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SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS VIA COMMON FIXED
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Abstract. In this paper, we first introduce the concepts of generalized (α,ϕ,ψ)-Meir-Keeler hybrid
contractive mappings of type I and II via simulation functions by triangular (B,α)-admissible and com-
posite α-admissible mapping pairs. Next, we study the sufficient conditions for the existence of unique
common fixed point theorems for such mappings in the setting of complete partial b-metric spaces. Then
we also provide two examples to show the applicability and validity of our results. Finally, we present
an application to the existence of solutions to an integral equation by means of one of our results.
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1. INTRODUCTION

The Banach fixed point theorem [6], which is known as Banach contraction principle, is a
rewarding result in fixed point theory. It has widespread applications in both pure and applied
mathematics and been extended in various different directions. One of the most popular and
interesting topics among them is the study of new classes of spaces and their fundamental
properties.

In 2014, Shukla [24] introduced the concept of partial b-metric spaces and proved some fixed
point theorems of contractive mappings in partial b-metric space. After that, some authors
have researched on the fixed point theorems of various new type of contractive conditions in
partial b-metric space. Pant et al. [21] obtained a fixed point theorem which is the first Meir-
Keeler type solution. In [25], Choudhury and Chaitali proved a Meir-Keeler type coupled fixed
point results in metric spaces. Aoyama and Toyoda [4] provided characterizations of a Meir-
Keeler type mapping and a fixed point theorem for the mapping in a metric space endowed with
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a transitive relation. Aydi et al. [5] considered some Nemytzki-Edelstein-Meir-Keeler type
results and Debnath [9] presented some new set-valued Meir-Keeler, Geraghty and Edelstein
type fixed point theorems in b-metric spaces. Azam and Shagari [2] proved a Meir-Keeler type
common fixed point theorem for soft set-valued map and point-to-point mapping. The authors
[12, 14] introduced α-Meir-Keeler and generalized α−Meir-Keeler contractions on Branciari
b-metric spaces. Gholamian and Khanehgir [15] introduced the notion of generalized Meir-
Keeler contraction mappings in the setting of b-metric-like spaces.

In 2022, Karapinar et al. [13] reviewed Meir-Keeler contraction mappings results on various
abstract spaces. Karapinar et al. [3] presented a fixed point theorem for generalized (α,ψ)-
Meir-Keeler type contractions in the setting of generalized b-metric spaces. Mamud and Tola
[17] introduced the notion of generalized (α,ϕ)-Meir-Keeler hybrid contractive mappings of
type I and II via simulation function and established fixed point theorems for such mappings
in the setting of complete b-metric spaces. Jain et al. [10] introduced ξ − (α,β )-contractive
mappings in b-metric spaces. In [7], Cvetković discussed the relation between F-contractions
and Meir-Keeler contractions in complete metric space. Salvador Romaguera and Pedro Tirado
[22] studied quasi-metric versions of the famous Meir-Keeler fixed point theorem from which
they deduced quasi-metric generalizations of Boyd-Wong’s fixed point theorem. Saiedinezhad
[23] established the Boyd-Wong type and Meir-Keeler type contractions in new generalized b-
metric spaces. For recent development on fixed point theory, we refer to [1, 8, 11, 16, 18, 19, 20].

In this paper, motivated and inspired by [17, Theorems 4] and [20, Theorem 26], using trian-
gular (B,α)-admissible mapping and composite α-admissible mapping pairs, we introduce the
notions of generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings of type I and II via
simulation functions and studied the sufficient conditions for the existence of unique common
fixed point theorems for such mappings in partial b-metric spaces. Two examples are provided
to support our results. Finally, we give an application to the existence of solutions to an integral
equation by means of one of our results.

2. PRELIMINARIES

Firstly, we recall some definitions and lemmas in partial b-metric spaces.

