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ABSOLUTE STABILITY OF TIME-DELAYED LURIE DIRECT CONTROL
SYSTEMS WITH UNBOUNDED COEFFICIENTS

XIAO YU∗, RUNHAN LU, YAN HUA

School of Science, Shandong Jianzhu University, Jinan 250101, China

Abstract. The absolute stability of a time-varying Lurie direct control system with time-varying delay
is studied in this paper. Based on the Lyapunov stability theorem for non-autonomous delay differential
systems, we tackle a class of stability analysis problems. Sufficient conditions to ensure the absolute
stability of the time-delayed Lurie system with single nonlinearity are formulated by simple and easily
verifiable inequalities. Subsequently, the conclusions are extended to the case of multiple nonlinearities.
The results in this paper are not only effective for the Lurie systems with norm-unbounded coefficients
but also applicable to this class of systems with bounded or constant coefficients. Finally, the stability
results are illustrated by numerical simulations.
Keywords. Absolute stability; Lyapunov stability theorem; Lurie direct control system; Non-autonomous
delay differential systems; Unbounded coefficients.

1. INTRODUCTION

Early in the 1940’s, absolute stability concept was defined by Russian mathematicians Lurie
and Postnikov in [1]. Since then, the absolute stability of Lurie systems has received consid-
erable attention. For constant and uncertain Lurie systems, the corresponding stability theory
was established; see, e.g., [2, 3, 4, 5, 6]. Recently, some new results have been developed for
time-varying case; see, e.g., [7, 8, 9, 10, 11] and the references therein. By combining M-
matrix property and Lyapunov theorems, some sufficient conditions to ensure absolute stability
of time-varying Lurie direct control systems were derived in [7]. Moreover, some extensions to
time-varying large-scale Lurie systems were developed in [8, 9].

It is known that time delay frequently appears in engineering systems. Also, it is always
the significant cause of un-stability and poor performance. With respect to Lurie systems with
time delay, fruitful absolute stability results have been achieved thus far. By the linear ma-
trix inequality method, several stability criteria for time-delayed systems with sector-bounded
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nonlinearity were presented in [12]. By using a Lur’e-Postnikov function, some sufficient con-
ditions for the absolute stability of time-delay Lurie direct control systems were presented in
[13], and the relationship between these conditions and certain frequency-domain conditions
was also provided. Furthermore, absolute stability for uncertain Lurie systems with time delay
was analyzed in [14, 15, 16, 17, 18]. In addition, a class of more complicated neutral Lurie
systems was considered in [19, 20].

It should be noted that all the existing results related to time-delayed Lurie systems mentioned
above were established for the case that the system are constant or uncertain, while as for general
time-varying Lurie systems, corresponding results are very few. In this paper, we investigate
the absolute stability of time-varying Lurie direct control systems. In particular, the coefficients
matrices of systems considered herein can be norm-unbounded. The aim of this paper is to
give some simple and easily verifiable conditions to ensure the absolute stability of this class
of Lurie systems based on the Lyapunov stability theorem. The selected Lyapunov-Krasovskii
functional is composed of a quadratic term with respect to the state and an integral term related
to time delay. Also, it is highlighted that the criteria proposed are not only effective for the Lurie
systems with norm-unbounded coefficients but also applicable to such systems with bounded or
constant coefficients.

Notations: λ (A) stands for any eigenvalue of the square matrix A. Let x=
[

x1 x2 · · · xn
]T .

The notation ‖x‖ stands for Euclidean norm of x , i.e., ‖x‖=
√

∑
n
i=1 x2

i . ‖A‖ represents the ma-
trix norm induced by Euclidean vector norm, namely ‖A‖= max‖x‖=1 ‖Ax‖, and one can prove
that ‖A‖=

√
λmax (AT A). In the derivation of this paper, ‖A‖ can be replaced by ‖A‖F , ‖A‖F =√

∑
n
j=1 ∑

m
k=1

∣∣ak j
∣∣2, which is due to ‖A‖ ≤ ‖A‖F and the fact that the calculation of ‖A‖F is

not hard. lim
t→∞

stands for the upper limit. For simplicity, let φ (s) = x(t + s) ,s ∈ [−τ,0] , t ≥ 0,

|‖φ‖|=
√∫ 0
−τ
‖φ (s)‖2ds.

