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Abstract. This paper proposes a second order convergent discretization scheme in both space and time
for parabolic optimal control problems (OCPs). For the state and co-state, the BDF2 scheme and finite
elements (FEs) are used for the temporal and spatial discretization, respectively. The control is obtained
by variational discretization. The second-order convergence results of all variables in the L>-norm are
rigorously derived. Superconvergence between the projections of the state and co-state and their numer-
ical solutions is established. Two numerical examples are provided to confirm the theoretical analysis
results.
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1. INTRODUCTION

Constrained parabolic OCPs plays an increasingly important role in economics, biologic, so-
cial sciences, engineering physics, etc. Numerical solutions of parabolic OCPs were studied
extensively. A systematic introduction can be found in [1, 2, 3, 4]. Many numerical approaches
were successfully applied to solve parabolic OCPs, such as finite difference [5], multigrid
method [6, 7], FE [8, 9], mixed FE [10, 11, 12], immersed FE [13], least-squares FE [14],
finite volume element [15, 16], spectral method [17, 18], and so on. However, due to the low
regularity of the control variables, most of the above methods only obtain first-order conver-
gence results & (k+ h) by using backward difference and piecewise constant functions discrete
time and space variables, respectively. To improve the accuracy of the FE for solving elliptic
OCPs, Meyer and Rosch [19] obtained a superconvergence result ¢'(h?) by post-processing
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techniques, and Hinze [20] obtained a convergence result ¢(h?) by using the variational dis-
cretization (VD). Recently, in order to improve the time error to & (k?), the Crank-Nicolson
scheme [21, 22, 23] and the BDF2 scheme [24] have been used to solve parabolic OCPs.

The primary contributions of this paper are threefold: (1) Design of a combined BDF2
scheme and VD approximation for parabolic OCPs with control constraints; (2) Rigorous second-
order convergence results in L?-norm for control, state and co-state are achieved in both time
and space; (3) Derivation of superconvergence for the state and co-state in the spatial H'-norm.

We focus on the following parabolic OCPs:

1T
Hwy) = min 2 [ (P ly—yall?) as (1.1

uclU,y
subject to

v —div(A(x)Vy)+cx)y=u+f, VielxeQ,
y(t,x) =0, VielxedQ, (1.2)
y(0,x) = yo(x), VxeQ,

where I = (0,7] with T > 0 and Q C R"(n = 2,3) is a bounded convex polygon or polyhe-
dron with boundary dQ. Let ¢* > c(x) > ¢, >0, yy4, f € U with U = LZ(I;U) and U = LZ(Q),
A(x) = (a;j(x))nxn € WH=(Q)™" be a symmetric and positive definite function matrix satisfy-
ing c*||X||?> > ATAX > c,||X||?, VX € R". The control set is defined by

U= {u cU:u" > u(t,x) > u,, ae.inlxQu" u, € R}. (1.3)

From now on, we denote standard Sobolev spaces on Q by W"”(Q) with a semi-norm |- |
and a norm || - || np. For p =2, we set H"(Q) = W™2(Q), H}(Q) = {9 € H!(Q) : 9|9 = 0},
| llm=1"llm2,and || -|| = - ||o,2. Let L*(l;W"™P(€)) be the Banach space of all L® integrable
functions from 7 into W"?(Q) with norm

T !
0l = (] 19l5mnadr)” forse 1)

In addition, C > 0 denotes a generic constant independent of the mesh-size k or .

This article is structured as follows. In Section 2, we construct a combined BDF2 scheme
and FEs discretization for problem (1.1)-(1.3). We derive second-order convergence results of
all variables by introducing some projection operators and auxiliary variables in Section 3. We
study superconvergence between numerical solutions and projections of the state and co-state
in Section 4. To support our theoretical results, two examples are provided in Section 5, the last
section.

