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Abstract. In the framework of the (k, y)-Hilfer proportional fractional operator ((k, y)-HPFO), we in-
vestigate a new type of integral inequalities of Gronwall-Bellman-Bihari. In addition to covering current
results in fractional calculus, these results provide a generalized framework that connects them. The
integral inequalities are a helpful tool for examining how solutions to the nonlinear (k, y)-Hilfer pro-
portional fractional differential equations behave, especially in terms of their stability, uniqueness, and
boundedness. The framework produces additional generalizations and reproduces a number of known
results as special cases by choosing appropriate parameter values and kernel functions. Several examples
are given to demonstrate how our method works for fractional-order systems with memory-dependent
dynamics.
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1. INTRODUCTION

Fractional calculus generalizes traditional calculus by enabling the differentiation and inte-
gration of arbitrary, including non-integer, orders. Fractional calculus is proven to be an appro-
priate mathematical foundation for understanding complex systems in a variety of disciplines,
including engineering science, biology, and physics. Several fractional operators were designed
to fulfill the diverse requirements of theoretical research and practical applications. Recently,
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authors designed new fractional operators to satisfy specific needs in modeling memory and
heredity qualities of various materials and processes, such as Hadamard [1, 2], Katugampola
[3, 4], Hilfer derivative [5], and so on. Several fractional operators were developed into more
generalized forms, especially the Hilfer operator, which is an outstanding example. The Hil-
fer operator is a generalized fractional derivative incorporating an interpolation parameter to
bridge the gap between the RL and Caputo derivatives, which was initially revealed by Hil-
fer. Subsequently, researchers expanded on the concept of the Hilfer operator and developed
its generalized form, including y-Hilfer [6], (k, y)-Hilfer [7], and (k, )-HPFO [8]. Moreover,
y-Hilfer is a generalized operator, which can be reduced to classical Hilfer fractional derivative
and the RILL or Caputo fractional derivatives, depending on the values of its parameters. The
(k, w)-Hilfer is a more advanced generalization than y-Hilfer, while the (k, y)-HPFO furthers
and encompasses the (k, y)-Hilfer fractional operator that incorporates a proportional factor.
Both fractional operators can be reduced to classical Hilfer derivative, the (k, y)-RIL deriva-
tive, and the (k, y)-Caputo derivative. These operators were widely applied in various types of
fractional differential equations; see, e.g., [9, 10, 11, 12, 13].

Since most differential and integral equations cannot be solved exactly in closed forms, re-
searchers employed integral inequalities as a powerful fundamental tool to investigate and estab-
lish various qualitative properties of the solutions to such equations. Several famous inequalities
were often used to bound solutions, such as Gronwall’s, Bellman’s, Bihari’s, and so on. Indeed,
Gronwall’s inequality was first investigated in [14]. In addition, Bellman’s inequality, which
is an extension of Gronwall’s inequality, was first introduced in [15]. Later, Bihari’s inequal-
ity, which is an extension of Bellman’s inequality to the fully nonlinear case, was disclosed in
[16]. In recent years, numerous studies investigated differential and integral equations involving
integral inequalities. For instance, in 2018. Nisar et al. [17] derived specific forms of Gronwall—
type inequalities within the framework of k-RIL and k-Hadamard fractional operators. In 2019,
Alzabut et al. [18] investigated Gronwall-Bellman’s inequality in the context of the RIL and Ca-
puto proportional fractional derivatives. In 2020, Foukrach and Meftah [19] examined nonlinear
Gronwall-Bellman-Bihari’s inequalities for the k-RIL-fractional integral operator. After a span
of three years, their investigation extended to the inequalities of Gronwall-Bellman-Bihari type
involving the y-Hilfer fractional derivative, as documented in [20]. We also refer to [21, 22, 23]
for some recent results.

