
J. Nonlinear Funct. Anal. 2024 (2024) 6 https://doi.org/10.23952/jnfa.2024.6

A COMPARATIVE STUDY ON CHAOS CONTROL IN A FRACTIONAL-ORDER
ROSSLER SYSTEM AND ITS TIME DELAYED FEEDBACK CONTROL SYSTEM

YUANYUAN WANG∗, JIAWEN LI
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Abstract. How to control chaos is a challenging problem in the Rossler system. A fractional-order Rossler
system and its time delayed feedback control system are studied in this paper. A predictor-corrector
algorithm for fraction-order Rossler systems and its time delayed feedback control system is given. The
main aim of the current paper is to compare the control effects of our given methods, namely adjusting
different fractional orders and time delayed feedback control items at different equations, to make the
system reach a stable state. And in controlling chaos, the fractional-order Rossler system with time
delayed feedback control is more effective. Numerical examples are conducted to confirm effectiveness of
the proposed method.
Keywords. Fractional-order Rossler system; Time delayed feedback control; Predictor-corrector method;
Chaos; Stable.
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1. INTRODUCTION

Fractional calculus, which is a generalization of integer order integration and differentiation,
finds numerous real applications recently. Indeed, fractional calculus has time memory and long-
range spatial correlation, and can more accurately describe physical phenomena and biochemical
reaction processes of memory, heredity and path dependence than integer order integration; see,
e.g., [1, 2, 3, 4, 5, 6] and the references therein.

Recently, various definitions of fractional calculus from various perspectives were presented.
There are three common definitions, namely, Gronwald-Letnikov, Riemann-Liouville, and
Caputo [7, 8, 9]. Based on the three definitions, some new definitions for fractional calculus
were further introduced, such as Caputo-Fabrizio derivative (CFD) [10], memory dependent
derivative [11], and so on. Here, we use the following expression

Dq
∗y(x) = Jm−qy(m)(x),q > 0,
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where m = [q] is the value q rounded up to the nearest integer, y(m) is the convenient m-order
derivative, and

Jβ z(x) =
1

Γ(β )

∫ x

0
(x− t)β−1z(t)dt,β > 0.

is the β -order Riemann-Liouville integral operator. It is common that operator Dq
∗ is called

q-order Caputo differential operator.
The Rossler system, a simple prototype with chaos, was introduced by Rossler in the 1970s

[12]. In all equations, it only contains a nonlinear term. Furthermore, the Rossler system was
abstracted from the Lorenz model [13]. Due to the simplicity of the Rossler system, it has
become a criterion to detect the effectiveness of the chaos control method. The standard Rossler
system is stated as 

dx
dt =−y− z,
dy
dt = x+ay,
dz
dt = b+ z(x− c),

where x,y,z are control variables and a,b,c are parameters.
The fractional-order Rossler system is described by

dq1x
dtq1 =−y− z,
dq2y
dtq2 = x+ay,
dq3z
dtq3 = b+ z(x− c),

(1.1)

where its order is denoted by q = (q1,q2,q3), 0 < q1,q2,q3 ≤ 1.
In order to obtain the desired stable region, some effective controllers need to be added.

Recently, various chaos control methods have been proposed; see, e.g., [14, 15, 16]. An optimal
control problem via Caputo fractional derivative was given by Vellappandi in [17]. For recent
bifurcation control methods, we refer to [18, 19, 20, 21, 22, 23, 24, 25, 26]. The time delayed
feedback control method was introduced by Pyragas [27]. For a dynamical system, the main idea
of time delayed feedback control method is to obtain a continuous control by using a feedback
term between the dynamical variable M(t) and its delayed value. In all, a perturbation of the
system is used as E(t) = L(M(t)−M(t− τ)), where τ is the time delay and L is the feedback
strength. The system can be stable by choosing the time delay and appropriate feedback term.

An Adams-type predictor-corrector method was given for the numerical solution of fractional
differential equations in [28]. Bhalekar and Gejji extended the Adams-Bashforth-Moulton
algorithm to solve the delay fractional-order differential equations and provided numerical
illustrations to demonstrate utility of the method in [29].