2. BDF2 wiTH FES APPROXIMATION OF PARABOLIC OCPS

We construct a combNined BDF2 scheme and FEs discretization of (1.1)-(1.3) in this section.
To fix the idea, we set V = L*(I;V) with V = H}(Q) and

K={ueU:u" >u(x)>u, ae inQ}.
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Moreover,
alvyw) = /Q[v~v‘w+(AVv)~Vw], Vv,weV,
(v,w) :/Qv-w, Vv,weU.
According to the assumptions on A(x) and ¢(x), we have
la(v,w)| <Cllislwll,  YvweV

and c.||w||? < a(w,w) for all w € V. Then a weak form of the parabolic OCPs (1.1)-(1.3) reads:

1 T 2 2
) = min = [ (Jul+ ly=yal?) dr.
Oev) Falny) = (utfv), VielveV, .

y(0,x) = yo(x), VxeQ.

It is known [1] that (2.1) has an unique solution (u,y), and (u,y) € Uua X (VAHNIL;V)) fulfills
(2.1) if and only if there exists a co-state z € (VN H'(I;V)) such that (u,y,z) satisfies:

(ye,v) +a(y,v) =(u+f,v), VeelveV, (2.2)
¥(0,x) =yo(x), x€Q, (2.3)

—(ze,w) +aw,2) =(y—yq,w), Vtel,wev, (2.4)
z2(T,x) =0, x€Q, (2.5)
(z4+u,v—u) >0, Vielvek. (2.6)

As in [20], variational inequality (2.6) equals to u = max{u., min{u*, —z}}. Partition / into
O=rm<t1<--<ty=Twithk=T/N andt, =nk,n=0,1,---  N. For any function y(z,x),
we set Y = y(t,,x),

dlll/n = ‘l’n - ll/nilJ = 1725
3ll/n _411/1171 + ll/an

+.,,1
brvi= 2k ’
D_ll/n:_3ll/n_4wn+l_'_wn+2
! 2k

and time-dependent discrete norms

=

-l

1/s
Wl wme @) = ( Y k||y/"||fn7p> . 1<s<o
n l

—1—
with standard modification for s = oo, where / = 0 or 1. Furthermore, we set || - |[|@ = || -

2@z |l =11 2@ @) and |- [lo = I = @.2(0))-
Let .7, be regular triangular subdivision of Q and 4 = gla%c{hE} with hg = diam(E). The
[SH//%

piecewise linear function space [25] associated with .7}, can be defined as

Vi :={vy € C(Q) : vp|g € PI(E),vp|go =0,VE € T} .
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Then a combined BDF2 scheme and FEs discretization of (2.1) is as follows:

' kN—l
un ) = min 5 Y ([l + 7= 1P)
h n=0

2.7
(DiyZ,Vh)—Fa(yZ,Vh):(Mh+fn,Vh), VthVh,n:l,Z,m,N, ( )

Y9 = Piyo,

where y;l and P, will be specific later. It follows from [1, 20, 24] that (2.7) has an unique
solution (u},y}),n=0,1,---,N, and (u},y}) € K X V,n=0,1,--- N fulfills (2.7) if and only

if there exists a co-state z}} € Vj,,n=N,---,1,0 such that (u},y},z}!) satisfies:
(DI Yhva) +a(,vn) = (uh + "), Vvp € Viyn=1,2,--- N, (2.8)
Y =Piyo, 2.9)
— (D7 2, wn) +a(wn,2p) =8 — Vi wn), Ywy €Vyuon=N—1,---,1,0, (2.10)
N =0, (2.11)
(zy+up,v—ur) >0, VveK,n=0,1,---,N. (2.12)

This process is not self-starting. Like [24, 26], we can add initial conditions y;l =P, (—k fo)
and 2 1 = P, (—=k (& —»%)). Similar to (2.6), inequality (2.12) is equivalent to

u, = max {u,,min{u*,—z;}}, n=0,1,---,N.
3. CONVERGENCE

We derive convergence of (2.8)-(2.12) in this section. For the need of error analysis later, we
introduce the projection operator [25] P, : V — V}, with

a(Ppv—v,vy) =0, Yv,eVyvev,

[Py — || + ||V (B —v)|| < CR|v|2, Vv eEH*(Q) (3.1)

and auxiliary variable (y}(u),z"(u)) € V4 XV, n=0,1,--- N fulfills
(D YR (), vn) +a (), vi) = (" + f"vs),  Yvp €Viyon=1,2,--- N, (3.2)
Vi) =y, vy () =y (3.3)
— (D7 2 (u),wn) +a(wp, 24 (w)) = Oh(w) —Yiwn), Ywp €Vipon=N—1,---,1,0, (3.4
2y () =0, 2 " () = g . (3.5)