Definition 2.1. ([24]) Let G be a nonempty set and s ≥ 1 be a given real number. A mapping
p : G×G→ [0,+∞) is said to be a partial b-metric if, for all κ,τ,υ ∈ G, s ≥ 1, the following
conditions are satisfied:

(i) p(κ,y)≥ 0, κ = τ if and only if p(κ,τ) = p(κ,κ) = p(τ,τ);
(ii) p(κ,κ)≤ p(κ,τ);
(iii) p(κ,τ) = p(τ,κ);
(iv) p(κ,τ)≤ s(p(κ,υ)+p(τ,υ))−p(υ ,υ).
The pair (G,p) is called a partial b-metric space. It is clear that the class of partial b-metric

spaces is larger than that of partial metric spaces.

Remark 2.2. Every partial b-metric p defines b-metric ps, where ps(κ,τ)= 2p(κ,τ)−p(κ,κ)−
p(τ,τ).

Definition 2.3. ([19]) Let (G,p) be a partial b-metric space with parameter s ≥ 1. Then a
sequence {κn} in G is said to be:

(i) convergent if and only if there exists κ ∈G such that limn→∞ p(κn,κ) = p(κ,κ);
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(ii) a Cauchy sequence if and only if limn,m→∞ p(κn,κm) exists (and is finite).
A partial b-metric space is called complete if each Cauchy sequence in this space is conver-

gent to a point κ ∈G such that limn,m→∞ p(κn,κm) = limn→∞ p(κn,κ) = p(κ,κ).

Lemma 2.4. ([19]) A sequence {κn} is a Cauchy sequence in a partial b-metric space (G,p) if
and only if it is a b-Cauchy sequence in the b-metric space (G,ps).

Lemma 2.5. ([19]) A partial b-metric space (G,p) is pb-complete if and only if the b-metric
space (G,ps) is b-complete. Moreover, limn,m→∞ ps(κn,κm) = 0 if and only if

lim
n,m→∞

p(κn,κm) = lim
n→∞

p(κn,κ) = p(κ,κ).

Definition 2.6. Let A and B be two self-mappings on a nonempty set G. Let C(A,B) denote the
set of all coincidence points of A and B. If w = Aκ = Bκ , for some κ ∈G, then κ is said to be
the coincidence point of A and B, where w is called the point of coincidence of A and B.

Definition 2.7. ([16]) Let f and g be two self-mappings defined on a nonempty set G. Then
f and g is said to be weakly compatible if they commute at every coincidence point, that is,
f gκ = g f κ for every κ ∈C( f ,g).

We also need the following lemmas to obtain our main results.

Lemma 2.8. ([19]) Let (G,p) be a partial b-metric space with parameter s ≥ 1. Assume that
{κn} and {τn} are convergent to κ and τ , respectively. Then,

1
s2p(κ,τ)−

1
s
p(κ,κ)−p(τ,τ)

≤ liminf
n→∞

p(κn,τn)≤ limsup
n→∞

p(κn,τn)≤ sp(κ,κ)+ s2p(τ,τ)+ s2p(κ,τ).

In particular, if p(κ,τ) = 0, then we have limn→∞ p(κn,τn) = 0. Moreover, for each ν ∈G,
1
s
p(κ,ν)−p(κ,κ)≤ liminf

n→∞
p(κn,ν)≤ limsup

n→∞

p(κn,ν)≤ sp(κ,ν)+ sp(κ,κ).

Furthermore, if p(κ,κ)= 0, then 1
sp(κ,ν)≤ liminfn→∞ p(κn,ν)≤ limsupn→∞ p(κn,ν)≤ sp(κ,ν).

Lemma 2.9. ([8]) Let (G,p) be a partial b-mertic space with parameter s ≥ 1 and {κn} be a
sequence in G such that {p(κn,κn+1)} is non-increasing and limn→∞ p(κn,κn+1) = 0. If {κ2n}
is not a Cauchy sequence, then there exist ε > 0 and two sequences {mk} and {nk} of positive
integers such that mk > nk > k and four following sequences:

p(κ2mk ,κ2nk),p(κ2mk ,κ2nk+1),p(κ2mk−1,κ2nk),p(κ2mk−1,κ2nk+1)

satisfy
ε ≤ liminf

k→∞
p(κ2mk ,κ2nk)≤ limsup

k→∞

p(κ2mk ,κ2nk)≤ sε,

ε

s
≤ liminf

k→∞
p(κ2mk ,κ2nk+1)≤ limsup

k→∞

p(κ2mk ,κ2nk+1)≤ s2
ε,

ε

s
≤ liminf

k→∞
p(κ2mk−1,κ2nk)≤ limsup

k→∞

p(κ2mk−1,κ2nk)≤ sε,

and
ε

s2 ≤ liminf
k→∞

p(κ2mk−1,κ2nk+1)≤ limsup
k→∞

p(κ2mk−1,κ2nk+1)≤ s2
ε.
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3. MAIN RESULTS