The literature review [8, 19, 20] motivates us to fill the gap in the boundary of this study
area, as the (k, y)-HPFO associated with the Gronwall-Bellman-Bihari’s type has not yet been
examined. Moreover, this operator leverages the flexibility of three parameters &, 3, p, and a
function y. We aim to analyze some novel extensions of integral inequalities of Gronwall-
Bellman-Bihari’s type via the (k,y)-HPFO of the proposed problem which have the general
form

Ho%PrVy(t)=f(ru(r), a/ke(n—1n), t€(ab], 0<a<b<oo,
{ TIE»ZLk@"—i7P§‘I/(mkj”k—%l);‘lfu(f)) =cj, c;eER, j=1,...,n, n=12,...,
where f € €([a,b] x R,R), #, D%P-P:V denotes (k, y)-HPFO of order & and type 8 with B €
0,1], p € (0,1], k e RT, (D"PY denotes the (k, w)-proportional derivative operator ((k, y)-
PDO) of order n —i, i =1, 2, ..., n, and ,;.¥ nk=Y:P:¥ denotes the (k, y)-RL-proportional
fractional integral operator ((k, y)-RL-PFIO) of order nk > .
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The subsequent portions of this work are organized below. Section 2 presents essential defi-
nitions and lemmas associated with the (k, y)-HPFO. The desired results are established in Sec-
tion 3 by focusing on generalized Gronwall-Bellman-Bihari’s type integral inequalities within
the framework of (k, y)-HPFO. Section 4 demonstrates the applicability of our results through
various nonlinear proportional problems. Finally, the concluding remarks are presented in Sec-
tion 5

2. BASIC DEFINITIONS AND LEMMAS

This section presents some basic definitions and lemmas. We provide the following symbol
for simple calculation in this work

Pl (e —ex (P o) - wio)) ) (vi(e) - wls) E

Definition 2.1 ([8, 24].). Let a, k ¢ R, p € (0,1], and u € L' ([a,b],R), where 0 < a < b < oo,
Then, the (k, y)-RIL-PFIO of o of u is defined as

: 1 Yo 21
aﬂ“’p"”ur:a—/p‘l’k T,8)u(s)y'(s)ds,
p (7) o T () Jo kY (7,5)u(s)y (s)
where Ty () = [i° s e /*ds, u € C, Re(u) > 0, and T'(u) =Ty (u) as k — 1, Ty (z) = k¥/*'T (k).

[y (z+k) = zlk(z), and Ty (k) = 1.
(8

Definition 2.2 ([8]). Let a, k e R™, p € (0,1], u € €([a,b],R), w(7) € ¢"([a,b],R), ¥/ (1) #0,
and n = 1,2,..., with n = |a/k| + 1. Then, the (k, y)-RL-proportional fractional derivative
operator ((k, y)-RIL-PFDO) of ¢ of u is defined as

k—o .
RL 0.0 p_ T k@”hp,‘lf
@ P I =
ak u(7) kT (nk — @)

nk a
[ R @ ) (2)ds = @Y (o (),

where ;"9 = PV, DPV..  DPV and (D1PVu(T) = DPVu(T) = (1—p)u(t) +kp 2T

~~
n times

Definition 2.3 ([8]). Leta, k e RT, p € (0,1], u € €"([a,b],R), w(7) € €"([a,b],R), ¥ (7) #
0,andn=1,2,..., withn = |a/k| + 1. Hence, the (k, y)-Caputo proportional fractional deriv-
ative operator ((k, y)-Caputo-PFDO) of a of u is defined as

. 1 T mkea_ ‘
CDUPVY(T) = / P T (2 5) (D" PV u(s)) ¥ (s)ds

p“F kT (nk — o) Ja ©
= akfnk—a,p;w(k@n,p;wu(f))_

Definition 2.4 ([8]). Let a, k e R+, p € (0, 1], B € [0, 1], u € €"([a,b],R), w(t) € €"([a,b],R),
V(1) #£0,and n=1,2,..., with n = |a/k| + 1. Hence, the (k, y)-HPFDO of o and 8 of u is
defined as

Z{k@a,ﬁ,p;wu(f) — mkyﬁ(nkfa),p;w(k@n,p;w(a7kf(1fﬁ)(nkfa)yp;wu(i-)))
kDY u(t), if p =0,
CDUPVu(T), if B=1.
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Lemma 2.5 ([8]). Assume o, 6 € RTU{0}, k, ye RT, p € (0,1], o € R, and o /k > —1.