The aim of this paper is to investigate the chaos control effect of fractional order model (1.1)
and its time delayed feedback control system. By the time delayed feedback control method,
different fractional orders and the control items at different equations are added to obtain the
control effects. Predictor-corrector algorithm of fractional order model and its time delayed
feedback control system are discussed. Numerical simulations verify our theoretical analysis,
including waveform diagrams and phase portraits.
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2. THE PREDICTOR-CORRECTOR ALGORITHM

2.1. The fractional-order Rossler system. The predictor-corrector scheme is used for frac-
tional Rossler system (1.1), which is similar to the method in [28]. Consider the following
differential equation {

Dq
∗y(t) = f (t,y(t)),

y(k)(0) = y(k)0 ,k = 0,1, . . . ,m−1,
(2.1)

System (2.1) is equivalent to the Volterra integral equation

y(t) =
[q]−1

∑
k=0

y(k)0
tk

k!
+

1
Γ(q)

∫ t

0
(t− s)q−1 f (s,y(s))ds. (2.2)

Let h = t
N , tn = nh, n = 0,1, . . . ,N. Thus we can discretize equation (2.2) as

yh(tn+1) =
[q]−1

∑
k=0

y(k)0
tk
n+1

k!
+

hq

Γ(q+2)
f (tn+1,y

p
h(tn+1))+

hq

Γ(q+2)

n

∑
j=0

a j,n+1 f (t j,yh(t j)), (2.3)

where

a j,n+1 =


nq+1− (n−q)(n+1)q, j = 0,
(n− j−2)q+1 +(n− j)q+1−2(n− j+1)q+1,1≤ j ≤ n,
1, j = n+1.

(2.4)

The predictor formula is

yp
h(tn+1) =

[q]−1

∑
k=0

y(k)0
tk
n+1

k!
++

1
Γ(q)

n

∑
j=0

b j,n+1 f (t j,yh(t j)), (2.5)

b j,n+1 =
hq

q
((n+1− j)q− (n− j)q). (2.6)

The error estimate is max j=0,1,...,N | y(t j)− yh(t j) |= O(hp), where p = min(2,1+q).
Through the predictor-corrector method, system (1.1) can be discretized as follows

xn+1 = x0 +
hq1

Γ(q1+2)(−yp
n+1− xp

n+1)+
hq1

Γ(q1+2) ∑
n
j=0 α1, j,n+1(−y j− z j),

yn+1 = y0 +
hq2

Γ(q2+2) [x
p
n+1 +ayp

n+1]+
hq2

Γ(q2+2) ∑
n
j=0 α2, j,n+1[x j +ay j],

zn+1 = z0 +
hq3

Γ(q3+2) [b+ zp
n+1(x

p
n+1− c)]+ hq3

Γ(q3+2) ∑
n
j=0 α3, j,n+1[b+ z j(x j− c)],

(2.7)


xp

n+1 = x0 +
1

Γ(q1)
∑

n
j=0 β1, j,n+1(−y j− z j),

yp
n+1 = y0 +

1
Γ(q2)

∑
n
j=0 β2, j,n+1[x j +ay j],

zp
n+1 = z0 +

1
Γ(q3)

∑
n
j=0 β3, j,n+1[b+ z j(x j− c)],

(2.8)

αi, j,n+1 =


nqi+1− (n−qi)(n+1)qi, j = 0
(n− j−2)qi+1 +(n− j)qi+1−2(n− j+1)qi+1,1≤ j ≤ n
1, j = n+1,

(2.9)

and

βi, j,n+1 =
hqi

qi [(n− j+1)qi
− (n− j)qi

],0≤ j ≤ n, i = 1,2,3. (2.10)
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2.2. The fractional-order Rossler system with time delayed feedback control. In [30], Ding
et al. investigated the integer-order Rossler chaotic system with time delayed feedback as follows

dx
dt =−y− z+L(x(t− τ)− x(t)),
dy
dt = x+ay,
dz
dt = b+ z(x− c).

(2.11)

where τ is the time delay and L is the feedback strength. Equation (2.11) has two fixed points if
c2 > 4ab

(x1,2,y1,2,z1,2) = (
c∓
√

c2−4ab
2

,
−c±

√
c2−4ab

2a
,
c∓
√

c2−4ab
2a

). (2.12)

In [30], the stability of fixed point

(x1,y1,z1) = (
c−
√

c2−4ab
2

,
−c+

√
c2−4ab

2a
,
c−
√

c2−4ab
2a

). (2.13)

is obtained. In the same way, the other one can be obtained immediately.
Using a time delayed feedback control method, we describe the fractional-order Rossler

system with the time delayed feedback as follows
dq1x
dtq1 =−y− z+L1(x(t− τ)− x(t)),
dq2y
dtq2 = x+ay,
dq3z
dtq3 = b+ z(x− c).