In this section, we establish some results for the existence of common fixed points of gener-
alized weakly contractive mappings in the setting of complete partial b-metric spaces.

Let Φ denote the class of the functions ϕ : R+→ R+ satisfying the following conditions:
(1) ϕ is non-decreasing,
(2) ϕ is continuous,
(3) ϕ(t) = 0 if and only if t = 0.
Let Ψ denote the class of the functions ψ : R+→ R+ satisfying the following conditions:
(1) ψ(t)≤ ϕ(t) for all t ∈ R+,
(2) ψ is upper semi-continuous.
Let Ξ denote the class of the functions ξ : R+×R+→R satisfying the following conditions:
(1) ξ (0,0) = 0,
(2) ξ (t,s)< s− t for all t,s > 0.
Let (G,p) be a partial b-metric space with s ≥ 1 and A,B be two self-mappings on G. We

define a mapping M : G×G−→ R+ by

M(κ,τ) = max{p(Bκ,Bτ),p(Aκ,Bκ),p(Aτ,Bτ),
p(Aτ,Bκ)+p(Aκ,Bτ)

2s
,

p(Aκ,Bκ)p(Aτ,Bτ)

1+p(Aκ,Aτ)
,
p(Aκ,Bκ)p(Aτ,Bτ)

1+p(Bκ,Bτ)
,

1+p(Aκ,Bτ)+p(Bκ,Aτ)

1+ sp(Aκ,Bκ)+ sp(Aτ,Bτ)
p(Aκ,Bκ)}.

Let p : G×G−→ R+ be a mapping. The following conditions are be used in this section:
(P1

M) κ 6= τ and p(Aκ,Bκ)≤ p(Bκ,Bτ) imply p(κ,τ)≤M(κ,τ);
(P2

M) κ2mk 6= κ2nk+1 and limk→∞ supp(Aκ2mk ,Bκ2mk) ≤ limk→∞ supp(Bκ2mk ,Bκ2nk+1) imply
p(κ2mk ,κ2nk+1)≤M(κ2mk ,κ2nk+1).

Definition 3.1. Let (G,p) be a partial b-metric space with parameter s ≥ 1, and let A,B :
G→ G, α : G×G→ [0,+∞) be given mappings. The mapping A is said to be triangular
(B,α)−admissible if, for all κ,τ,ν ∈G, the following conditions are satisfied:

(1) α(Bκ,Bτ)≥ s2 implies α(Aκ,Aτ)≥ s2;
(2) α(κ,τ) = α(τ,κ);
(3) α(κ,τ)≥ s2 and α(τ,ν)≥ s2 imply α(κ,ν)≥ s2.

Remark 3.2. For p(κ,κ) = 0,∀κ ∈ G, the definition reduces to the definition of a triangular
(B,α)−admissible mapping in a partial metric space.

Let (G,p) be a pb-complete partial b-metric space with parameter s≥ 1 and let α : G×G→
[0,+∞). Then,

(a) If {Aκn−1} is a sequence in G such that Aκn−1→ z as n→ ∞, then there exists a subse-
quence {Aκni−1} of {Aκn−1} with α(Aκni−1,z)≥ s2 for all i ∈ N.

(b) If {Aκn−1} is a sequence in G such that Aκn−1→ z as n→ ∞, then there exists a subse-
quence {Aκnk−1} of {Aκn−1} with α(Aκnk−1,Az)≥ s2 for all k ∈ N.
(c) For all z,w ∈C(A,B), α(z,w)≥ s2.

