and the half-space relaxation projection method to our algorithm, which are denoted by BRM and HRM, respectively. All codes were written in MATLAB R2018b and performed on a PC Desktop Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz , RAM 8.00 GB .

Example 4.1. Consider the following split feasibility problem with multiple output sets. Let $H_{1}=\mathbb{R}^{N}$ and $H_{2}=\mathbb{R}^{N(j+1)}$ for each $j=1, \ldots, r$. Let $A_{j}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N(j+1)}$ be given by $A_{j}=$ $\left(a_{p q}\right)_{N \times N(j+1)}$ with randomly generated $a_{p q} \in[-1,1]$. Let $N=50$ and $r=50$. Find $x^{*} \in \mathbb{R}^{N}$ with the property

$$
x^{*} \in \cap_{i=1}^{2} C_{i} \text { such that } A_{j} x^{*} \in Q_{j}, j=1,2, \ldots, r,
$$

where

$$
\begin{aligned}
& C_{1}=\left\{x \in \mathbb{R}^{N}: \sum_{k=1}^{N} 10^{\frac{k-1}{N-1}} x_{k}^{2}-1 \leq 0\right\} \\
& C_{2}=\left\{x \in \mathbb{R}^{N}: \sum_{k=1}^{N} 10^{\frac{N-k}{N-1}} x_{k}^{2}-1 \leq 0\right\}
\end{aligned}
$$

and

$$
Q_{j}=\left\{y \in \mathbb{R}^{N(j+1)}: \sum_{k=j}^{N(j+1)} 10^{\frac{k-1}{N(j+1)-1}} y_{k}^{2}-1 \leq 0\right\}
$$

Now, we investigate the numerical behavior of our proposed algorithms for different choices of methods. For the convenience of comparison, we randomly generate an initial value $x_{0}$, which is used in the three algorithms simultaneously and set $x_{-1}=x_{0}$. The inertial parameter $\theta_{n}$ is defined in (3.24) with $\varepsilon_{n}=\frac{1}{n^{2 . I}}$ and $\bar{\theta}=0.01$. We use $E_{n}=\frac{1}{2}\left(d_{1, n}+d_{2, n}\right)$ to measure the error of the $n$-th iterate, where $d_{1, n}$ and $d_{2, n}$ are defined by (3.1) and (3.2), respectively. If $E_{n}<10^{-8}$, then the iteration progress stops.

In BRM and HRM, we set $\tau_{1}=\lambda_{1}=0.1, \Phi_{n}=\bar{\Phi}_{n}=1+\frac{10^{4}}{n^{1.1}}, \Psi_{n}=\bar{\Psi}_{n}=0, \delta_{1}=\delta_{2}=\delta \in$ $(0,1)$, and $\alpha_{n}=\frac{1}{n}$.

In MSP1, the sequence $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right), \\
z_{n}=\omega_{n}-\gamma_{n} A_{\bar{j}}^{*}\left(I-P_{Q_{\bar{j}, n}}\right) A_{\bar{j}} \omega_{n}, \\
x_{n+1}=\frac{1}{2}\left(P_{C_{1, n}} z_{n}+P_{C_{2, n}} z_{n}\right),
\end{array}\right.
$$

where $\bar{j}$ denotes the index such that $\left\|A_{\bar{j}} x_{n}-P_{Q_{\bar{j}, n}} A_{\bar{j}} x_{n}\right\|=\max _{j=1, \ldots, r}\left\{\left\|A_{j} x_{n}-P_{Q_{j, n}} A_{j} x_{n}\right\|\right\}, \gamma_{1}=0.1$, and $\gamma_{n}$ is defined by

$$
\gamma_{n}= \begin{cases}\frac{2 \delta\left\|A_{\bar{j}} x_{n}-P_{Q_{\bar{j}, n}} A_{\bar{j}} x_{n}\right\|^{2}}{\| A_{\bar{j}}^{*}\left(I-P_{Q_{\bar{j}, n}} A_{\bar{j}} x_{n} \|^{2}\right.}, & \text { if }\left\|A_{\bar{j}}^{*}\left(I-P_{Q_{\bar{j}, n}}\right) A_{\bar{j}} x_{n}\right\|>0, \\ 0, & \text { otherwise },\end{cases}
$$

where $\delta \in(0,1), C_{i, n}$ and $Q_{j, n}$ denote the half-space relaxation of $C_{i}$ and $Q_{j}, i=1,2, j=1, \ldots, r$.
In MSP2, $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right), \\
z_{n}=\omega_{n}-\gamma_{n} \sum_{j=1}^{r} A_{j}^{*}\left(I-P_{Q_{j, n}}\right) A_{j} \omega_{n}, \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) \frac{1}{2}\left(P_{C_{1, n}} z_{n}+P_{C_{2, n}} z_{n}\right),
\end{array}\right.
$$

where $\gamma_{1}=0.1, \gamma_{n}=\frac{1.9}{r \max _{j=1, \ldots, r}\left\{\left\|A_{j}\right\|^{2}\right\}}$, and $\alpha_{n}=\frac{1}{n+2}$.
We consider two cases whether $u$ is in the solution set or not. In Table 1, we take $u=$ $(0.01,0.01,0, \ldots, 0)$, which belongs to the solution set; in Table 2, we take $u=(0.01,0.018,0, \ldots, 0)$, which does not belong to the solution set.

It is observed from Table 1 and Table 2 that as $\delta$ increases, BRM, HRM, and MSP1 take fewer steps and less time to reach the stopping criterion. For each fixed $\delta$, our algorithm outperforms MSP1 and MSP2 in terms of the number of iterations and CPU time, which supports the superiority of the step-size selection of our algorithms. BRM is better than HRM in terms of CPU time even though they have the same number of iterations, which shows the advantage of the ball-relaxed projection method over the half-space relaxation projection method for this example.

