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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR A CAPUTO
FRACTIONAL SYSTEM DEPENDING ON TWO PARAMETERS
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Abstract. This paper studies the existence and uniqueness of positive solutions for a Caputo fractional
system involving with two parameters. By using a fixed point result for two increasing operators in
ordered Banach spaces, some results on the existence and uniqueness of positive solutions depending on
two parameters are obtained. By taking any initial point in a special set, we obtain a sequence which
approximates the unique solution. Finally, a concrete example is present to validate the main conclusion.
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1. INTRODUCTION

In past decades, the theory of fractional calculus, which finds wide applications in engineer-
ing, biology, and physics, was intensively investigated by numerous authors. In particular, the
existence of solutions or positive solutions for various fractional problems is now under the aca-
demic spotlight. For some recent results on the fractional equations or systems and their appli-
cations, we refer to [1]-[16] and the references therein. There are various fractional derivatives,
and the Caputo fractional derivative is one of important fractional derivatives. Indeed, this de-
rivative has been used to construct differential equations or inclusions in various fields including
physics, engineering, electrochemistry, biology mathematics, and so on; see [17, 18, 19, 20, 21]
and the references therein.

Recently, many authors investigated various Caputo fractional differential equations or sys-
tems. For example, in [21], Ma and Cui investigated the following problem involving with
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Caputo derivative 
cDσ p(τ)+µζ (τ, p(τ)) = 0, τ ∈ [0,1],
p(0) = p′′(0) = 0,
p(1) =

∫ 1
0 p(τ)dA(τ),

where cDσ is the Caputo fractional derivative (CFD for short) operator of order σ ∈ (2,3), and
ζ : [0,1]× [0,+∞)→ [0,+∞) is continuous, and µ > 0 is a parameter. By applying the Guo-
Krasnoselskii fixed point theorem, the existence and non-existence results for positive solutions
to this problem were proved.

In [22], Li and Chen considered a new Caputo fractional system
cDθ1

0+ p(τ)+ζ1(τ, p(τ),q(τ)) = a1(τ),τ ∈ [0,1],
cDθ2

0+q(τ)+ζ2(τ, p(τ),q(τ)) = a2(τ),τ ∈ [0,1],

p(0) = p′′(0) = 0, p(1) =
∫ 1

0 p(τ)dA1(τ),

q(0) = q′′(0) = 0,q(1) =
∫ 1

0 q(τ)dA2(τ),

where θi ∈ (2,3), i = 1,2; cDθi
0+, i = 1,2 are the CFDs; ζ1,ζ2 : [0,1]×(−∞,+∞)×(−∞,+∞)→

(−∞,+∞) are continuous; a1,a2 : [0,1]→ [0,+∞) also are continuous; two functions A1,A2

are bounded variation with positive measure, and Bi =
∫ 1

0 τdAi(τ) < 1, i = 1,2. This system
includes two Caputo fractional equations and Riemann-Stieltjes integral conditions which is a
new form. To obtain the existence and uniqueness of positive solutions for this Caputo sys-
tem, they investigated a fixed-point method: fixed point theorem of increasing ϕ-(h,e)-concave
operator by Zhai and Wang [23].

In [24], a Riemann-Liouville fractional system was studied, and this system involves p-
Laplacian operators and two parameters as the follows:

Dα1
0+(ϕp1(D

β1
0+ p(τ)))+λζ (τ, p(τ),q(τ)) = 0,τ ∈ (0,1),

Dα2
0+(ϕp2(D

β2
0+q(τ)))+µχ(τ, p(τ),q(τ)) = 0,τ ∈ (0,1),

p(0) = p(1) = p′(0) = p′(1) = 0,Dβ1
0+ p(0) = 0,Dβ1

0+ p(1) = c1Dβ1
0+ p(τ1),

q(0) = q(1) = q′(0) = q′(1) = 0,Dβ2
0+q(0) = 0,Dβ2

0+q(1) = c2Dβ2
0+q(τ2),

where αi ∈ (1,2], βi ∈ (3,4], Dαi
0+ , Dβi

0+ are the Riemann-Liouville derivatives, ϕpi(s) =| s |pi−2,

pi > 1, ϕ−1
pi

= ϕqi ,
1
pi
+ 1

qi
= 1, τi ∈ (0,1), ci ∈ (0,τ

(1−αi)
(pi−1)

i ), i = 1,2, ζ ,χ : [0,1]× [0,+∞)×
[0,+∞)→ [0,+∞), and λ ,µ > 0. The solutions of this system depend on two parameters. By
utilizing a fixed point theorem of monotone operators in partial order spaces, the existence and
uniqueness of positive solutions was established.

