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THE EXISTENCE OF RADIAL POSITIVE SOLUTIONS OF A CLASS OF
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Abstract. In this paper, we study the weighted embedding theorem in Orlicz-Sobolev spaces, and we
obtain the existence of nontrivial solution of the following equation{

−∆Φu = |x|α |u|q−2u, in B,

u = 0 on ∂B,

where B ⊂ RN (N ≥ 3) is the unique ball, α > 0 is a constant, φ ∈ C1(0,+∞) and 2 < q < ∞. If the
nonlinear term is sub-linear, by Clark’s theorem, we obtain the existence of infinity many solutions of
the equation.
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1. INTRODUCTION

In this paper, we consider the following quasi-linear elliptic equation:{
−∆Φu≡ div(φ(|∇u|)∇u) = |x|α |u|q−2u, in B,

u = 0 on ∂B,
(1.1)

where B⊂ RN (N ≥ 3) is the unique ball, 2 < q < ∞, α > 0 is a constant, and φ ∈C1(0,+∞).
Assume that Φ is a continuous function defined by

Φ(t) =
∫ t

0
φ(s)sds.

Without loss of generality, we may assume Φ(1) = 1. In this paper, we assume that φ satisfies
the following conditions:
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(φ1) : lim
t→0

φ(t) = 0, lim
t→∞

φ(t) = ∞, (φ(t)t)′ > 0, φ(t)> 0, for t > 0;

(φ2) : there exist l,m ∈ (1,N) such that l ≤ φ(t)t2

Φ(t) ≤ m, for t > 0.

For any p≥ 1 and Ω⊂ RN , we define

Lp(Ω; |x|α) =
{

u
∣∣∣∫

Ω

|x|α |u|pdx < ∞

}
.

Then it is easy to check that Lp(Ω; |x|α) is a Banach space with the norm

||u||Lp(Ω,|x|α ) =

(∫
Ω

|x|α |u|pdx
)1/p

.

In recent years, many authors considered the following weighted elliptic equation

−∆u = |x|αup, x ∈Ω, u > 0, x ∈Ω, u = 0, x ∈ ∂Ω, (1.2)

where Ω ⊂ RN is a bound domain and p is subcritical exponent. (1.2) is called Hénon type
elliptic equation and it was considered by Hénon [9] in the context of astrophysics. In [11], Ni
studied the existence of equation (1.2), and proved a embedding theorem. By mountain pass
lemma, he obtained the existence of a nontrivial solution. In particularly, Ni observed that the
presence of weighted term |x|α leads to a new critical exponents for the nonexistence of classical

positive solutions of (1.2), i.e., 2∗α =
2N +2α

N−2
. If α > 0, 2∗α is greater than the classical Sobolev

critical exponent. After Ni’s work, researchers focus their interest on this type equations. For
example, in [12], Phan and Souplet considered the Hénon type Liouville theorem, and they
proved that

Theorem A. Let α > 0, p > 1, and N = 3. If p < 2∗α , then equation (1.2) has no positive and
bounded solutions in RN .

Recently, Li and Zhang [10] improved Phan-Souplet’s work to the Hénon-Lane-Emden sys-
tem; see [10] and the references therein, however there is no results about N > 3. Since the
weighted |x|α ,α > 0, the moving plan method cannot be used. Smets, Willem and Su [13] stud-
ied the symmetry-breaking results of (1.2) via the rescaling method and ground state energy
estimate, and they also studied the asymptotic as p→ 2∗ and 2. For the symmetric results of
elliptic systems, we refer to [2]. In [14, 15], Su and Tian considered the weighted p−Laplace
equation (1.2). Following Ni’s ideas, they proved a embedding theorem and considered the ex-
istence of the equations. Su and Tian also considered the bifurcation and sublinear problems of
the equations. In [4, 6], the authors studied the general quasilinear elliptic equation

−∆Φu = f (x,u), x ∈Ω, u = 0, x ∈ ∂Ω, (1.3)

where Ω is a bound smooth domain, Φ(u) is a continuous function satisfying some conditions.
The authors considered the problem in Orlicz-Sobolev spaces. By using classical variational
method and minimax theorems, they obtained the existence of nontrivial solutions of (1.3).
They also studied the classical subcritical and critical Sobolev exponents.