Hence,
w+o

. . o_ Py k()
i FopY [Pk 1 1,a)] = Fk(w);& v )
(i) ak Wy (ma)] ==
o_ & N 4
(ii) ngO"ﬁ’p;V’[i‘Pq", 1(’L’,a)] = pkrk(ali)kk(z‘fa) 9 In particular, m = 0,...,n— 1 with

n=|w/k|+1, we achieve Zk@a,ﬁ,/);lll [i‘l’ﬁ(r,a)} =0.
(iii) a7kja,p;w(a7kj5,p;wu(7)) = avky&p;w(avkya,p;wu(f)) = avkj5+a,p;wu(1-)_
(iv) ZkCD‘”’ﬁ’p;"’(atk,ﬂy’p;"’u(f)) = 1 IV OPVu(T), wheren = |w/k| + 1,
and y > nk.
Q\ylfy,’i(z,a)

V) apd OPV ((LDUPPVu(T)) = u() > i [PV (g ISP u(at)) ],
’ i=1 p & Ty(y+k—ki)

with Yy = o0+ B (nk — ).
Definition 2.6 ([25]). If @(u+v) < @(u)+ ¢(v) for any u, v > 0, then ¢(u) is known as sub-

additive.

Definition 2.7 ([26]). If @(uv) < @(u)@(v), for any u, v > 0, then @(u) is known as sub-
multiplicative.

Definition 2.8 ([27]). The function ¢ : [0, +o0) — [0, +o0) is said to be belong to a class Q if (i)
@(u) > 0 is continuous and non-decreasing for u > 0; (ii) (1/p)@(u) < @(u/p), for any p > 0.

Lemma 2.9. ([28]). Let a, p, ¢ > 0 with p > g, and p # 0. Hence, for all € > 0,

ab < (z) et (M)
p p

3. MAIN RESULTS

This section analyzes a variety of extended integral inequalities of Gronwall-Bellman-Bihari’s
type in frame of (k, y)-HPFO.

Theorem 3.1. Assume that two functions ¢ and u are locally integrable and non-negative de-
fined on [a,b), where 0 < a < b < e, and a function N is a non-negative, non-decreasing, and
continuous on [a,b) so that N is bounded on [a,b), i.e., |n(T)| < A for any T € [a,b), Y is
positive monotone increasing function on (a,T)|, with a continuous derivative W' (t) on (a,b),
and given arbitrary constants p, q, €, o € R" such that p > q. If

ul(t) < ¢(7) + %/jgwfﬁl(r,s)w(s)w'(s)ds, 3.1)
then . 1
u(t) < <¢1<r)+i;%/a wa‘l(r,sml (s)l;/(s)ds)p, (3.2)
where

n(7). (3.3)
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Proof. Let v(7) be a function defined by

_ n(7) “p
=0+ gl [

In view of (3.1) and (3.4), one has u(7) < vy (1), which together with (3.4) and Lemma 2.5 with
the property (i) in Lemma 2.9 yields

(@) < 0+l [ e b

—1

(t,s)u?(s)y’ (s)ds. (3.4)

<=IR

prkl(a

O o g [(4) e o)+ (P54 ) e | as
< ¢<r>+pgkrk(a)/ak% (z. )v/()[(p)s <>+( - )e ]d
_ ¢1(r)+% / gl (2 ) (s)v(s)ds, (3.5)

where @; and 1, are provided by (3.3). Next, we define a function % : [a,b) — R™, that is
nl(f) /fp &1 /
Bv(T) = ——— YE(T,8)y (s)v(s)ds. (3.6)
()= e Jy D GOV OO
By using (3.5) and (3.6), we obtain v(7) < ¢1(7) + Av(t), which implies that
V(1) < 91(7) + B1(7) + V(1) < 91() + B (7) + B91(7) + Bv(1).