Inspired by [21, 24], we investigate a different fractional system involving with CFDs:
−cDθ1 p(t) = λζ1(τ, p(τ),q(τ)),τ ∈ [0,1],
−cDθ2q(τ) = µζ2(τ, p(τ),q(τ)),τ ∈ [0,1],
p(0) = p′′(0) = 0, p(1) =

∫ 1
0 p(τ)dA1(τ),

q(0) = q′′(0) = 0,q(1) =
∫ 1

0 q(t)dA2(τ),

(1.1)
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Where cDθi is the CFDs; ζi : [0,1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous; θi ∈ (2,3); Ai

is bounded variation with positive measure, Bi =
∫ 1

0 τdAi(τ)< 1, i = 1,2; λ > 0 and µ > 0 are
parameters. We study the existence and uniqueness of positive solutions.

In [25], Li and Chen studied the case of system (1.1) when λ = µ = 1, and by using fixed-
point index theory, they established the existence results of multiple positive solutions. Com-
pared with [25], the main aim of this paper is to demonstrate the existence and uniqueness of
positive solutions for the system (1.1) involving with CFDs and two parameters by the method
in [26]. The rest paper is divided into several sections. Section 2 lists some necessary definitions
and preliminary facts about fractional calculus. Section 3 is our main results. The existence and
uniqueness of solutions for (1.1) is given, and a concrete example is present to validate the main
conclusion in this section.

2. PRELIMINARIES

This section gives some needed concepts and lemmas for the further discussion.
Let p ∈Cn[0,+∞). The CFD of order θ > 0 is defined as (see [1])

cDθ p(τ) =
1

Γ(n−θ)

∫
τ

0
(τ− s)n−θ−1 p(n)(s)ds,n−1 < θ < n.

Lemma 2.1. [21] Let q ∈ Cn[0,1] and θ1,θ2 ∈ (2,3). Then the solution p of the following
equation involving with CFD

cDθi p(τ)+q(τ) = 0, τ ∈ [0,1],
p(0) = p′′(0) = 0,
p(1) =

∫ 1
0 p(τ)dAi(τ),

can be shown by the integral form p(τ) =
∫ 1

0 Gi(τ,s)q(s)ds, where

Gi(τ,s) =
1

Γ(θi)

{
τ

1−Bi
[(1− s)θi−1−

∫ 1
s (τ− s)θi−1dAi(τ)]− (τ− s)θi−1, 0≤ s≤ τ ≤ 1,

τ

1−Bi
[(1− s)θi−1−

∫ 1
s (τ− s)θi−1dAi(τ)], 0≤ τ ≤ s≤ 1,

(2.1)
and Bi =

∫ 1
0 τdAi(τ)< 1, i = 1,2.

Lemma 2.2. [22] The Green’s function Gi(τ,s), i = 1,2, satisfies:
(i) Gi(τ,s)≥ 0 and Gi(τ,s) is continuous for τ,s ∈ [0,1];

(ii)
τ(1− s)θi−1 ∫ 1

0 (τ− τθi−1)dAi(τ)

Γ(θi)(1−Bi)
≤ Gi(τ,s)≤

τ(1− s)θi−1

Γ(θi)(1−Bi)
,τ,s ∈ [0,1].

Now, (E,‖ · ‖E) is a real Banach space, θ is the zero element in E, P ⊂ E is a cone, and it
induces a partial order “≤”. For p,q ∈ E with θ ≤ p ≤ q, if ∃N > 0 satisfies ‖p‖E ≤ N‖q‖E ,
then P is called normal. Take h0 > θ , define a set Ph0 = {p ∈ E | λ0h0 ≤ p≤ µ0h0,λ0,µ0 > 0}.
Obviously, Ph0 ⊂ P. Let a vector h0 = (h(1)0 ,h(2)0 ), and h(1)0 ,h(2)0 ∈ P with h(1)0 ,h(2)0 6= θ . Then
h0 ∈ P̃ := P×P. Obviously, P is normal⇒ P̃ is normal.