Lemma 3.1. Let (yZ,zZ) and (yZ(u),zZ(u)) withn=0,1,---,N be the solutions of (2.8)-(2.12)
and (3.2)-(3.5), respectively. Then

CHuh—uH@. (3.6)

|va =y (@) |0+ |y —yn(u) ||z <
g < Cllup—ule- (3.7)

lzn — 20 (u) ||Ir + ||zn — 2 (1)

Proof. For simplicity, we set

=y} —Yi(u),n = —1,0,--- N,
an :ZZ_ZZO{),I’Z:O,I,... 7N+1
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From (2.8)-(2.12) and (3.2)-(3.5), we have
(Dfa;,vh) +a (Oc;,vh) =(up—u",vy), YvpeVyn=12--- N,

(3.8)
o) =0, o' =0,
—(Dt_ﬁz",wh)—l—a(wh,ﬁzn):(Oc;,wh), VYwpbeV,,n=N-—1,---.1,0, 3.9)
B =0, B! = '
According to the definitions of d;y" and D;” ", we obtain
2(dioq, o) = dif| o[> + ldyog)|?,  1=1,2
and
1
+ _
(D o ) =2 (diog) ) — 3 (dact) o)
| | (3.10)
=dijeg | = el P+ e P — - ot
Summing n from 1 to N (N < N), we have
y 2 1 2 N2 N-1y2 2, 112
Y (dIHa;lH _ZdZHaynH) 2ol ——IIOC I ——Ilayll —IIOC_ I~ G.1D
n=1
Since dzoc" dj oc” +d ocy , we derive
y 2 1 2 y 2 1 2 —12
Y (I~ Gl ) = 3 (gt~ (st + e )
n—= n=1
1 & B (3.12)
52, (ldr o |* — lletrog =" 1%)
—llog I = llog 1%
In view of &) = o' = 0, (3.10)-(3.12) yield
y 2 —12
Z (Do a) > 22 - IIay 2. (3.13)

Taking v, = Oc” in (3.8) and multiplying both sides of (3.8) with 2% then using (3.13) and
e-Cauchy 1nequa11ty, we arrive at

N2 k 1 N12 al ni2 48Nk ni2 314
| || + Z o7 < || =+ Z —u"| +?Zl log[|”.  (3.14)
n=1 n=

=1
Then (3.6) follows from (3.14) and the Poincaré inequality. Choosing w;, = &' in (3.9), we can
derive (3.7) from (3.6) and (3.9) analogously. O

Lemma 3.2. Let (u,y,z) and (yZ(u),zZ(u)) withn=0,1,--- N be the solutions of (2.2)-(2.6)
and (3.2)-(3.5), respectively. Suppose that y,z, f € I>(ILH*(Q)), v,z € L*(I,H*(Q)), Yu, 7 €
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I2(I,L*(Q)) and yo € H*(Q). Then

1y = yu()||lr + |z — zx(w)|Ir < C (K +h?), (3.15)
Iy —yn(u)|= C(K*+h). (3.16)

Proof. For convenience, we set

e =y"— Py, 0] = P —yj(u),n = —1,0,--- N,
n; ZZ”_Pth, Ozn :PhZ”_ZZ(u),n:(),l,... ’N_+_1

Choosing t = t,, in (2.2), subtracting (3.2), then utilizing the definition of P,, we obtain
(D;FGY",V;,) +a (Oy”,vh) = (D;“y"—y?,vh) — (D;Lny",vh) , Vv, eVn=1,2,---,N. (3.17)