Utilizing the iterative procedure, one has
<Z%’¢1 )+ A'v(1), n>1. (3.7)
For any 7 € [a,T) and n > 1, we obtain

(m ()" /Tp L /
B'(1) < —g—— Yy (T,8)y (s)v(s)ds. (3.8)
()< e o LT (EOVENG)
For n = 1, it is easy to see that inequality (3.8) is satisfied. Next, let inequality (3.8) hold for
any n < m. We show that it holds for any n = m+ 1. Using the non-decreasing property of 71y,
i.e., N1(s) < ni(7), and the Dirichlet’s formula, we have

2" (7) (3.9)
_ o m®) [Tyt )Y (s)[#"v(s)|ds
- e )/apw (T (5)[#"v(s))d
( ())m ' Sp %_1 Sp mTa_lSl" II”VI"I" /SS
< b wri [l wopwd v oo wisa
()

P (P
< i Lo (5 e v)

[/( -y

(3.10)
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Changing variable y(s) — y(r) = z(y(7) — y(r)), a < r < s < 7 with the k-beta function, one
has

mo 1

/rT (w(o)—wi(s) T (wls) —w(n) * 'y (s)ds
m+l kT (a) T (mer)

= (y(r)—wy(r) © 3.11)

Fk((m+ I)OC) ’
Inserting (3.11) into (3.9) yields
G (m(z)"*! / " S w(m) v ()
p T KTy (ma) ¢
|t -y Iy

M@ g
— (t,r)y' (r)v(r)dr.
p i ka((m+1)Oc)/ e

Thus one has (3.7). Since v is locally integrable and non-negative on the interval [a,b), we
obtain that v is integrable on [a, T]. Also, a function v is bounded on [a, 7], and there exists a
constant .Z > 0 for which |v(7)| <_.Z with |n(7)| < .# for any 7 € [a,b]. Then,

e n T nao
HB'v(t) < (qe - «///> Wi(na)/a i‘}’uf_](r,s)w’(s)ds

p p k kI,
er " & na
< (q ///) _ Py (1,a), (3.12)
p pTFk(nOt +k)
Since 0 < exp (Pk—;l(w(r) - l//(a))) <1 and (y(1) — w(a) € < (w(2)E, for any 7 € [a,b],
then . .
7% T n
B(r) < — 2[4’ a("'(f)) . (3.13)
rk(l’lOC—l-k) pkp

Applying Stirling’s formula to (3.13), i.e. n! ~ v/27wn(n/e)", one has

L (qeqr{//(w(r))%yzg( k >5 e"

[y(no+k) ppt 2o ) e+
i :
where O := ; 4 (e‘g& )) . Using the fact p > g > 0 yields that
1
k \?2 ©"

lim [g (—) el B 0.

n—»oo 2ree ) %t
Therefore,

P (2,5)W (5)01(5)ds

lzlpkkrkaa)/ ey

Thus inequality (3.2) is obtained by taking u”(7) < v(7). This completes the proof. O

Remark 3.2. Under all the conditions of Theorem 3.1, we conclude the following assertions
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(i) Theorem 3.1 is reduced to [29, Theorem 1] if we set y(7) =T, a=0,and p=g=p =
k = 1. In addition, if f(7) = b, then Theorem 3.1 is reduced to [29, Corollary 1].
(ii) Theorem 3.1 is reduced to [17, Theorem 2.1] if we set y(7) = 7, f(7) = kx(7),a =0,
and p = g = p =k = 1. In addition, if we set y(7) =In7 and a = 1, then Theorem 3.1
is deduced to [17, Theorem 2.4].
(iii) Theorem 3.1 is reduced to [30, Theorem 1.4.1]if we set y(7) =1, f(1)=beR,a=0,
andp=qg=p=k=1.
(iv) Theorem 3.1 is deduced to [19, Theorem 3.1] if we set y(7) =1,a=0, @ = A /r, and
p=k=1.
(v) Theorem 3.1 is deduced to [19, Theorem 3.1] if we set y(7) =7, a=0,and p =k = 1.

Corollary 3.3. Let all the conditions in Theorem 3.1 hold. Assume that ¢ () is a non-decreasing
function on [a,b) and inequality (3.1) is true. Then,

u(t) < {¢] (0) Bk (p’%m(r)g‘l‘%(r,a» };, (3.14)

where ¢1(T) and 11 (7) are given by (3.3) and Ey o (-) is the k-Mittag-Leffler function provided
by

0 n

Z
—_— eR, aeR", k>0. 3.15
,;)rk<na+k>’ Z€R, , (3.15)