Motivated by these results, we consider the general quasilinear elliptic equation with the
Hénon type weighted term. By proving a new embedding theorem, we have the following
result.

Theorem 1.1. Let φ satisfy the conditions (φ1),(φ2) and q > m. Then (1.1) has a positive
solution.
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In [16], Wang considered the effect of concave nonlinearities for the solution structure of
nonlinear boundary value problems. By a result of Clark [3], Wang proved that the elliptic
problem has infinitely many nontrivial solutions. It is known that Clark’s theorem is useful
tool to study sub-linear problems. In this paper, we consider the sub-linear quasilinear elliptic
problem and prove the following result.

Theorem 1.2. Assume m < q <
m(α +N)(l−1)
(m−1)(N−1)

and the sequence {un} ⊂W 1
0,rLΦ(B) satisfies

J (un)→ c and J ′(un)→ 0 as n→+∞. Then there exists u∈W 1
0,rLΦ(B) such that J (u) = c,

J ′(u) = 0.

The paper is organized as follows. In Section 2, we list some preliminary results. In Section
3, we prove a embedding theorem of Φ− Laplace operator. Finally, in Section 4, we prove
some lemmas and then give the proof to our main results.

2. ORLICZ-SOBOLEV SPACES

In this section, we recall some useful knowledge for Orlicz-Sobolev spaces and give some
inequalities on Φ. The reader can refer [1, 7] for more details.

By Condition (φ1) and the definition of Φ, Φ is a N-function. The complementary of Φ is
defined by Φ̃(s)=maxt≥0 (st−Φ(t)) for s≥ 0. It is easy to see that Φ and Φ̃ are complementary
N−functions and satisfy ∆2−condition. Suppose that Ω is a subset of RN . Under assumptions
(φ1) and (φ2), the Orlicz Space LΦ(Ω) contains all measurable functions u : Ω→ R such that∫

Ω
Φ(|u(x)|)dx < ∞, and the Luxemburg norm on LΦ(Ω) is defined by

||u||Φ,Ω = inf
{

λ > 0
∣∣∣ ∫

Ω

Φ

(
u(x)

λ

)
dx≤ 1

}
.

The corresponding Orlicz-Sobolev space W 1LΦ(Ω) is defined by

W 1LΦ(Ω) =

{
u ∈ LΦ(Ω)

∣∣ ∂u
∂xi
∈ LΦ(Ω), i = 1,2, · · · ,N

}
,

and the norm on W 1LΦ(Ω) is defined by

||u||1,Φ,Ω = ||u||Φ,Ω +
N

∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Φ,Ω

.

The spaces LΦ(Ω) and W 1LΦ(Ω) are reflexive Banach spaces (see [1, Theorem 8.20 and Theo-
rem 8.31]). The space W 1

0 LΦ(Ω) is the closure of C∞
0 (Ω) in W 1LΦ(Ω). It follows from Poincaré

inequality [8] for the Φ−laplacian operator that ||u||Φ,Ω ≤ C||∇u||Φ,Ω, for u ∈W 1
0 LΦ(Ω) and

some C > 0. Hence ||u||Ω ≡ ||∇u||Φ,Ω is a norm on W 1
0 LΦ(Ω) and equivalent to ||u||1,Φ,Ω. In

the following of this paper, we use || · ||Ω as the norm of space W 1
0 LΦ(Ω). Set

C∞
0,r(Ω) =

{
u ∈C∞

0 (Ω)
∣∣u is a radially symmetry function

}
.

The completion of C∞
0,r(Ω) under the norm || · ||Ω is denoted by W 1

0,rLΦ(Ω). Since Φ and Φ̃ are
complementary N−functions, the following generalize Hölder inequality (see [1]) holds:∣∣∣∣∫

Ω

u(x)v(x)dx
∣∣∣∣≤ 2‖u‖

Φ,Ω ‖v‖Φ̃,Ω
, for any u ∈ LΦ(Ω),v ∈ L

Φ̃
(Ω). (2.1)
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Next, we recall some inequalities on Φ.