(2.14)

In (2.14), the time delayed feedback term is in the first equation, and L1 is the feedback strength.
dq1x
dtq1 =−y− z,
dq2y
dtq2 = x+ay+L2(y(t− τ)− y(t)),
dq3z
dtq3 = b+ z(x− c).

(2.15)

In (2.15), the time delayed feedback term is in the second equation, and L2 is the feedback
strength. 

dq1 x
dtq1 =−y− z,
dq2 y
dtq2 = x+ay,
dq3 z
dtq3 = b+ z(x− c)+L3(z(t− τ)− z(t)).

(2.16)

In (2.16), the time delayed feedback term is in the third equation, and L3 is the feedback strength.
In (2.14), (2.15), and (2.16), 0 < q1,q2,q3 ≤ 1, and its order is denoted by q = (q1,q2,q3).
Similar to [29], we study the predictor-corrector scheme for the delay differential equations of
fractional order Rossler system (2.14). The predictor-corrector schemes of system (2.15) and
(2.16) resemble system (2.14).

Consider the following delay fractional-order differential equations of [29]{
Dq
∗y(t) = f (t,y(t),y(t− τ)), t ∈ [0,T ],0 < q≤ 1,

y(t) = φ(t), t ∈ [−τ,0].
(2.17)

Use a uniform grid tn = nh : n =−k,−k+1, · · · ,−1,0,1, · · · ,N, where k and N are intergers,
that is, h = t

N and h = τ

k .
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Setting
yh(t j) = φ(t j), j =−k,−k+1, · · · ,−1,0, (2.18)

we have
yh(t j− τ) = yh( jh− kh) = yh(t j−k), j = 0,1, · · · ,N. (2.19)

For given approximations

yh(t j)≈ y(t j), j =−k,−k+1, · · · ,−1,0,1, · · · ,n, (2.20)

we need to calculate yh(tn+1) by using

y(tn+1) = φ(0)+
1

Γ(q)

∫ tn+1

0
(tn+1−ξ )q−1 f (ξ ,y(ξ ),y(ξ − τ))dξ . (2.21)

We use approximations yh(tn) for y(tn) in (2.21). According to the product trapezoidal quadrature
formula, the integral is evaluated in equation (2.21). The corrector formula is as follows

yh(tn+1) = φ(0)+
hq

Γ(q+2)
f (tn+1,y

p
h(tn+1),yh(tn+1− τ))

+
hq

Γ(q+2)

n

∑
j=0

a j,n+1 f (t j,yh(t j),yh(t j− τ))

= φ(0)+
hq

Γ(q+2)
f (tn+1,y

p
h(tn+1),yh(tn+1−k))

+
hq

Γ(q+2)

n

∑
j=0

a j,n+1 f (t j,yh(t j),yh(t j−k)),

(2.22)

where a j,n+1 are given by (2.4), and yp
h(tn+1) is called the predictor. In (2.22), we use the product

rectangle rule to evaluate predictor term

yp
h(tn+1) = φ(0)+

1
Γ(q)

n

∑
0

b j,n+1 f (t j,yh(t j),yh(t j− τ))

= φ(0)+
1

Γ(q)

n

∑
0

b j,n+1 f (t j,yh(t j),yh(t j−k))

(2.23)

where b j,n+1 are given by (2.6).
According to the predictor-corrector method, we can discretize system (2.14) as follows

xn+1 =

{
x0 +

hq1
Γ(q1+2)(−yp

n+1− xp
n+1 +L1(xn+1−k− xp

n+1))

+ hq1
Γ(q1+2) ∑

n
j=0 α1, j,n+1(−y j− z j +L1(x j−k− x j)),

yn+1 = y0 +
hq2

Γ(q2+2) [x
p
n+1 +ayp

n+1]+
hq2

Γ(q2+2) ∑
n
j=0 α2, j,n+1[x j +ay j],

zn+1 = z0 +
hq3

Γ(q3+2) [b+ zp
n+1(x

p
n+1− c)]+ hq3

Γ(q3+2) ∑
n
j=0 α3, j,n+1[b+ z j(x j− c)]

(2.24)

and 
xp

n+1 = x0 +
1

Γ(q1)
∑

n
j=0 β1, j,n+1(−y j− z j +L1(x j−k− x j)),

yp
n+1 = y0 +

1
Γ(q2)

∑
n
j=0 β2, j,n+1[x j +ay j],

zp
n+1 = z0 +

1
Γ(q3)

∑
n
j=0 β3, j,n+1[b+ z j(x j− c)].