To investigate the absolute stability of the Lurie direct control system with time-varying delay,
we consider first the case of single nonlinearity. Next, the derived stability results are extended
to the case of multiple nonlinearities. The Lyapunov theorem used in the proof was given in
[21].

2. ABSOLUTE STABILITY OF TIME-DELAYED LURIE SYSTEMS WITH SINGLE

NONLINEARITY

Consider the following time-varying Lurie direct control system with single nonlinearity and
time-varying delay {

ẋ(t) = A(t)x(t)+B(t)x(t− τ (t))+b(t) f (σ (t)) ,
σ (t) = cT (t)x(t) ,

(2.1)

where x(t) ∈ Rn is the state; σ (t) ∈ R is the output; A(t) ,B(t) are n×n time-varying matrices;
b(t) ,c(t) are n dimensional column vectors; τ (t) is the time delay, and A(t) ,B(t) ,b(t) ,c(t)
are continuous in [0,+∞). The nonlinearity f (·) is continuous and satisfies the sector condition:

F[0,k] =
{

f (·) | f (0) = 0;0 < σ (t) f (σ (t))≤ kσ
2 (t) ,σ (t) 6= 0

}
, (2.2)

where k > 0 is a constant.
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Definition 2.1. [22] System (2.1) is said to be absolutely stable if its zero solution is globally
asymptotically stable for any nonlinearity f ∈ F[0,k].

The following assumptions are important for system (2.1).
A1: The time delay τ (t) is a continuous and piecewise differentiable function satisfying

0≤ τ (t)≤ τ and τ̇ (t)≤ w < 1, where τ and w are constants. At the non-differential points of
τ (t), τ (t) represents max[τ̇(t−0), τ̇(t +0)].

A2: For any t ∈ [0,∞), there exist symmetric positive-definite matrices P and G such that

λ
(
PA(t)+AT (t)P+G

)
≤−δ (t)≤−δ ,

where δ > 0 is a constant.
A3: For any t ∈ [0,∞), we assume that

‖PB(t)‖√
δ (t)(1−α)λmin (G)

≤ α,

where α > 0 is a constant.
A4: For any t ∈ [0,∞), there exists ε > 0 such that∥∥Pb(t)+ 1

2εkC (t)
∥∥√

δ (t)ε
≤ β ,

where β > 0 is a constant.

Theorem 2.2. Under A1-A4, system (2.1) is absolutely stable if α2 +β 2 < 1.

Proof. Using matrices P and G, we choose a Lyapunov-Krasovskii functional as

V (t,φ) = xT (t)Px(t)+
∫ t

t−τ(t)
xT (s)Gx(s)ds.

By using A1 and the property of the matrix norm, we see that V (t,φ) satisfies

λmin (P)‖x(t)‖2 ≤V (t,φ)≤ λmax (P)‖x(t)‖2 +λmax (G)
∫ 0

−τ

‖x(t + s)‖2ds.

Thus
λmin (P)‖φ (0)‖2 ≤V (t,φ)≤ λmax (P)‖φ (0)‖2 +λmax (G) |‖φ‖|2.

If u(s) = λmin (P)s2, v(s) = λmax (P)s2, and w(s) = λmax (G)s2, then, for t ≥ 0,

u(‖φ (0)‖)≤V (t,φ)≤ v(‖φ (0)‖)+w(|‖φ‖|) .