Lemma 2.1. [7] Let ζ0(t) = min{t l, tm} and ζ1(t) = max{t l, tm}, t ≥ 0. Then

ζ0(t)Φ(ρ)≤Φ(ρt)≤ ζ1(t)Φ(ρ) for ρ, t ≥ 0,

ζ0(||u||Φ,Ω)≤
∫

Ω
Φ(|u|)dx≤ ζ1(||u||Φ,Ω) for u ∈ LΦ(Ω).

Lemma 2.2. [7] Let ζ2(t) = min{t l/(l−1), tm/(m−1)} and ζ3(t) = max{t l/(l−1), tm/(m−1)}, t ≥ 0.
Then

ζ2(e)Φ̃(ρ)≤ Φ̃(ρt)≤ ζ3(t)Φ̃(ρ) for ρ, t ≥ 0,

ζ2(||u||Φ̃,Ω
)≤

∫
Ω

Φ̃(|u|)dx≤ ζ3(||u||Φ̃,Ω
) for u ∈ L

Φ̃
(Ω).

Lemma 2.3. Let Ω=
{

y ∈ RN
∣∣∣0 < |x| ≤ |y| ≤ 1

}
. Then there exists C =C(l,m,N,Φ̃)> 0 such

that
∥∥|y|1−N

∥∥
Φ̃,Ω
≤C |x|

(l−N)(m−1)
m(l−1) .

Proof. If
∥∥|y|1−N

∥∥
Φ̃,Ω
≥ 1, then it follows from Lemma 2.2 that

ζ2

(∥∥|y|1−N∥∥
Φ̃,Ω

)
=
∥∥|y|1−N∥∥m/(m−1)

Φ̃,Ω
≤
∫

Ω

Φ̃
(
|y|1−N)dy. (2.2)

Notice that |y|1−N ≥ 1 for y ∈Ω. In view of Lemma 2.2, one has∫
Ω

Φ̃
(
|y|1−N)dy≤

∫
Ω

Φ̃(1) |y|(1−N) l
l−1 dy = Φ̃(1)ωN

∫ 1
|x| r

(1−N) l
l−1 rN−1dr

= Φ̃(1)ωN
l−1
N−l

(
|x|

l−N
l−1 −1

)
≤ Φ̃(1)ωN

l−1
N−l |x|

l−N
l−1 , (2.3)

where ωN is the surface area of the unit ball of RN . Then it follows from (2.2) and (2.3) that

∥∥|y|1−N∥∥
Φ̃,Ω
≤
(

Φ̃(1)ωN
l−1
N− l

)m−1
m

|x|
(l−N)(m−1)

m(l−1) . (2.4)

If
∥∥|y|1−N

∥∥
Φ̃,Ω

< 1, one has

ζ2

(∥∥|y|1−N∥∥
Φ̃,Ω

)
=
∥∥|y|1−N∥∥l/(l−1)

Φ̃,Ω
≤
∫

Ω

Φ̃
(
|y|1−N)dy.

Computing similarly as in (2.4), one obtains

∥∥|y|1−N∥∥
Φ̃,Ω
≤
(

Φ̃(1)ωN
l−1
N− l

) l−1
l

|x|
l−N

l .

Note that |x| ≤ 1 and 1 < l ≤ m < N. Thus∥∥|y|1−N∥∥
Φ̃,Ω
≤C|x|

(l−N)(m−1)
m(l−1) ,

with C = max
{(

Φ̃(1)ωN
l−1
N−l

)m−1
m

,
(

Φ̃(1)ωN
l−1
N−l

) l−1
l
}

. This ends the proof. �
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3. EMBEDDING RESULTS

Lemma 3.1. Let u ∈W 1
0,rLΦ(B). Then there exists C = C(l,m,N,Φ̃) > 0 such that |u(x)| ≤

C‖u‖B |x|
(l−N)(m−1)

m(l−1) .