Lemma 2.3. [26] P̃h0 = {(p,q) : p ∈ P
h(1)0

,q ∈ P
h(2)0
} and P̃h0 = P

h(1)0
×P

h(2)0
.
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Lemma 2.4. [26] Let E be a Banach space, P be a normal cone and h0 = (h(1)0 ,h(2)0 ) ∈ P×P

with h(1)0 ,h(2)0 6= θ . Let operators L1,L2 : P×P→ P be increasing and satisfy
(C1) For ∀p,q ∈ P, there exist ϕ1,ϕ2 : (0,1)→ (0,1) such that

L1(ι p, ιq)≥ ϕ1(ι)L1(p,q),L2(ι p, ιq)≥ ϕ2(ι)L2(p,q), p,q ∈ P,

where ϕi(ι)> ι , ι ∈ (0,1), i = 1,2;
(C2) There exists (e1,e2) ∈ P̃h0 , such that L1(e1,e2) ∈ P

h(1)0
, L2(e1,e2) ∈ P

h(2)0
.

Then
(1) L1 : P

h(1)0
× P

h(2)0
−→ P

h(1)0
, L2 : P

h(1)0
× P

h(2)0
−→ P

h(2)0
, and ∃p1,q1 ∈ P

h(1)0
, p2,q2 ∈ P

h(2)0
,

ρ ∈ (0,1), such that ρ(q1,q2)≤ (p1, p2)≤ (q1,q2), p1≤ L1(p1, p2)≤ q1, p2≤ L2(p1, p2)≤ q2;
(2) for ∀λ ,µ > 0, the equation (p,q) = (λL1(p,q),µL2(p,q)) has a solution (p∗

λ ,µ ,q
∗
λ ,µ)

and it is unique in P̃h0 .
For any fixed point (p0,q0)∈ P̃h0 , If (pn,qn)= (λL1(pn−1,qn−1),µL2(pn−1,qn−1)),n= 1,2, · · · ,

then ‖pn− p∗
λ ,µ‖→ 0 and ‖qn−q∗

λ ,µ‖→ 0 as n→ ∞.

3. MAIN RESULTS

This section presents our main results in a Banach space E =C[0,1] with its norm

‖p‖= sup{| p(τ) |: τ ∈ [0,1]}.

Let ‖(p,q)‖E = max{‖p‖,‖q‖}, for (p,q) ∈ E ×E. Then (E ×E,‖(·, ·)‖E) is also a Banach
space. Let P = {p ∈ E|p(τ)≥ 0,τ ∈ [0,1]}, a cone in E. Then

P̃ = {(p,q) ∈ E×E|p(τ),q(τ)≥ 0,τ ∈ [0,1]},

also is a cone. Clearly, P̃ = P×P⊂ E×E is normal. Naturally,

(p1,q1)≤ (p2,q2)⇐⇒ p1(τ)≤ p2(τ)andq1(τ)≤ q2(τ),τ ∈ [0,1].

Applying Lemma 2.1, the positive solution of (1.1) has the following forms{
p(τ) = λ

∫ 1
0 G1(τ,s)ζ1(s, p(s),q(s))ds,

q(τ) = µ
∫ 1

0 G2(τ,s)ζ2(s, p(s),q(s))ds.

Theorem 3.1. Let θi ∈ (2,3), h(1)0 (τ) = τ, h(2)0 (τ) = τ , and τ ∈ [0,1]. Assume
(H1) ζ1,ζ2 : [0,1]×[0,+∞)×[0,+∞)−→ [0,+∞) are continuous, ζ1(τ,0,0) 6≡ 0, ζ2(τ,0,0) 6≡

0, τ ∈ [0,1];
(H2) ζ1,ζ2 are increasing about the second and third variables, i.e., ζ1(τ, p1,q1)≤ ζ1(τ, p2,q2),

ζ2(τ, p1,q1)≤ ζ2(τ, p2,q2) for τ ∈ [0,1], 0≤ p1 ≤ p2,0≤ q1 ≤ q2;
(H3) for ∀ι ∈ (0,1), there exists ϕi(ι) ∈ (0,1), i = 1,2 such that ϕi(ι)> ι and ζ1(τ, ι p, ιq)≥

ϕ1(ι)ζ1(τ, p,q), ζ2(τ, ι p, ιq)≥ ϕ2(ι)ζ2(τ, p,q), for τ ∈ [0,1], p,q ∈ [0,+∞);
(H4) 0 < R =

∫ 1
0 (τ− τθi−1)dAi(τ)< 1, i = 1,2, where function Ai is bounded variation.