(2.25)
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Furthermore, system (2.15) can be discretized as


xn+1 = x0 +

hq1
Γ(q1+2)(−yp

n+1− xp
n+1)+

hq1
Γ(q1+2) ∑

n
j=0 α1, j,n+1(−y j− z j),

yn+1 =

{
y0 +

hq2
Γ(q2+2) [x

p
n+1 +ayp

n+1 +L2(yn+1−k− yp
n+1)]

+ hq2
Γ(q2+2) ∑

n
j=0 α2, j,n+1[x j +ay j +L2(y j−k− y j)],

zn+1 = z0 +
hq3

Γ(q3+2) [b+ zp
n+1(x

p
n+1− c)]+ hq3

Γ(q3+2) ∑
n
j=0 α3, j,n+1[b+ z j(x j− c)]

(2.26)

and 
xp

n+1 = x0 +
1

Γ(q1)
∑

n
j=0 β1, j,n+1(−y j− z j),

yp
n+1 = y0 +

1
Γ(q2)

∑
n
j=0 β2, j,n+1[x j +ay j +L2(y j−k− y j)],

zp
n+1 = z0 +

1
Γ(q3)

∑
n
j=0 β3, j,n+1[b+ z j(x j− c)].

(2.27)

System (2.16) can be discretized as


xn+1 = x0 +

hq1
Γ(q1+2)(−yp

n+1− xp
n+1)+

hq1
Γ(q1+2) ∑

n
j=0 α1, j,n+1(−y j− z j),

yn+1 = y0 +
hq2

Γ(q2+2) [x
p
n+1 +ayp

n+1]+
hq2

Γ(q2+2) ∑
n
j=0 α2, j,n+1[x j +ay j],

zn+1 =

{
z0 +

hq3
Γ(q3+2) [b+ zp

n+1(x
p
n+1− c)+L3(zn+1−k− zp

n+1)]

+ hq3
Γ(q3+2) ∑

n
j=0 α3, j,n+1[b+ z j(x j− c)+L3(z j−k− z j)]

(2.28)

and 
xp

n+1 = x0 +
1

Γ(q1)
∑

n
j=0 β1, j,n+1(−y j− z j),

yp
n+1 = y0 +

1
Γ(q2)

∑
n
j=0 β2, j,n+1[x j +ay j],

zp
n+1 = z0 +

1
Γ(q3)

∑
n
j=0 β3, j,n+1[b+ z j(x j− c)+L3(z j−k− z j)].

(2.29)

where αi, j,n+1 and βi, j,n+1 are given by (2.9) and (2.10).

3. COMPARISON AND DISCUSSION BY NUMERICAL SIMULATIONS

The Rossler system becomes a criterion to detect the effectiveness of the chaos control method
because of its simplicity. It is well known that the integer-order Rossler model is a chaos system.
Next, according to the derived discrete schemes in the section above, we give a comparative
study on chaos control for the fractional-order Rossler system and its time delayed feedback
control system by waveform plots and phases.
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Table 1. The fractional Rossler system (1.1)
q=(1,1,1) chaos

q=(0.96,1,1) chaos
q=(0.84,1,1) chaos
q=(0.72,1,1) chaos
q=(0.66,1,1) chaos
q=(1,0.96,1) chaos
q=(1,0.84,1) chaos
q=(1,0.72,1) chaos
q=(1,0.6,1) stable

q=(1,1,0.96) chaos
q=(1,1,0.84) chaos
q=(1,1,0.74) chaos
q=(1,1,0.72) stable
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FIGURE 1. The waveformplot and phase of the predictor-corrector algorithm for
Rossler system (1.1) (integer order): q = (1,1,1)
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FIGURE 2. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (1.1): q = (1,0.6,1)
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FIGURE 3. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (1.1): q = (1,1,0.72)
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FIGURE 4. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (2.14): q = (1,0.96,1),τ = 1.99
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FIGURE 5. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (2.14): q = (1,0.6,1),τ = 1.99
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Table 2. The fractional Rossler system (2.14)with delay for τ = 1.99
(q1,q2,q3) τ = 1.99
(0.96,1,1) chaos
(0.84,1,1) chaos
(0.72,1,1) chaos
(0.66,1,1) chaos
(1,0.96,1) periodic solution
(1,0.84,1) stable
(1,0.72,1) stable
(1,0.6,1) stable