Hence, V (t,φ) satisfies the conditions of the Lyapunov theorem. Computing the time derivative
of V (t,φ) along system (2.1) yields

V̇ (t,φ)
∣∣
(2.1) = 2xT (t)Pẋ(t)+ xT (t)Gx(t)− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t))

= 2xT (t)P(A(t)x(t)+B(t)x(t− τ (t))+b(t) f (σ (t)))+ xT (t)Gx(t)

− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t))

= xT (t)
(
PA(t)+AT (t)P+G

)
x(t)+2xT (t)PB(t)x(t− τ (t))

+2xT (t)Pb(t) f (σ (t))− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t)) .
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Observe that condition (2.2) is equivalent to f 2 (σ (t))− kcT (t)x(t) f (σ (t)) ≤ 0. Taking A2
and the property of the matrix norm into account, for an arbitrary ε > 0, we obtain

V̇ (t,φ)
∣∣
(2.1)

≤ xT (t)
(
PA(t)+AT (t)P+G

)
x(t)+2xT (t)PB(t)x(t− τ (t))+2xT (t)Pb(t) f (σ (t))

− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t))− ε f 2 (σ (t))+ εkcT (t)x(t) f (σ (t))

≤ xT (t)
(
PA(t)+AT (t)P+G

)
x(t)+2xT (t)PB(t)x(t− τ (t))

+2xT (t)(Pb(t)+
1
2

εkc(t)) f (σ (t))− (1−α)xT (t− τ (t))Gx(t− τ (t))− ε f 2 (σ (t))

≤−δ (t)‖x(t)‖2 +2‖PB(t)‖‖x(t)‖‖x(t− τ (t))‖+2‖Pb(t)+
1
2

εkc(t)‖‖x(t)‖| f (σ (t))|

− (1−α)λmin (G)‖x(t− τ (t))‖2− ε f 2 (σ (t)) .

In view of A3, A4, and the unbounded coefficient terms in system (2.1), we take
√

δ (t)‖x(t)‖,√
(1−α)λmin (G)‖x(t− τ)‖ and

√
ε | f (σ (t))| as the following variables of the quadratic

form. Notice that

V̇ (t,φ)
∣∣
(2.1) ≤−δ (t)‖x(t)‖2 +2

‖PB(t)‖√
δ (t)(1−α)λmin (G)

[√
δ (t)‖x(t)‖

]
·
[√

(1−α)λmin (G)‖x(t− τ (t))‖
]

+2

∥∥Pb(t)+ 1
2εkc(t)

∥∥√
δ (t)ε

[√
δ (t)‖x(t)‖

]
·
[√

ε | f (σ (t))|
]
− (1−α)λmin (G)‖x(t− τ (t))‖2− ε f 2 (σ (t))

≤−δ (t)‖x(t)‖2 +2α
√

δ (t)‖x(t)‖ ·
√

(1−α)λmin (G)‖x(t− τ (t))‖

+2β

[√
δ (t)‖x(t)‖

]
·
[√

ε | f (σ (t))|
]
− (1−α)λmin (G)‖x(t− τ (t))‖2− ε f 2 (σ (t)) .

Then, the above inequality can be written as

V̇ (t,φ)
∣∣
(2.1)

≤


√

δ (t)‖x(t)‖√
(1−α)λmin (G)‖x(t− τ (t))‖√

ε | f (σ (t))|

T

D


√

δ (t)‖x(t)‖√
(1−α)λmin (G)‖x(t− τ (t))‖√

ε | f (σ (t))|

 ,
where

D =

 −1 α β

α −1 0
β 0 −1

 .
It is clear that the matrix D is negative-definite if α2+β 2 < 1. Based on the Lyapunov theorem,
system (2.1) is absolutely stable. This completes the proof. �

Corollary 2.3. Under A1-A4, system (2.1) is absolutely stable if α2 +β 2 < 1.
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To study the absolute stability of system (2.1), we only need to ensure that the above condi-
tions are fulfilled as time tends to infinity. Therefore, the aforementioned t ∈ [0,∞) in A2-A4
can be written as t ∈ [T,∞) ,T ≥ 0. Furthermore, A3 and A4 can be rewritten as a new form of
the upper limit, i.e., A5 and A6 below.