Ek ax(z) =

Proof. Applying the inequality (3.2) in Theorem 3.1, one has
{04 —1

“9 { +lzipkkfk(w¢)/ i

Since ¢;(7) is a non-decreasing for each 7 € [a,b], 0 < a < b < o, applying the property (i) in
Lemma 2.9, one has

(T,)¥ (s) ¢y (s)ds}p. (3.16)

) 2 ) gt o\
(1) < {¢1(1)<1+,~;pi5k1}(ia)/akq’w (7, )W()d)}
S Mm@ g V7
< {¢1(T)<1+,-le’?rk(ia+k)"w"’(T’ ))}
= [p~Emi(e)fwh (z,0)]\ |7
< {¢1(T)(1+; Fk(io]c(+lll</) )}

u 1
= {0 Eeax(p Im (0¥ (r.0) }.
Hence, inequality (3.14) is obtained. 0J

Remark 3.4. Under all the assumptions of Corollary 3.3, we have the following statements.
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(i) Ifweset y(t) =7,a=0,a=A, and p =k = 1, then Corollary 3.3 is reduced to [29,

Corollary 2].

(ii) If weset (1) =1, f(7) =kx(7),a=0,and p =g = p =k =1, then Corollary 3.3 is
reduced to [17, Corollary 2.3].

(iii) If we set y(t) =7,a=0, ¢« = A/r, and p = k = 1, then Corollary 3.3 is reduced to
[19, Corollary 3.5 ].

(iv) If we set y(7) = 7,a =0, and p = k = 1, then Theorem 3.3 is reduced to [19, Theorem
3.6].

Theorem 3.5. Assume that two functions ¢ and u are locally integrable and non-negative de-
fined on [a,b), 0 < a < b < oo, and suppose that N is a non-negative, non-decreasing and
continuous on |a,T) such that M is bounded on |a,b), i.e. |N(7)| < . for any T € [a,b), Y is
positive monotone increasing on (a,b|, with a continuous derivative Y (t) on (a,b), and z € Q
is a sub-additive and convex. If

1

u(T)§¢(T)+m/ p‘P?, (7,9 (s)n(s)z(u(s))ds, (3.17)
then
.- ‘//l))l ’ 21 /
ur) <z { B O [l (r,s>w<s>z<¢<s>)ds},

1

for any T € [a,to], where 7" is the inverse function of z, |a,ty) is sub-interval, which is

. ﬂ—1 !
{ Z Pkka iot) / Py (T9) ()Z(¢(S))dS}ED0mz :

i=1

Proof. Taking z into (3.17), we arrive at

1 T
z(u(1)) <z <¢(T)+m/a i

Applying the continuity of z and the property of sub-additive [25], we have

-1

<=IR

(T 7S)1V'(S)77(S)Z(M(S))dS> :

<(u(®)) < 29(¥) +2 (;)%k(a) [ ol (fm)l/f’(s)ﬂ(s)x(u(s))ds) .
Using Jensen’s inequality with z € Q, we obtain
() < o)+t (0l v N6t ) ds
< 0@+ g s [ VOO
< o)+ S D [Pwl oy supas 619

Substituting v(7) = z(u(7)) and p = g = 1 into (3.18), we conclude that

—a)zo( M) [T, 2 ,
(0) <2910 + 2D [P0 e v (etu(oas
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Note that

i(x_]

w0 <29+ Y DD [Trg

(7,59)¥'(5)2(9(s))ds.

For any 7 € [a, 1)), we have

ia

(r) < {z<¢<r>>+i A ‘1<r,s>w'<s>z<¢<s>>ds}.

This completes the proof. [

Remark 3.6. Under all the conditions of Theorem 3.5, we have the following conclusions
(i) Theorem 3.5 is reduced to [19, Theorem 3.8] if we set y(7) =7,a=0, ¢ = A/r, and
p=k=1.
(ii) Theorem 3.5 is reduced to [19, Theorem 3.10] if we set y(7) =7,a=0,and p =k = 1.

Corollary 3.7. Let all the conditions of Theorem 3.5 and (3.17) be true. Then,

e i—1 T io
u(t) < p(o)+ Y CINEONT oot our(0)2(1)m ()0 (s)ds.