Proof. Notice that u(1) = 0 and u(1)−u(|x|) =
∫ 1
|x| u
′(t)dt. It follows that∣∣u(|x|)∣∣≤ ∫ 1

|x|
|u′(t)|dt =

1
ωN

∫
S

∫ 1

|x|
|u′(t)|t1−NtN−1

ω(θ)dtdθ =
1

ωN

∫
Ω

|∇u(y)| |y|1−Ndy,

where Ω =
{

y ∈ RN
∣∣∣0 < |x| ≤ |y| ≤ 1

}
and S is the unit sphere in RN . Using (2.1) and Lemma

2.3, one obtains∫
Ω

|∇u(y)| |y|1−Ndy≤ 2‖u‖
Ω

∥∥|y|1−N∥∥
Φ̃,Ω
≤C‖u‖B |x|

(l−N)(m−1)
m(l−1) .

This completes the proof. �

Theorem 3.2. Let q< (α+N)m(l−1)
(m−1)(N−l) . Then the embedding W 1

0,rLΦ(B) ↪→ Lq(B, |x|α) is continuous
and compact.

Proof. Using Lemma 3.1, one has that, for any q < (α+N)m(l−1)
(m−1)(N−l) and u ∈W 1

0,rLΦ(B),∫
B
|x|α |u|qdx≤Cq

∫
B
|x|α ‖u‖q

B |x|
q(l−N)(m−1)

m(l−1) dx =CqC(α,N,q, l,m)‖u‖q
B (3.1)

with C(α,N,q, l,m) = ωN

α+N+
q(l−N)(m−1)

m(l−1)

> 0. Hence

‖u‖Lq(B,|x|α ) ≤CC1/q(α,N,q, l,m)‖u‖B .

This means that the embedding W 1
0,rLΦ(B) ↪→ Lq(B, |x|α) is continuous.

Next, we show that the embedding is compact. Notice that W 1
0 LΦ(B) is compactly embedded

in L1(B) (see [1, Theorem 8.35]). Hence, for any 0 < β < 1,∫
B
|x|α |u|qdx =

∫
B
|x|α |u|q−β |u|β dx≤ ||u||βL1(B)

(∫
B
|x|

α

1−β |u|
q−β

1−β dx
)1−β

.

Since q < (α+N)m(l−1)
(m−1)(N−l) , there exists a constant β > 0 small enough such that q

1−β
< (α+N)m(l−1)

(m−1)(N−l) .
It follows that

q−β

1−β
<

( α

1−β
+N)m(l−1)

(m−1)(N− l)
.

By (3.1), one sees that there exists a constant C =C(α,β ,N, l,m,q)> 0 such that∫
B
|x|

α

1−β |u|
q−β

1−β dx≤C(α,β ,N, l,m,q)‖u‖
q−β

1−β

B .

Then ∫
B
|x|α |u|qdx≤C1−β (α,β ,N, l,m,q)||u||βL1(B) ‖u‖

q−β

B .

It follows that

‖u‖Lq(B,|x|α ) ≤C
1−β

q (α,β ,N, l,m,q)||u||
β

q

L1(B) ‖u‖
q−β

q
B .



6 Z. LOU, X. JIA

Then we conclude that W 1
0 LΦ(B) ↪→ Lq(B, |x|α) is compact. �

4. THE EXISTENCE OF THE SOLUTIONS

In this section, we prove the existence of solutions for (1.1). For any u∈W 1
0 LΦ(B), we define

J(u) =
∫

B Φ(|∇u|)dx− 1
q
∫

B |x|α |u|qdx, and

J1(u) =
∫

B Φ(|∇u|)dx, J2(u) = 1
q
∫

B |x|α |u|qdx.

Then J(u),J1(u), and J2(u) are well defined and are of C1. For u,v ∈W 1
0 LΦ(B), one has

〈J′(u),v〉=
∫

B φ(|∇u|)∇u ·∇vdx−
∫

B |x|α |u|q−2uvdx,

〈J′1(u),v〉=
∫

B φ(|∇u|)∇u ·∇vdx, and

〈J′2(u),v〉=
∫

B |x|α |u|q−2uvdx.