A5:

lim
t→∞

‖PB(t)‖√
δ (t)(1−α)λmin (G)

= ᾱ,

where ᾱ is a constant.
A6: There exists ε > 0 such that

lim
t→∞

∥∥Pb(t)+ 1
2εkC (t)

∥∥√
δ (t)ε

= β̄ ,

where β̄ is a constant.

Corollary 2.4. Under A1, A2, A5, and A6, system (2.1) is absolutely stable if ᾱ2 + β̄ 2 < 1.

Corollary 2.5. Under A1, A2, A5, and A6, system (2.1) is absolutely stable if ᾱ + β̄ < 1.

It is worth pointing out that the above absolute stability criteria are also effective for time-
delayed Lurie system with bounded or constant coefficients.

3. ABSOLUTE STABILITY OF TIME-DELAYED LURIE SYSTEMS WITH MULTIPLE

NONLINEARITIES

Consider the following time-varying Lurie direct control system with multiple nonlinearities
and time-varying delay ẋ(t) = A(t)x(t)+B(t)x(t− τ (t))+

m
∑
j=1

b j (t) f j
(
σ j (t)

)
,

σi (t) = cT
i (t)x(t) (i = 1,2, · · · ,m) ,

(3.1)

where x(t) ∈ Rn is the state; σi (t) ∈ R(i = 1,2, · · · ,m) are the outputs; A(t) ,B(t) are n× n
matrices; bi (t), ci (t)(i = 1,2, · · · ,m) are n dimensional column vectors; τ (t) is the time delay;
A(t) ,B(t) ,bi (t) ,ci (t) are continuous in [0,∞). The nonlinearities fi (·)(i = 1,2, · · · ,m) are
continuous and satisfy the sector condition

F[0,ki] =
{

fi (·) | fi (0) = 0;0 < σi (t) fi (σi (t))≤ kiσi
2 (t) ,σi (t) 6= 0

}
, (3.2)

where ki > 0(i = 1,2, · · · ,m) are constants.

Definition 3.1. [22] System (3.1) is said to be absolutely stable if its zero solution is globally
asymptotically stable for any nonlinearity fi (·) ∈ F[0,ki].

In addition to the A1-A3 mentioned above, the following assumption is also crucial to system
(3.1).

A7: For any t ∈ [0,∞), there exist εi > 0(i = 1,2, · · · ,m) such that∥∥Pbi (t)+ 1
2εikici (t)

∥∥√
δ (t)εi

≤ βi,

where βi > 0(i = 1,2, · · · ,m) are constants.
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Theorem 3.2. Under A1-A3 and A7, system (3.1) is absolutely stable if α2 +∑
m
i=1 β 2

i < 1.

Proof. Let us apply a Lyapunov-Krasovskii functional of the same form as in the proof of
Theorem 2.2. Observe that V (t,φ) satisfies the conditions of the Lyapunov theorem.

By calculating the time derivative of V (t,φ) along system (3.1), we obtain

V̇ (t,φ)
∣∣
(3.1) = 2xT (t)Pẋ(t)+ xT (t)Gx(t)− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t))

= 2xT (t)P(A(t)x(t)+B(t)x(t− τ (t))+
m

∑
j=1

b j (t) f j
(
σ j (t)

)
)+ xT (t)Gx(t)

− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t))

= xT (t)
(
PA(t)+AT (t)P+G

)
x(t)+2xT (t)PB(t)x(t− τ (t))

+2xT (t)P
m

∑
j=1

b j (t) f j
(
σ j (t)

)
− (1− τ̇ (t))xT (t− τ (t))Gx(t− τ (t)) .