Then,
(1) There exist p1,q1 ∈ P

h(1)0
, p2,q2 ∈ P

h(2)0
, ρ ∈ (0,1) such that ρ(q1,q2)≤ (p1, p2)≤ (q1,q2)

and

p1(τ)≤
∫ 1

0
G1(τ,s)ζ1(s, p1(s),q1(s))ds≤ q1(τ),τ ∈ [0,1],
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p2(τ)≤
∫ 1

0
G2(τ,s)ζ2(s, p2(s),q2(s))ds≤ q2(τ),τ ∈ [0,1];

(2) Let λ ,µ > 0 be fixed. Then (1.1) has a unique solution (p∗
λ ,µ ,q

∗
λ ,µ) ∈ P̃h0 , where h0(τ) =

(τ,τ),τ ∈ [0,1];
(3) For any (p0,q0) ∈ P̃h0 , set

pn+1(τ) = λ

∫ 1

0
G1(τ,s)ζ1(s, pn(s),qn(s))ds,n = 0,1,2 . . . ,

qn+1(τ) = µ

∫ 1

0
G2(τ,s)ζ2(s, pn(s),qn(s))ds,n = 0,1,2 . . . .

Then
‖pn− p∗

λ ,µ‖→ 0,‖qn−q∗
λ ,µ‖→ 0,n→ ∞.

Proof. Define operators L1 : P×P→ E, L2 : P×P→ E, and L : P×P→ E×E by

L1(p,q)(τ) =
∫ 1

0
G1(τ,s)ζ1(s, p(s),q(s))ds,τ ∈ [0,1],

L2(p,q)(τ) =
∫ 1

0
G2(τ,s)ζ2(s, p(s),q(s))ds,τ ∈ [0,1],

and
L(p,q) = (λL1(p,q),µL2(p,q)),∀(p,q) ∈ P×P,

where G1(τ,s) and G2(τ,s) are from (2.1). Obviously, L1 : P̃−→ P, L2 : P̃−→ P, and L : P̃−→
P̃. So, one can see that, if (p,q) ∈ P̃ is a solution to (1.1), then (p,q) is a fixed point of operator
L.

Firstly, we show that conclusion (1) is true.
For for any pi,qi ∈ P, i = 1,2, and p1 ≤ p2 and q1 ≤ q2, we have p1(τ) ≤ p2(τ), q1(τ) ≤

q2(τ), τ ∈ [0,1]. By using (H2) and Lemma 2.2, we have

L1(p1,q1)(τ) =
∫ 1

0
G1(τ,s)ζ1(s, p1(s),q1(s))ds

≤
∫ 1

0
G1(τ,s)ζ1(s, p2(s),q2(s))ds = L1(p2,q2)(τ),

and

L2(p1,q1)(τ) =
∫ 1

0
G2(τ,s)ζ2(s, p1(s),q1(s))ds

≤
∫ 1

0
G2(τ,s)ζ2(s, p2(s),q2(s))ds = L2(p2,q2)(τ),

Thus L1(p1,q1)≤ L1(p2,q2) and L2(p1,q1)≤ L2(p2,q2).
We show that L1 and L2 satisfy (C1) of Lemma 2.4. For ι ∈ (0,1) and ∀p,q ∈ P, one has

L1(ι p, ιq)(τ) =
∫ 1

0
G1(τ,s)ζ1(s, ι p(s), ιq(s))ds

≥ ϕ1(ι)
∫ 1

0
G1(τ,s)ζ1(s, p(s),q(s))ds

= ϕ1(ι)L1(p,q)(t),
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and

L2(ι p, ιq)(τ) =
∫ 1

0
G2(τ,s)ζ2(s, ι p(s), ιq(s))ds

≥ ϕ2(ι)
∫ 1

0
G2(τ,s)ζ2(s, p(s),q(s))ds

= ϕ2(ι)L2(p,q)(τ),

that is, L1(ι p, ιq)≥ ϕ1(ι)L1(p,q) and L2(ι p, ιq)≥ ϕ2(ι)L2(p,q) for all p,q∈ P, ι ∈ (0,1). Let
h0 = (h(1)0 , h(2)0 ), h(1)0 (τ) = τ, and h(2)0 (τ) = τ,τ ∈ [0,1]. Then (h(1)0 ,h(2)0 ) ∈ P̃h0 . In addition, by
using (H2) and Lemma 2.2, we can obtain