= p Tk (icr) Ja
Proof. Since z € Q, we find by inequality (3.17) that

a_y

u(t) < o(7)+ m/jm (7,9)y (s)1 (s)u(s)z(1)ds. (3.19)
Multiplying z(1)n(t) into (3.19) with z(1)n(7)u(t) = v(7), we have

(@) <)+ St o [Pwl e v nas

Setting p = ¢ = 1 in Theorem 3.1 yields

[

1 i—1 T i ,
(7)< (D) <¢<r> y FEMEV g 4 sy s)e( <s>¢<s>ds) - G20)
i—1 prkIp(ia) Ja
Substituting z(1)n (7)u(t) = v(t) and multiplying (z(1)n (7)) ! to (3.20), we obtain the desired
conclusion immediately. 0

Remark 3.8. Under the assumptions of Corollary 3.7, we conclude the following assertions

(i) Corollary 3.7 is reduced to [19, Theorem 3.9] if we set y(7) =7,a =0, @ = A/r, and
p=k=1.
(ii) Corollary 3.7 is reduced to [19, Theorem 3.12] if we set y(7) =7,a=0,and p =k = 1.

Theorem 3.9. Assume that two functions ¢ and u are locally integrable and non-negative de-
fined on [a,b), 0 < a < b < oo, and suppose that g is non-negative, non-decreasing, continuous,
and bounded on [a,b), i.e. |g(T)| < A forall T € [a,b), ¥ is positive monotone increasing on
(a,T), having a continuous derivative W' (t) on (a,b), and z € Q is a sub-multiplicative and
convex such that z(0) = 0 and z(u) > 0 on [a,b). If

o

u(t) < ¢(7)+ #ﬂ:}(a}/arg‘l’.j‘,_l(f,s)I//’(s)z(u(s))ds, (3.21)
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then

) L (00 (el gt (00
(7)< 4(m)e {Z<g<r>)+,§l E e Al #5001
(3.22)

1

for any T € [a,to], where 7" is the inverse of z and [a,ty| is the sub-interval, which is

9(0) (t—a)z(z(A) [Tpgie-1 Y (s o(s) s omz !
{Z(g<f>)+u p EkTy(ict) /aklp"’ ¥ )Z(g<s)>d}€D C

Proof. Sinceg is non-decreasing, continuous, and bounded on [a,b), we obtain by inequality
(3.21) that

(agk

T
T

M( ) ¢(T) : Tp %_1 S S u\s S
5(0) = 5(7) +p%krk(a)/a Vy (T)W (5)2(uls))ds. (3.23)

Putting u(7) = g(7)v(7) into (3.23) with the sub-multiplicative property yields

(@) < S [ v stsmoas

¢(7) 1 “p
o(r) p%krk(a)/ r

<=IR

Setting 1 (s) = z(g(s)) in Theorem 3.5, one has

oz <! {z (824 p LD gtz (402) ds}.

8(7) i=1  prkli(ia)

Letting u(7) = g(7)v(7), we obtain the desired conclusion immediately. O

Remark 3.10. Theorem 3.9 is reduced to [19, Theorem 3.14] if w(7) =7,a=0,and p =k = 1.

4. SOME APPLICATIONS

Example 4.1. Consider the following nonlinear integral equation under the (k, y)-PFIO:
VT w1
ut) =1+ —7F—— Yo (t,9)y (s)u(s)ds, T€]0,1). 4.1)
(7) p?kl“k(oc)okw( )/ (s)uls) [0,1)

From the nonlinear integral equation (4.1) with parameters p =g =1, ¢(7) = 7, and n(7) =
/T, we proceed to show how the main results can be applied. This is divided into four categories
and is shown in Figure 1 (Fig. 1a-Fig.1d).

(i) Set y(tr)=7,a=1.2,k=0.8, p =1, and € = 1. By invoking Theorem 3.1, one has

T
1.5i—1
2 - ds.
=T 08T08121)/(T $) 7 sds

Moreover, by Corollary 3.3, dynamic (k, y)-proportional fractional integral equation (4.1) has
the estimate upper bounded: u(7) < ‘ch,g,l,z,o,g(’cz). The graphical representation for estima-
tion of u(7) for (4.1) is shown in Fig. 1a.
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(ii) Set w(t)=1—e"2", a = 1.4,k =0.6, p = 0.8, and & = 0.4. Applying Theorem 3.1, one
has

= Vo)
u(t) < T+i;0.6(0.8)2'33iro.6(1-4i)

T o0 25 _ _ .
% / e 2560.41676 0.4167e (—6 2T P 2S)2.331 1SdS.
0

Moreover, by Corollary 3.3, dynamic (k, y)-proportional fractional integral equation (4.1) has
the following estimate upper bounded:

u(t) < 10614056 <1'68315ﬁe—0.41667+0.41667e*”(1 B 8_21)2,3333> .