TABLE 1. Computational Results with BRM, HRM, MSP1, and MSP2

| $\delta$ | Iteration |  |  |  | CPU time |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BRM | HRM | MSP1 | MSP2 | BRM | HRM | MSP1 | MSP2 |
| 0.1 | $\mathbf{1 0}$ | $\mathbf{1 0}$ | 126 |  | $\mathbf{0 . 4 2 9 4}$ | 0.8151 | 5.3266 |  |
| 0.3 | $\mathbf{6}$ | $\mathbf{6}$ | 44 |  | $\mathbf{0 . 3 1 3 9}$ | 0.6451 | 1.9208 |  |
| 0.5 | $\mathbf{5}$ | $\mathbf{5}$ | 22 | 34 | $\mathbf{0 . 3 7 9 2}$ | 0.4487 | 0.9215 | 3.3603 |
| 0.7 | $\mathbf{4}$ | $\mathbf{4}$ | 13 |  | $\mathbf{0 . 2 0 3 9}$ | 0.3479 | 0.7243 |  |
| 0.9 | $\mathbf{3}$ | $\mathbf{3}$ | 9 |  | $\mathbf{0 . 1 6 2 4}$ | 0.4964 | 0.4990 |  |

Table 2. Computational Results with BRM, HRM, MSP1, and MSP2

| $\delta$ | Iteration |  |  |  | CPU time |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BRM | HRM | MSP1 | MSP2 | BRM | HRM | MSP1 | MSP2 |
| 0.2 | $\mathbf{9}$ | $\mathbf{9}$ | 65 |  | $\mathbf{0 . 3 9 3 0}$ | 0.7792 | 2.7077 |  |
| 0.4 | $\mathbf{6}$ | $\mathbf{6}$ | 32 | 35 | $\mathbf{0 . 2 9 9 9}$ | 0.5801 | 1.4353 | 3.4197 |
| 0.6 | $\mathbf{4}$ | 5 | 16 |  | $\mathbf{0 . 2 4 5 8}$ | 0.4137 | 0.8247 |  |
| 0.8 | $\mathbf{4}$ | $\mathbf{4}$ | 11 |  | $\mathbf{0 . 2 0 6 4}$ | 0.3045 | 0.5066 |  |

## References

[1] F. Alvarez, H. Atooch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9 (2001) 3-11.
[2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer, New York, 2011.
[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse. Probl. 18 (2002) 441-453.
[4] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse. Probl. 20 (2004) 103-120.
[5] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algo. 8 (1994) 221-239.
[6] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse. Probl. 21 (2005) 2071-2084.
[7] Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problems, J. Ind. Manag. Optim. 13 (2017) 1383-1394.
[8] Q.L. Dong, L. Liu, X. Qin, J.C. Yao, An alternated inertial general splitting method with linearization for the split feasibility problem, Optimmization, 72 (2023) 2585-2607.
[9] S. He, C. Yang, Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal. 2013 (2013) 942315.
[10] G. López, V. Martín, F. Wang, et al., Solving the split feasibility problem without prior knowledge of matrix norms, Inverse. Probl. 28 (2012) 085004.
[11] D.A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis. 51 (2015) 311-325.
[12] H. Li, Y. Wu, F. Wang, New inertial relaxed CQ algorithms for solving split feasibility problems in Hilbert spaces, J. Math. 2021 (2021) 6624509.
[13] L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995) 114-125.
[14] P.E. Maingé, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set. Valued Anal. 15 (2007) 67-79.
[15] X. Ma, H. Liu, An inertial Halpern-type CQ algorithm for solving split feasibility problems in Hilbert spaces, J. Appl. Math. Comput. 68 (2022) 1699-1717.
[16] M.O. Osilike, S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model. 32 (2000) 1181-1191.
[17] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys. 4 (1964) 1-17.
[18] S. Reich, T.M. Tuyen, M.T.N. Ha, An optimization approach to solving the split feasibility problem in Hilbert spaces, J. Global Optim. 79 (2021) 837-852.
[19] S. Reich, T.M. Tuyen, M.T.N. Ha, The split feasibility problem with multiple output sets in Hilbert spaces, Optim. Lett. 14 (2020) 2335-2353.
[20] S. Reich, T.M. Tuyen, Iterative methods for solving the generalized split common null point problem in Hilbert spaces, Optimization 69 (2020) 1013-1038.
[21] B. Tan, S.Y. Cho, J.C. Yao, Acclerated inertial subgradient extragradient algorithms with non-monotonic step sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal. 6 (2022) 89-122.
[22] G.H. Taddele, P. Kumam, A.G. Gebrie, Ball-relaxed projection algorithms for multiple-sets split feasibility problem, Optimization 21 (2021) 3571-3601.
[23] F. Wang, H. Yu, An inertial relaxed CQ algorithm with an application to the LASSO and elastic net, Optimization 18 (2020) 1101-1119.
[24] F. Wang, The split feasibility problem with multiple output sets for demicontractive mappings, J. Optim. Theory Appl. 195 (2022) 837-853.
[25] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse. Probl. 20 (2004) 1261-1266.
[26] H. Yu, W. Zhan, F. Wang, The ball-relaxed CQ algorithms for the split feasibility problem, Optimization 67 (2018) 1687-1699.


[^0]:    *Corresponding author.
    E-mail address: bunnyxuan@tju.edu.cn (Y. Zhang)
    Received December 15, 2023; Accepted February 4, 2024.