(1,1,0.96) periodic solution
(1,1,0.84) periodic solution
(1,1,0.74) periodic solution
(1,1,0.72) stable

Table 3. The fractional Rossler system (2.14) with delay for different τ

(q1,q2,q3) τ = 1.99 τ = 3 τ = 4.6
(1,1,1) periodic solution stable periodic solution

(0.96,1,1) chaos stable stable
(0.84,1,1) chaos stable stable
(1,0.96,1) periodic solution stable stable
(1,0.84,1) stable stable stable
(1,1,0.96) periodic solution stable periodic solution
(1,1,0.84) periodic solution stable periodic solution
(1,1,0.72) stable stable periodic solution
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FIGURE 6. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (2.14): q = (1,0.84,1),τ = 1.99

Let a = 0.2,b = 0.2, and c = 0.7 for the fractional-order Rossler system (1.1), system (2.11)
and the fractional-order Rossler system with time delayed feedback control (2.14)-(2.15)-(2.16).

In [30], Ding et al. gave numerical simulations for the integer-order Rossler system (2.11) with
different delay τ . Simulation results indicate that the Rossler chaotic system can be controlled
to be stable by choosing appropriate controlled parameters. In this paper, through Tables 1-3
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FIGURE 7. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (2.14): q = (1,0.84,1),τ = 3
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FIGURE 8. The waveformplot and phase of the predictor-corrector algorithm for
fractional-order Rossler system (2.14): q = (1,0.84,1),τ = 4.6

and Figures 1-8, we can obtain the following results of the fractional-order Rossler system (1.1)
and the fractional-order Rossler time delayed feedback control system (2.14)-(2.15)-(2.16). The
main experimental conclusions are summarized as follows.

From Table 1, we can obtain two states (chaos and stable solution) by choosing different
q = (q1,q2,q3). From Figure 1, we give waveform plots and phase diagrams of the integer order
Rossler chaos system. From Figures 2-3, we plot the waveform plots and phase diagrams of
fractional-order Rossler system (1.1) at different q = (q1,q2,q3) (Figure 2: q = (1,0.6,1) and
Figure 3: q = (1,1,0.72)). The fractional-order Rossler system (1.1) is stable at q = (1,0.6,1)
(or q = (1,1,0.72)).

From Table 2, we can obtain three results (chaos, period solution, and stable solution) by
choosing different q= (q1,q2,q3). From Figures 4-5, we plot waveform plots and phase diagrams
about time delayed feedback control analysis of a fractional-order Rossler system (2.14) at
different q = (q1,q2,q3) (Figure 4: q = (1,0.96,1) period solution, Figure 5: q = (1,0.6,1)
stable solution).

In Table 3, for τ = 1.99,τ = 3, and τ = 4.6, we receive different results (chaos, periodic
solution, and stable solution) when q = (q1,q2,q3) takes different values. From Figures 6-8,
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we can show that a fractional-order Rossler system (2.14) with time delayed feedback control
is stable at q = (1,0.84,1) and different τ = 1.99,τ = 3,τ = 4.6. The fractional-order Rossler
system (2.14) with time delayed feedback control is very effective for the control of chaotic
system.

Through above analysis, we find that the fractional-order Rossler system (1.1) and its time
delayed feedback control system (2.14) can make the chaotic system become stable. And the
fractional-order Rossler system with time delayed feedback control is very effective in controlling
chaos.

4. CONCLUSIONS

According to Adams-type predictor-corrector method, we investigated the fractional-order
Rossler system. We deduced that system (1.1) has period or stable solutions at different q =
(q1,q2,q3). The predictor-corrector algorithm of the fractional delay differential equation was
used to make the fractional Rossler system reach a stable state from the chaotic state. Therefore,
through our discussion and comparison, the integer-order Rossler model is a chaos system. The
fractional-order Rossler system and its time delayed feedback control system are useful for the
control of chaotic system. In addition, the fractional-order Rossler system with time delayed
feedback control is more effective than the fractional-order Rossler system in controlling chaos.
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