The graphical representation for estimation of () in (4.1) is shown in Fig. 1b.
(iii) Set y(t) =tant, o« = 0.25, k=0.1, p = 0.6, and € = 1.4. Applying Theorem 3.1, one
has
S (V)
7)) < 7T -
u(t) s T+ ,221 0.1(0.6)25Ty.1 (0.251)

T .
« / sec? 5o~ 06T THOTNS (40 7 an )25 g,
0

Moreover, by Corollary 3.3, dynamic (k, y)-proportional fractional integral equation (4.1) has
the following estimate upper bounded:

u(”L’) < ‘L'E().17().257().1 (3.58610\/?6_6'66667tanrtan2'5 ’C) .

The graphical representation for estimation of () in (4.1) is shown in Fig. 1c.
(iv) Set w(7) =In(t+e¢), 2 =0.7, k=1.15, p = 0.4, and € = 0.01. Applying Theorem 3.1,
one has

S (v2)
u(t) < T—{—i:z‘i1'15(0'4)0.611'1"1.15(()_71‘)

L 0.61i—1
X /T (—S ) e(ln(%)) - (ln (’L’—i—e)) ds.
0 \s+e s+e

Moreover, by Corollary 3.3, dynamic (k, y)-proportional fractional integral equation (4.1) has
the following estimate upper bounded:

u(t) < tEq4507,1.15 (1.75\/?6_1'31(111(”6)_1)(ln(T+e) — 1)0'61> .

The graphical representation for estimation of u(7) in (4.1) is shown in Fig. 1d.

Example 4.2. The dynamic integral equation governed by the (k, y)-PFIO can be represented:

n(r) /Tp -1
w(t)=¢(1)+—5——"— we o (t,9)y (s)ul(s)ds, T€]0,1). 4.2
@ =0+ g [l wav s, e, @
Setting 1(7) = 7 and y(7) = 7, the upper approximation of u(7) for (4.2) is obtained that
T T 21
uP (1 :r+a—/ Pyt (o oud(s)ds, Tel0,1). 4.3)
(7) DTk (c) Ja F (7,5)u?(s) [0,1)
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25 T T T T T T T T T 25 T T T T
2 2
1.5 1.5
~ ~
© c
1 1
05 1 05F
0 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
— — 27
A y(rt)=r1 B)y(r)=1-e
14 T T r T — 2 T T T T
[—— () = TEo.102501 (35861 /Te " tanS(r)) —— () = TBrina (L 74672 /e T (I(r 4 ) — 100
181
121
16
1T 141
12F
0.8
® ©
= = 1
06
081
04t 081
0.4
0.2
021
0 0
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
(C) (1) =tant (D) y(7) =In(e+17)

FIGURE 1. Graphical representation of u(7) for Example 4.1 via various func-
tions W(7) =7, 1 —e 2%, tant, and In(7 +e).

Using Corollary 3.3 in inequality (4.3), we obtain the following estimate

q q9a—-pr 1

(P—q)erT p,2 ) (qs P T >)p

u(t) < v+ L=V rglg 0) \Epou( L2200 (ra)) ). 44
( ) (( pp?f‘k(a—i—k)k r( ) k,ot,k ok k u/( )

The graphical results of the inequality (4.4) via oo = 1.20, 1.40, 1.60, 1.80, 2.00 with various
functions ¢(7), and constants k, p, p, g, € are illustrated in Figure 2 (Fig. 2a-Fig. 2d).

Example 4.3. Consider the nonlinear initial value problem governed by the (k, y)-HPFDO:

HowPrvy(t)=f(ru(r), a/ke(n—1,n], Bel0,1], pe(0,1], T€ (a,b],

. . . 4.5)
lim (D" PV (  ITIPYY(T)) =¢j, ¢;€R, j=1,2,...,n,n €N, k> 0.