L1(h
(1)
0 ,h(2)0 )(τ) =

∫ 1

0
G1(τ,s)ζ1(s,τ,τ)ds

≥
∫ 1

0

τ(1− s)θ1−1 ∫ 1
0 (τ− τθ1−1)dA1(τ)

Γ(θ1)(1−B1)
ζ1(s,0,0)ds

≥ τ

Γ(θ1)(1−B1)

∫ 1

0
R(1− s)θ1−1

ζ1(s,0,0)ds

=
h(1)0 (τ)

Γ(θ1)(1−B1)

∫ 1

0
R(1− s)θ1−1

ζ1(s,0,0)ds,

and

L1(h
(1)
0 ,h(2)0 )(τ) =

∫ 1

0
G1(τ,s)ζ1(s,τ,τ)ds

≤
∫ 1

0

τ(1− s)θ1−1

Γ(θ1)(1−B1)
ζ1(s,1,1)ds

=
τ

Γ(θ1)(1−B1)

∫ 1

0
(1− s)θ1−1

ζ1(s,1,1)ds

=
h(1)0 (τ)

Γ(θ1)(1−B1)

∫ 1

0
(1− s)θ1−1

ζ1(s,1,1)ds.

Let

l1 =
1

Γ(θ1)(1−B1)

∫ 1

0
R(1− s)θ1−1

ζ1(s,0,0)ds,

and

l2 =
1

Γ(θ1)(1−B1)

∫ 1

0
(1− s)θ1−1

ζ1(s,1,1)ds.

From conditions (H1), (H2), and (H4), we have

R(1− t)θ1−1
ζ1(τ,0,0) 6≡ 0

and
(1− τ)θ1−1

ζ1(τ,1,1) 6≡ 0.

Thus l1, l2 > 0 with l1 ≤ l2, and l1h(1)0 (τ) ≤ L1(h
(1)
0 ,h(2)0 )(τ) ≤ l2h(1)0 (τ), τ ∈ [0,1], that is,

L1(h
(1)
0 ,h(2)0 ) ∈ P

h(1)0
. Similarly, we can obtain L2(h

(1)
0 ,h(2)0 ) ∈ P

h(2)0
. Using Lemma 2.4, we

obtain that conclusion (1) is true.
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Secondly, from the above process, we see that (p,q) = (λL1(p,q),µL2(p,q)) has a unique
solution(u∗

λ ,µ ,v
∗
λ ,µ) ∈ P̃h0 , where λ ,µ > 0. Thus one obtains (p∗

λ ,µ ,q
∗
λ ,µ) = (λL1(p∗

λ ,µ ,q
∗
λ ,µ),

µL2(p∗
λ ,µ ,q

∗
λ ,µ)). System (1.1) has a positive solution (p∗

λ ,µ ,q
∗
λ ,µ) and it is unique in P̃h0 . That

is, conclusion (2) is true.
Finally, for (p0,q0) ∈ P̃h0 , putting

pn+1(τ) = λ

∫ 1

0
G1(τ,s)ζ1(s, pn(s),qn(s))ds,n = 0,1,2 · · · ,

and

qn+1(τ) = µ

∫ 1

0
G2(τ,s)ζ2(s, pn(s),qn(s))ds,n = 0,1,2 · · · ,

we have
lim
n→∞
‖pn− p∗

λ ,µ‖= lim
n→∞
‖qn−q∗

λ ,µ‖= 0.

That is, conclusion (3) is true. �

If λ = µ = 1, we have from Theorem 3.1 the following result.