Hence, the weak solution of (1.1) is the critical point of J.

Lemma 4.1. Let m < q < (α+N)m(l−1)
(m−1)(N−l) . Suppose that the sequence {un} ⊂W 1

0,rLΦ(B) satisfies

the following condition J(un)→ c, J′(un)→ 0 as n→ ∞. Then there exists u ∈W 1
0,rLΦ(B) such

that J(u) = c and J′(u) = 0.

Proof. First, we show that sup
n
||un||B < ∞. Since J(un)→ c, there exists a positive constat d

such that sup
n

J(un)≤ d. By condition (φ2) and Lemma 2.1, we have

J(un)− 1
q〈J
′(un),un〉=

∫
B Φ(|∇un|)− 1

qφ(|∇un|)|∇un|2dx

≥ (1− m
q )
∫

B Φ(|∇un|)dx≥ (1− m
q )ζ0(||un||B). (4.1)

On the other hand,

J(un)−
1
q
〈J′(un),un〉 ≤ d + ||un||B. (4.2)

It follows from (4.1) and (4.2) that ||un||B is bounded.
Next, we show that c is a critical values of J. Since W 1

0 LΦ(B) is a reflexive space, we
can assume that {un} converges weakly in W 1

0 LΦ(B). Since W 1
0,rLΦ(B) ↪→ Lq(B, |x|α) com-

pactly, we can assume that un→ u in Lq(B, |x|α) as n→ ∞. Since J2 is C1 in Lq(B, |x|α), then
limn→∞ J2(un) = J2(u) and limn→∞ J′2(un) = J′2(u). Because limn→∞ J′(un) = 0, one has that

lim
n→∞

J′1(un) = lim
n→∞

(J′(un)+ J′2(un)) = J′2(u). (4.3)

Since Φ is convex and C1, then, for any s, t > 0, Φ(s)≤Φ(t)+Φ′(t)(t− s). It follows that

J1(un)≤ J1(u)+ 〈J′1(un),un−u〉. (4.4)

It follows from (4.3) and (4.4) that

limsup
n→∞

J1(un)≤ J1(u)+ limsup
n→∞

〈J′1(un),un−u〉

= J1(u)+ limsup
n→∞

(
〈J′1(un)− J2(u),un−u〉+ 〈J2(u),un−u〉

)
= J1(u).
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Because J1 is convex, J1 is weakly lower semi-continuous. Hence liminfn→∞ J1(un) ≥ J1(u).
Therefore limn→∞ J1(un) = J1(u), which together with (4.5) yields that lim

n→∞
J(un) = J(u). By

condition (φ1), one sees that φ(s)s is monotone increasing. It follows that, for v ∈W 1
0 LΦ(B),

〈J′1(v)− J′1(un),v−un〉 ≥ 0.

Thus

lim
n→∞
〈J′1(v)− J′1(un),v−un〉= 〈J′1(v)− J′2(u),v−u〉 ≥ 0.

Letting v = u+ th with h ∈W 1
0 LΦ(B), t > 0, one obtains 〈J′1(u+ th)− J′2(u), th〉 ≥ 0. It follows

that, for any h ∈W 1
0 LΦ(B),

lim
t→0
〈J′1(u+ th)− J′2(u),h〉= 〈J′1(u)− J′2(u),h〉 ≥ 0.

Therefore J′(u) = J′2(u)− J′1(u) = 0. This ends the proof. �

The Proof of Theorem 1.1. By Lemma 2.1 and Theorem 3.2, we have

J(u)≥ ζ0(||u||B)−
Cq

q
||u||qB. (4.5)

Then there exists r > 0 such that b ≡ inf||u||B=r J(u) > 0 = J(0). Let u ∈W 1
0 LΦ(B) with u > 0

on B. We have that, for t > 0,

J(tu) =
∫

B
Φ(t|∇u|)dx− tq

q

∫
B
|x|αuqdx≤ ζ1(t)

∫
B

Φ(|∇u|)dx− tq

q

∫
B
|x|αuqdx.