Similar to (3.13), we can derive

N
n N — 7 3 _
kY (D76 6p) > 2o~ ||9yN B o b (3.18)

From Taylor expansions, we obtain

3yn - 4yn—l _|_yn—2 k2

DY =y = 0 W= +O). (3.19)
Moreover,
ZkHD, Y =y|IP < cr Zkuy;’,, 7 < CkYlyuullo- (3.20)
n=1
.. top 3dini—dinr! ) ) )
From the definition of D, ny = %, (3.1), and the Cauchy inequality, we arrive at
N Nodin! diny~
RS H K ZkH =i
n=1 n=1
k2 N

S W Z e
4 ty ) In—1 2
<an( ¥, / lgars ¥ [ )
n=1 In—1 n=1 In—2

<2CH*||y, ||i2(1;H2(Q))'

(3.21)
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Thus
6117+ dooy Z Kl6y|T <3 C ZkHD P+ Z kD ny\|2+— Z Iy 117
3168+ 2 601 + ||e;1 I?
s§c<s> G B Iy + ol + 11°13))
|9N 1||2+— Z Iy 1%
(3.22)
Let € be small enough. From (3.22) and Poincaré inequality, we obtain that
16, g <C (K +n?). (3.23)
From (3.1), (3.23), and the triangle inequality, we find that
by =yn(@)lir < Inylle+ 116yl < C(k* +4%) (3.24)
and
ly=ya(@)llz < nyllz + [16yllz < C(K>+h). (3.25)
Selecting t =1, in (2.4) and subtracting (3.4), we have
— (D767, wp) +a(wp, 07) = (Dl ,wy) + (2 — Dy 2", wy)
+ (), wn) + (6], wh), Vwp€Vyn=N—1,---,1,0.
Similar to the derivation process of (3.23), we can obtain
g <C(K*+h?). (3.26)
From the triangle inequality, (3.1), and (3.26), we derive
|z = z1(w) I < |[n:lle + 116:lr < C(k* +42) (3.27)
and
lz—zn(w) ||z < |n:llz + /6]l < C(K*+h). (3.28)
Then (3.15)-(3.16) follows from (3.24)-(3.25) and (3.27)-(3.28) immediately. ]

Theorem 3.3. Let (u,y,z) and (up,yp,z5) be the solutions of (2.2)-(2.6) and (2.8)-(2.12), re-

spectively. Suppose that conditions in Lemma 3.2 are satisfied. Then
lu—uplle < C(K* +h?),
Iy =yulle+ 2= zalle < C (2 +h%),

g <C(K+h).

(3.29)
(3.30)
(3.31)
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Proof. Taking v = uy, with t =1, in (2.6) and v = " in (2.12), for n = 0,1,--- N, we have
(z” +u,uy — u”) >0 and (ZZ +up,u" — uZ) > 0. Thus

N
e —up|g = Z k(u" —up,u" —uy)
=1

v N (3.32)
<Y k(g () =" — ) + Y k(2 — 2y (u),u" —uj).
n=1 n=1
According to (2.8)-(2.11) and (3.2)-(3.5), we have
Zk 2 — 2 (u), " —up) = —|lyn = yu(w)[|* <0. (3.33)
From (3.15) and the e-Cauchy inequality, we obtain
N N N
Y k(Zh(w) =" u" —up) <C(e) Y kl|zh(u) = 2"|>+ & Y kllu" —uj®
n=1 n=1 y n=1 (334)
<C(e) (R+12)" +e ¥ k" —u} |
n=1
Then (3.29) follows from (3.32)-(3.34) immediately. From Lemmas 3.1-3.2, the triangle in-
equality, and (3.29), it is easy to obtain (3.30)-(3.31). [

4. SUPERCONVERGENCE

Superconvergence between the projections and numerical solutions of the state and co-state
is analyzed in this section.