Corollary 3.2. Let (H1)− (H4) be satisfied. Then the conclusion (1) of Theorem 3.1 is true and
(i) For following system

−cDθ1 p(τ) = ζ1(τ, p(τ),q(τ)),τ ∈ [0,1],
−cDθ2q(τ) = ζ2(τ, p(τ),q(τ)),τ ∈ [0,1],
p(0) = p′′(0) = 0, p(1) =

∫ 1
0 p(τ)dA1(τ),

q(0) = q′′(0) = 0,q(1) =
∫ 1

0 q(τ)dA2(τ),

there exists a solution (p∗,q∗) and the solution is unique in P̃h0 , where h0(τ) = (τ,τ),τ ∈ [0,1];
(ii) For any (p0,q0) ∈ P̃h0 , if

pn+1(τ) =
∫ 1

0
G1(τ,s)ζ1(s, pn(s),qn(s))ds,n = 0,1,2 . . .

and

qn+1(τ) =
∫ 1

0
G2(τ,s)ζ2(s, pn(s),qn(s))ds,n = 0,1,2 . . . ,

then
‖pn− p∗‖→ 0,‖qn−q∗‖→ 0,n→ ∞.

Example 3.3. Consider the following system:
−cD

5
2 p(τ) = λ (p

1
2 +q

1
2 + τ2),τ ∈ [0,1],

−cD
5
2 q(τ) = µ(p

1
3 +q

1
3 +2τ3),τ ∈ [0,1],

p(0) = p′′(0) = 0, p(1) =
∫ 1

0
1
2 p(τ)dτ,

q(0) = q′′(0) = 0,q(1) =
∫ 1

0
1
2q(τ)dτ,

(3.1)

where ζ1(τ, p,q) = p
1
2 +q

1
2 + τ2 and ζ2(τ, p,q) = p

1
3 +q

1
3 +2τ3. Take θ1 = θ2 =

5
2 , A1(τ) =

A2(τ) =
1
2τ , and B1 = B2 = 1

4 , λ ,µ > 0. Obviously, ζ1,ζ2 : [0,1]× [0,+∞)× [0,+∞) −→
[0,+∞), ζ1(τ,0,0) = τ2 6≡ 0, and ζ2(τ,0,0) = 2τ3 6≡ 0,τ ∈ [0,1]. Since p

1
2 , p

1
3 ,q

1
2 , and q

1
3 are
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increasing in [0,+∞), it shows that ζ1(τ, p,q) and ζ2(τ, p,q) are increasing about the second
and third variables in [0,+∞).

In addition, setting ϕ1(ι) = ι
1
2 and ϕ2(ι) = ι

1
3 , ι ∈ (0,1), one has ϕ1(ι),ϕ2(ι) ∈ (0,1),

ϕ1(ι) = ι
1
2 > ι ,ϕ2(ι) = ι

1
3 > ι ,

ζ1(τ, ι p, ιq) = (ι p)
1
2 +(ιq)

1
2 + τ

2 ≥ ι
1
2 (p

1
2 +q

1
2 )+ ι

1
2 τ

2 = ι
1
2 ζ1(τ, p,q) = ϕ1(ι)ζ1(τ, p,q),

and

ζ2(τ, ι p, ιq) = (ι p)
1
3 +(ιq)

1
3 +2τ

3 ≥ ι
1
3 (p

1
3 +q

1
3 )+ ι

1
3 2τ

3 = ϕ2(ι)ζ2(τ, p,q),

where τ ∈ [0,1], p,q ∈ [0,+∞).
For (3.1), one sees by Theorem 3.1 that there exists a solution (p∗

λ ,µ ,q
∗
λ ,µ) and it is unique in

P̃h0 . Let (p0,q0) ∈ P̃h0 and h0(τ) = (τ,τ), for τ ∈ [0,1]. Setting

pn+1 = λ

∫ 1

0
G1(τ,s)((pn(s))

1
2 +(qn(s))

1
2 + s2)ds,n = 0,1,2 . . .

and

qn+1 = µ

∫ 1

0
G2(τ,s)((pn(s))

1
3 +(qn(s))

1
3 +2s3)ds,n = 0,1,2 . . . ,

where

G1(τ,s) = G2(τ,s) =
1

Γ(5
2)

{
4
3τ[(1− s)

3
2 −

∫ 1
s

1
2(τ− s)

3
2 dτ]− (τ− s)

3
2 , 0≤ s≤ τ ≤ 1,

4
3τ[(1− s)

3
2 −

∫ 1
s

1
2(τ− s)

3
2 dτ], 0≤ τ ≤ s≤ 1,

one has
lim
n→∞
‖pn− p∗

λ ,µ‖= lim
n→∞
‖qn−q∗

λ ,µ‖= 0.
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