T—at
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=120

(A) ¢(7) = % k=0.60,p=0.25,p=3,9g=2, (B) ¢(7) = ﬁ“% k=120,p=045p=2,9g=
e=1. 1, e =0.25.

90

80

70

60 [

L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 ¢ 0
T

(©) ¢(1) =In (i@jﬁ‘), k=045 p=065p= (D) ¢(t)=1+sin(at+1), k=035, p = 0.85,
150,g=1,€=125. p=3.50, q=1.50, e =0.01.

FIGURE 2. Graphical representation for the upper bound estimation of u(7) in
Example 4.2 via various functions y(7), p € (0,1], k, p, ¢, € > 0.

which equivalent integral equation:

Pt~
Loocj Yy (1,a) 1 L ,
=Yy 5 T wi (1, Fs,u(s))ds.  (4.6)
O v ) P o L1 WOl

IfO0 < a<1,then pﬂak: y;wu(r) = 7). Note that equation (4.6) can be written as

pi!
o Wy (1,0) N 1
pETu(y)  pYATY

u(7) o / Pl W () fsau(s)ds. 4)



14 W. SUDSUTAD, C. THAIPRAYOON, J. KONGSON, A. APHITHANA
Applying Theorem 3.1 with f (7,u(7)) = \/u(7) and <7 = 0, one sees that
p‘P" T,d) & T da_ € Pyl s,a
u(t) < \/_— Z / Pyl (z,5)y (s) (M)ds
20T (a+k) S (2Vept )’krk(ia) 2p k(0 +k)
Hence, by Corollary 3.3, we have
Pyt Pk
e, ¥ ¥
u(t) < ME “ <M)
2pTi(a+k) 2\epx

The estimated solution u(7) of (4.7) via @ = 0.75,0.80,0.85,0.90,0.95 with various functions
y(7) and the constants p > 0, is presented in Figure 3 (Fig. 3a - Fig. 3d).

(A) (1) = /7, k=0.55, p = 0.80, () w(1) = <, k= 0.60, p = 0.70,
€ =0.90. e = 1.00.

(©) y(1) =In(t+2a), k=0.65,p =0.60, e = (D) y(1) = wch k=0.70, p = 0.50, € =
1.10. 1.20.

FIGURE 3. Graphical representation for the estimated solution u(7) in Exam-
ple 4.3 via various functions y/(7), with parameters p € (0,1], k, € > 0.
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In addition, if one selects f (7,u(7)) = z(u(7)) into (4.7) where z is a positive, then

ARy (ra) 1 e
u(t) = +— Ve  (T,9)y (s)z(u(T))ds. (4.8)
pETu(y) pkkrkm)/a o

Applying Theorem 3.5 with n(7) = 1, (4.8) can be calculated as

. Wlpl}'k (t,a . ))l
u(t) < z z( pk Sinyy) )+Z

T i o, PWE (s5,a
x/a P 1(’c,s)l;/’(s)z( lpkz\il’lrk((y)’ ))a’s}.

Furthermore, if we set g(7) = 1 in Theorem 3.9, then

o < (AR G ey
Y)

P T ( i=1 Pkkrk(la)
T ia_ o, P i a
<[ e ‘<r,s>v/<s>z( lp’;qjlrkfy)’ ))ds}-

5. CONCLUSION

In this paper, we formulated and analyzed a new class of extended Gronwall-Bellman-Bihari’s
type integral inequalities in the framework of the (k, y)-HPFO. The derived results provide a
broader perspective that unifies and generalizes several celebrated integral inequalities. By ap-
propriate selections of parameters and functional forms, our results yield particular cases which
were previously studied and also offer some extensions beyond those earlier works. Further-
more, the theoretical results presented in this paper contribute to the qualitative analysis of the
nonlinear differential equations under the (k, y)-HPFDO, especially in investigating solution
behaviors and establishing bounds. Several illustrative examples were provided to support the
main theorems. This main results obtained in this paper can be viewed as useful tools in the
ongoing study of fractional systems and their dynamic properties.
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