Theorem 4.1. Let (u,y,z) and (up,yp,z5) be the solutions of (2.2)-(2.6) and (2.8)-(2.12), re-
spectively. Suppose that conditions in Lemma 3.2 are satisfied. Then

| z+| s <C(K+nr). (4.1)
Proof. For the sake of simplicity, we set
p; =Py' =y, pl =P —z;,n=0,1,--- |N.
From (2.2)-(2.5) and (2.8)-(2.11), we find by the definition of P, that
(] pyov) +a (povn) = (D75 =) + (0" =) + (D ).

Vv, €Vypn=1,2,--- N, 4.2)
pyY =0, p, ' =0, (4.3)
— (D7 plwh) +a(wp,pl) = (2 = D7 2", wi) + (D70l wa) + (0, wn) + (03, wi)
Vw,eVy,n=N—1,---,1,0, 4.4)
pY =0, p*! =0. (4.5)

Note that p) = p;"! = 0. As (3.13), we obtain

N
Z (D" Py oY) _—Ilpy 12— HpiV [ (4.6)



ERROR ANALYSIS OF A BDF2 SCHEME COMBINED WITH FINITE ELEMENTS 9

Combing (3.20)-(3.21), (3.29), (4.2)-(4.3), (4.6), and the e-Cauchy inequality, we obtain

3. % N 2
Z||p§]||2+c* Z k”P;”% <C(¢) <k4||)’ttt||(%)+h4”)’t||22(1;112(g)) + (k2+h2) >

n=1 4.7)
| v
+ ol P+ 3elpy 1.
Let € be small enough. It follows from the Poincaré inequality and (4.7) that
1Pry = yalle < € (K +1?). (4.8)

Analogously, according to (3.1), (4.4)-(4.5), (4.8), and the Poincaré inequality, we derive

g <C(K+1). (4.9)

| Pnz — zn

Then (4.1) follows from (4.8)-(4.9). ]

5. NUMERICAL EXPERIMENTS

We perform some experiments to support the previous theoretical analysis in this section. Let
T=1Q=(0,1) x (0,1),A(x) to be the identity matrix and c¢(x) = 1. The numerical example
is realized by AFEPack [27]. The discretization scheme is as described in (2.8)-(2.12).

Example 1. The data is given by:
u, =—025u*=0.5,
y(t,x) =tsin(27x; ) sin(27xy),
z(t,x) = (1 —1t)sin(27x ) sin(27xy),

u(t,x) = max{u,, min{u", —z(¢,x)} },
ft,x) = —=div(Vy(t,x)) +y:(¢t,x) + y(t,x) — u(t,x),
va(t,x) = z,(¢,x) + div(Vz(t,x)) — z(t,%) + y(¢,x).

. 1
Fixed h = 155, errors |lu —up|l@. ||y — yallrs |z = znllrs |y —yallzs (12— zallz. PRy — yn
||Phz— z1||= based on k = %, 2%, %, % are presented in Table 1. Temporal error convergent rates

are reported in Figure 1. Fixed k =

L
100°

errors based on h =

11

2. Spatial error convergent rates are reported in Figure 2.

TABLE 1. Errors of Example 1 with & =

10°20° 40° 80

1

1

100
k 1/10 1/20 1/40 1/80
[u—uplle | 4.3561e-02 | 1.1092¢-02 | 2.7730e-03 | 6.9325¢-04
Iy —yallc | 3.5145¢-02 | 8.8053¢-03 | 2.2013¢-03 | 5.5033¢-04
z—za|lr | 4.0137e-02 | 1.1034e-02 | 2.7585¢-03 | 6.8963¢-04
[y —ynllz | 8.8053e-02 | 2.2135¢-02 | 5.5338e-03 | 1.3834¢-03
[z—zallz | 9.2405¢-02 | 2.3285¢-02 | 5.8213¢-03 | 1.4553¢-03
[Py — il | 7.3163e-02 | 1.8307¢-02 | 4.5768¢-03 | 1.1442¢-03
[Pyz— 2|z | 8.5268¢-02 | 2.1542e-02 | 5.3855¢-03 | 1.3464¢-03

are provided in Table
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[lu-u llg
1ly=Yyllp
—a— |lz-z, |l
—e— lly=y,llz
—— llz-z, |l
—— P y-y, Il
—A—|IP -zl