Hence there exists a e = tu such that ||e||B > r and J(e)< 0. By the mountain pass theorem and
Lemma 4.1 , J has a positive critical value and equation (1.1) has a nontrivial solution.

Definition 4.2. ([14]) Let X be a Banach space and X∗ be the dual space of X . The operator
A : X → X∗ is said to satisfy the (S+) condition if, for any un ⊂ X such that un ⇀ u weakly and
limsup

n→∞

〈A(un),un−u〉 ≤ 0, un→ u strongly.

Definition 4.3. ([14]) Let X be a Banach space. A convex functional Ψ : X → R is said to be
uniformly convex E ⊂ X if, for any ε > 0, there exists δ (ε)> 0 such that

Ψ

(
u+ v

2

)
≤ 1

2
Ψ(u)+

1
2

Ψ(v)−δ (ε), for u,v ∈ E, ||u− v|| ≥ ε.

Ψ is said to be local uniform convex if Ψ is uniform convex on each ball of X .

Lemma 4.4. ([5]) Assume that Ψ : X → R is a C1 locally uniformly convex functional and is
locally bounded. Then Ψ′ : X → X∗ satisfies the (S+) condition.

Proposition 4.5. ([16]) Let J ∈C1(X ,R), where X is a Banach space. Assume that J satisfies
the (PS) condition, is even and bounded from below, and Φ(0) = 0. If, for any k ∈N, there exists
a k-dimensional subspace Xk and ρk > 0 such that

sup
u∈Xk∩Sρk

J(u)< 0, (4.6)

where Sρk = {u∈ X | ||u||= ρ}, then J has a sequence of critical values ck < 0 satisfying ck→ 0
as k→ 0.
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In the following part, we suppose that φ satisfies the following hypothesis
(φ3) : Φ is uniformly convex on R+.

The Proof of Theorem 1.2. We use Proposition 4.5 to prove this result. Hence, we first verify
that J satisfies the conditions in Proposition 4.5. From the definition of J, it is easy to see that J
is even, and J(0) = 0. For u ∈W 1

0,rLΦ(B) and ||u||B > 1, one finds by (4.5)

J(u)≥ ||u||lB−
Cq

q
||u||qB.

In view of q < l, one has J(u)→ +∞ as ||u||B→ +∞. Hence J is bounded from below. Next,
we show that J satisfies (PS) condition. Suppose that {un} ⊂W 1

0,rLΦ(B) satisfies

{J(un)} is bounded, and J′(un)→ 0, as n→ ∞.

Note that {un} is bounded in W 1
0 LΦ(B). Since W 1

0 LΦ(B) is reflexivity, by Theorem 3.2, up to a
subsequence if necessary, we can assume that there exists u ∈W 1

0,rLΦ(B) such that

un ⇀ u in W 1
0 LΦ(B), and un→ u in Lq(B, |x|α), as n→ ∞.

Hence

〈J′1(un),un−u〉= 〈J′(un),un−u〉+ 〈J′2(un),un−u〉 → 0, as n→ ∞.

By condition (φ3), one sees that J1 is uniformly convex on W 1
0,rLΦ(B). Hence J′1 satisfies the

(S+) property. Therefore un→ u in W 1
0,rLΦ(B), as n→ ∞. It means that J satisfies (PS) condi-

tion. At last, we need to verify that J satisfies (4.6). For any k ∈N, we can choose k independent
smooth functions φi ∈C∞

0,r(B)(i = 1,2, · · · ,k). Set Xk = {φ1,φ2, · · · ,φk}. Then, for ρk > 0 small
enough and u ∈ Xk∩Sρk , by Lemma 2.1,

J(u)≤ ζ1(||∇u||B)−
1
q

∫
B
|x|αuqdx = ||∇u||mB −

1
q

∫
B
|x|αuqdx.

Since the norms on finite dimensional Xk are equivalent and m> l > q, we have supu∈Xk∩Sρk
J(u)

< 0. Using Proposition 4.5, we obtain that J has a sequence of critical values ck < 0 satisfying
ck→ 0 as k→ ∞. This ends the proof.
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