By virtue of condition (3.2), we have fi
2 (σi (t))− kici

T (t)x(t) fi (σi (t)) ≤ 0. Accordingly,
using A2 and the property of matrix norm and estimating V̇ (t,φ)

∣∣
(3.1) yield

V̇ (t,φ)
∣∣
(3.1) ≤ xT (t)

(
PA(t)+AT (t)P+G

)
x(t)+2xT (t)PB(t)x(t− τ (t))

+2xT (t)P
m

∑
i=1

bi (t) fi (σi (t))− (1−α)xT (t− τ (t))Gx(t− τ (t))

−
m

∑
i=1

εi fi
2 (σi (t))+

m

∑
i=1

εixT (t)kici (t) fi (σi (t))

≤−δ (t)‖x(t)‖2 +2‖PB(t)‖‖x(t)‖‖x(t− τ (t))‖

+2
m

∑
i=1
‖Pbi (t)+

1
2

εikici (t)‖‖x(t)‖| fi (σi (t))|

− (1−α)λmin (G)‖x(t− τ (t))‖2−
m

∑
i=1

εi fi
2 (σi (t)) .

Then, we regard
√

δ (t)‖x(t)‖,
√

(1−α)λmin (G)‖x(t− τ)‖ and
√

εi | fi (σi (t))|(i= 1,2, · · · ,m)
as the variables of a quadratic form in the following. Further, from A3 and A7, one obtains

V̇ (t,φ)
∣∣
(3.1) ≤−δ (t)‖x(t)‖2 +2α

√
δ (t)‖x(t)‖ ·

√
(1−α)λmin (G)‖x(t− τ (t))‖

+2
m

∑
i=1

βi

[√
δ (t)‖x(t)‖

]
·
[√

εi | fi (σi (t))|
]
− (1−α)λmin (G)‖x(t− τ (t))‖2

−
m

∑
i=1

εi fi
2 (σi (t)) .
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Observe that the inequality above can be rewritten as

V̇ (t,φ)
∣∣
(3.1) ≤



√
δ (t)‖x(t)‖√

(1−α)λmin (G)‖x(t− τ (t))‖√
ε1 | f1 (σ1 (t))|

...√
εm | fm (σm (t))|


T

D



√
δ (t)‖x(t)‖√

(1−α)λmin (G)‖x(t− τ (t))‖√
ε1 | f1 (σ1 (t))|

...√
εm | fm (σm (t))|

 ,
where

D =


−1 α β1 · · · βm
α −1 0 · · · 0
β1 0 −1 · · · 0
...

...
... . . . ...

βm 0 0 · · · −1

 .

One can prove that the matrix D is negative-definite if α2 +
m
∑

i=1
β 2

i < 1. By the Lyapunov

theorem, system (3.1) is absolutely stable. The theorem is verified. �

Corollary 3.3. Under A1-A3 and A7, system (3.1) is absolutely stable if α +∑
m
i=1 βi < 1.

Similarly to the case of single nonlinearity, A7 can be replaced by another form, i.e., A8
below.

A8: There exist εi > 0(i = 1,2, · · · ,m) such that

lim
t→∞

∥∥Pbi (t)+ 1
2εikici (t)

∥∥√
δ (t)εi

= β̄i,

where β̄i > 0(i = 1,2, · · · ,m) are constants.

Corollary 3.4. Under A1, A2, A5, and A8, system (3.1) is absolutely stable if ᾱ2+∑
m
i=1 β̄ 2

i < 1.

Corollary 3.5. Under A1, A2, A5, and A8, system (3.1) is absolutely stable if ᾱ +∑
m
i=1 β̄i < 1.

4. NUMERICAL SIMULATIONS

To reinforce theoretical results, several numerical examples are presented in the following.

Example 4.1. Consider the following time-delayed Lurie direct control system with single non-
linearity ẋ(t) =

[
−2t−0.5 1
−1 −3t−0.5

]
x(t)+

[ √
t 0

0
√

t
3

]
x(t− τ (t))+

[
−2
√

t√
t

]
f (σ (t)) ,

σ (t) =
[ √

t 1
]

x(t) ,
(4.1)

where τ (t) = 3+0.5sin t and f (·) ∈ F[0,2].
This system is in the form of (2.1) with

A(t) =
[
−2t−0.5 1
−1 −3t−0.5

]
,B(t) =

[ √
t 0

0
√

t
3

]
,b(t) =

[
−2
√

t√
t

]
,c(t) =

[ √
t

1

]
.
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For condition (2.2), k = 2. Clearly, A1 is satisfied with τ = 3.5 and w = 0.5. By letting P =
G = I, we have

PA(t)+AT (t)P+G =

[
−4t 0

0 −6t

]
.