.
-2 -1.8

-1.4
log (k)

.
-16

. .
-1.2 -1

FIGURE 1. Temporal error convergence rates of Example 1 with h =

TABLE 2. Errors of Example 1 with k =

100
h 1/10 1/20 1/40 1/80
[u—uplle | 5.3078e-02 | 1.3145¢-02 | 3.2863¢-03 | 8.2156¢-04
[y —yallc | 3.9275¢-02 | 9.8187¢-03 | 2.4547¢-03 | 6.1367¢-04
lz—znllr | 5.1434e-02 | 1.2858e-02 | 3.2146e-03 | 8.0365¢e-04
ly—wnllz | 2.8646e-02 | 1.4323e-02 | 7.1614e-03 | 3.5807e-03
lz—znllz | 2.9263e-02 | 1.4631e-02 | 7.3156e-03 | 3.6578e-03
|Pry — yullz | 1.4912e-02 | 3.7257e-03 | 9.3141e-04 | 2.3285¢-04
|Pnz — zp||z | 1.6535e-02 | 4.1086e-03 | 1.0272e-03 | 2.5679¢-04
o8 Tlu-u,l, s
(A —— izl
M —— 2zl 16] slope=1

—o— IPy-y, Il
-1.5| —a—[IP,2-2, Il
-+ slope=2

log, i(error)

-3.5
-2

Example 2. The data is given by:
u, = —0.75, u* = 0.75,

-1.8 -1.6
log.

-1.4 -1.2 -1

1ol

FIGURE 2. Spatial error convergence rates of Example 1 with k = 5

y(t,x) = *x1(x; — 1) (1 — x2)x3,
z(t,x) = (1 —t)le(xl — 1)(1 —XQ)XQ,
u(t,x) = max{u,, min{u*, —z(¢,x)}},

f(tvx) - —div(Vy(t,x)) +yt(t7x> +y(t7x) - u<t7x)7
va(t,x) = z¢(¢,x) + div(Vz(t,x)) — z(t,x) + y(2,x).
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——[|u-u [l
—— Iy ¥yl
15 Izl
——IPy-y, i
P22l
eeeersss slope=2

\og1 O(error)
N
2

-1

—o— Iyl

-+ slope=1

llz-2, I

-1.1

12

a3t

1.4

log Y O(error)

151

-1.6

1.7 1

-1.81

1.9

2 -19 -18 -17 -16

-1.5 -1.4 13 -1.2 -4

log, ()

-1

-2

2 -19 -18 -17 -16 -15 -14 -13 -12 -11 -1
Tog,o(h)

FIGURE 3. Convergence rates of Example 2.

TABLE 3. Errors of Example 2.

h=k 1/10 1/20 1/40 1/80
|lu—upll@ |5.9105e-02 | 1.4806e-02 | 3.7015¢-03 | 9.2536e-04
ly —yullr | 4.5738e-02 | 1.1504e-02 | 2.8760e-03 | 7.1901e-04
lz—znllr | 5.8304e-02 | 1.4606e-02 | 3.6515e-03 | 9.1287e-04
|y —yullz | 3.5882e-02 | 1.7804e-02 | 8.9010e-03 | 4.4485e-03
lz—znllg | 3.7560e-02 | 1.8709e-02 | 9.5245e-03 | 4.7515e-03
|Pry — ynllz | 2.4728e-02 | 6.1820e-03 | 1.5455e-03 | 3.8637¢-04
|Pnz — zp||z | 2.5457e-02 | 6.3643e-03 | 1.5911e-03 | 3.9765¢-04
In this example, we take gradually decreasing mesh sizes h = lio, 2%’ %, % and the time

step size k is taken as k = h. Numerical errors and their convergence rates for different / are
displayed in Table 3 and Figure 3. It is clear that numerical results are in good agreement with
the theoretical results in Theorem 3.3 and Theorem 4.1.
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