It is obvious that λ
(
PA(t)+AT (t)P+G

)
≤ −4t. Hence A2 is fulfilled with δ (t) = 4t. Since

lim
t→∞

‖PB(t)‖√
δ (t)(1−α)λmin(G)

= 1√
2
, then A3 is satisfied with ᾱ = 1√

2
. Then by taking ε = 2, we obtain

lim
t→∞

‖Pb(t)+ 1
2 εkc(t)‖√

δ (t)ε
= 1√

8
. Thus A4 is satisfied with β̄ = 1√

8
. Finally, one can compute that

ᾱ2 + β̄ 2 = 1
8 < 1, which means the conditions of Corollary 2.4 are satisfied. Hence, system

(4.1) is absolutely stable. Letting f (σ (t)) = σ (t)+ 0.1sinσ (t). It can be verify that f (·) ∈

F[0,2]. Additionally, the simulation result is obtained with initial condition x(t) =
[

1
−1

]
, t ∈

[−3.5,0], as shown in Figure 1. It is clear that the zero solution of system (4.1) is asymptotically
stable.

0 5 10 15

t

-1

-0.5

0

0.5

1

x
1
, 
x

2

x
1

x
2

FIGURE 1. The state response of system (4.1) in Example 4.1.

Example 4.2. Let us continue with system (4.1), and the time delay is

τ(t) =


1, t < 2

0.5t, 2≤ t ≤ 4
2, t > 4

while other parameters are unchanged. Here τ (t) ≤ 2, so τ = 2 . We notice that τ (t) is not
derivative at t = 2 and t = 4, but it has left and right derivative. By simple computation, A1
is fulfilled with w = 0.5. Similarly to Example 4.1, this system is also absolutely stable. The
numerical simulation result is shown in Figure 2.
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0 5 10 15

t

-1

-0.5

0

0.5

1

x
1
, 
x

2

x
1

x
2

FIGURE 2. The state response of the system in Example 4.2.

Notice that the coefficients A(t) ,B(t) ,b(t) ,c(t) ,ρ (t) are norm-unbounded in Example 4.1
and Example 4.2. This is the main highlight of this paper. All the conclusions are not only
effective for Lurie direct control systems with unbounded coefficients but also valid for such
systems with bounded or constant coefficients. Then, we present an example of Lurie system
with constant coefficients.

Example 4.3. Consider the following constant Lurie direct control system with time-varying
delay  ẋ(t) =

[
−4.5 1
−1 −4.5

]
x(t)+

[
1 0
0 1

]
x(t− τ (t))+

[
1
0

]
f (σ (t)) ,

σ (t) =
[
−1

√
2
]

x(t) ,
(4.2)

where τ (t) = 3+0.5sin t and f (·) ∈ F[0,2]. This system is in the form of (2.1) with

A =

[
−4.5 1
−1 −4.5

]
,B =

[
1 0
0 1

]
,b =

[
1
0

]
,c =

[
−1√

2

]
.

For condition (2.2), k = 2. Obviously, A1 is satisfied with τ = 3.5,w = 0.5. By letting P = G =
I, we have

PA+AT P+G =

[
−8 0
0 −8

]
.

Thus A2 is satisfied with δ (t) = δ = 8. Moreover, one has

‖PB‖√
δ (t)(1−α)λmin (G)

=
1
2
.
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Hence, A3 is fulfilled with α = 1
2 . In addition, by letting ε = 1, it follows directly that∥∥Pb+ 1

2εkc
∥∥√

δ (t)ε
=

1
2
,

which implies that A4 is satisfied with β = 1
2 . It is straightforward to see α2 + β 2 = 1

2 < 1
holds. One can thus conclude from Theorem 2.2 that this system is absolutely stable. In order
to carry out the numerical simulation, we select f (σ (t)) = σ (t)+0.1sinσ (t) and assume that

the initial condition is x(t) =
[ 1
−1

]
, t ∈ [−3.5,0]. The simulation result is illustrated in Figure

3.
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FIGURE 3. The state response of system (4.2) in Example 4.3.

As can be seen clearly in Figure 3, the states of system (4.2) converge to the origin asymp-
totically. This example illustrates that the stability conditions in this paper are effective for the
constant Lurie direct control system with time-varying delay.

Example 4.4. Consider the following time-delayed Lurie direct control system with two non-
linearities

ẋ(t) =
[
−4t−0.5 1

0 −6t−0.5

]
x(t)+

[ √
0.25t 0
0

√
t

]
x(t− τ (t))+

[ √
3t√
t

]
f1 (σ1 (t))

+

[
−t√

t

]
f2 (σ2 (t)) ,

σ1 (t) =
[
−
√

3t 1
]

x(t) ,
σ2 (t) =

[
t +1 1

]
x(t) ,

(4.3)
where τ (t) = 3+0.5sin t, f1 (σ) ∈ F[0,0.5], and f2 (σ) ∈ F[0,1].
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This system is in the form of (3.1) with

A(t)=
[
−4t−0.5 1

0 −6t−0.5

]
,B(t)=

[ √
0.25t 0
0

√
t

]
,b1 (t)=

[ √
3t√
t

]
,b2 (t)=

[
−t√

t

]
,

c1 (t) =
[
−
√

3t
1

]
,c2 (t) =

[
t +1

1

]
.

For condition (3.2), here k1 = 0.5,k2 = 1. First, A1 is satisfied with τ = 3.5,w = 0.5. By letting
P = G = I, we have

PA(t)+AT (t)P+G =

[
−8t 1

1 −12t

]
.

By simple calculation, we obtain λ
(
PA(t)+AT (t)P+G

)
≤ −10t +

√
4t2 +1. Let T = 2

3 . If
t > T , then λ

(
PA(t)+AT (t)P+G

)
≤−7.5t <−5. Hence A2 is fulfilled with δ (t) = 7.5t and

δ = 5. Then,

lim
t→∞

‖PB(t)‖√
δ (t)(1−α)λmin (G)

=
1√
3.75

.

Thus A5 is satisfied with ᾱ = 1√
3.75

. Furthermore, by letting ε1 = 4,ε2 = 2, we derive

lim
t→∞

∥∥Pb1 (t)+ 1
2ε1k1c1 (t)

∥∥√
δ (t)ε1

=
1√
30

and

lim
t→∞

∥∥Pb2 (t)+ 1
2ε2k2c2 (t)

∥∥√
δ (t)ε2

=
1√
15

,

which shows that A8 is satisfied with β̄1 =
1√
30

and β̄2 =
1√
15

. In the end, since ᾱ2+ β̄ 2
1 + β̄ 2

2 =
11
30 < 1, we arrive at the conclusion via Corollary 3.4 that this system is absolutely stable. The
simulation is developed with the nonlinearities f1 (σ (t)) = 0.2σ (t)+0.1sinσ (t) and

f2 (σ (t)) =


0.125σ (t) , |σ (t)|< 1,
0.125σ3 (t) , 1≤ |σ (t)| ≤ 2,

0.5σ (t) , |σ (t)|> 2,

and the initial condition x(t) =
[

1
−1

]
, t ∈ [−3.5,0], as shown in Figure 4. Clearly, the zero

solution of system (4.3) is asymptotically stable. It is observed that the simulation result agrees
closely with the theoretical result.
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FIGURE 4. The state response of system (4.3) in Example 4.4.

5. CONCLUSIONS

The absolute stability of time-delayed Lurie direct control system was considered in this
paper. From the Lyapunov theorem on time delay system, several simple and computable suf-
ficient conditions were obtained by Lyapunov-Krasovskii approach. The criteria proposed in
this paper are especially effective for time-delayed Lurie direct control system with unbounded
coefficients and also valid for such system with bounded or constant coefficients. The stability
results were illustrated by numerical simulations.
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