Definition 3.3. Let A,B be two self-mappings on a partial b-metric space (G,d) and ξ ∈ Ξ.
Suppose that p : G×G−→ R+ is a function that satisfies (P1

M) and (P2
M). Then A,B are said to
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be the generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings of type I if the following
conditions are satisfied:

(i) for any ε > 0, there exists δ (ε) > 0 such that κ 6= τ and p(κ,τ) < ε + δ (ε) imply
p(Aκ,Aτ)≤ ε

s ;
(ii) κ 6= τ and p(κ,τ)> 0 imply ξ (ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ)),ψ(p(κ,τ)))≥ 0, where

ϕ ∈Φ, ψ ∈Ψ, ξ ∈ Ξ and q > 1 is a constant.

Remark 3.4. If A,B are the generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings
of type I, p(Aκ,Aτ) > 0, then ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ)) < ψ(p(κ,τ)) ≤ ϕ(p(κ,τ)) ≤
ϕ(M(κ,τ)).

Proof. If p(κ,τ) = 0, from Definition 3.3, we have p(κ,τ) < ε + δ (ε) for any ε > 0, which
implies 0≤ p(Aκ,Aτ)≤ ε

s . But ε > 0 is arbitrary. Thus p(Aκ,Aτ) = 0. We consider p(κ,τ)>
0, and p(Aκ,Aτ)> 0. In this case, according to the nature of the function ξ and Definition 3.3,
we have

0≤ ξ (ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ)),ψ(p(κ,τ)))

< ψ(p(κ,τ))−ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ)).

This completes the proof. �

Theorem 3.5. Let (G,p) be a complete partial b-metric space with parameter s ≥ 1 and let
α : G×G→ [0,+∞), A,B : G→ G be given mappings and A(G) ⊆ B(G). Suppose ϕ ∈ Φ,
ψ ∈Ψ, ξ ∈ Ξ and q > 1. If the following conditions are satisfied:

(i) A,B are the generalized (α,ϕ,ψ)−Meir-Keeler hybrid contractive mappings of type I,
(ii) A is a triangular (B,α)−admissible mapping,
(iii) there is κ0 ∈G with α(Aκ0,Bκ0)≥ s2,
(iv) properties (a), (b) and (c) are satisfied,
(v) B(G) is complete and (A,B) is weakly compatible,
then A,B have a unique common fixed point.

Proof. By (iii), there exists κ0 ∈G such that α(Aκ0,Bκ0)≥ s2. Define two sequences {κn} and
{τn} in G by τn = Aκn = Bκn+1 for all n ∈ N. If p(τn,τn+1) = 0 which implies τn = τn+1 for
some n ∈ N, then τn = Bκn+1 = Aκn+1 = τn+1 and it is easy to see that A and B have a point of
coincidence. Without loss of generality, we assume that p(τn,τn+1) > 0 for all n ∈ N. By the
condition (ii), we have

α(Bκ0,Bκ1) = α(Bκ0,Aκ0)≥ s2,

α(Bκ1,Bκ2) = α(Aκ0,Aκ1)≥ s2,

and
α(Bκ2,Bκ3) = α(Aκ1,Aκ2)≥ s2.

Therefore, by induction, we obtain α(Bκn+1,Bκn+2) =α(τn,τn+1)≥ s2 for all n∈N. It follows
from Definition 3.1 that α(Bκn+1,Bκm+1) = α(τn,τm)≥ s2 for all n,m ∈ N.

Now, we show that {p(τn,τn+1)} is monotone decreasing. Since

p(τn+1,τn) = p(Aκn+1,Bκn+1) = p(Bκn+1,Bκn+2),

we have
p(κn+1,κn+2)≤M(κn+1,κn+2)
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by (P1
M), where

M(κn+1,κn+2)

=max{p(Bκn+1,Bκn+2),p(Aκn+1,Bκn+1),p(Aκn+2,Bκn+2),

p(Aκn+2,Bκn+1)+p(Aκn+1,Bκn+2)

2s
,

p(Aκn+1,Bκn+1)p(Aκn+2,Bκn+2)

1+p(Aκn+1,Aκn+2)
,
p(Aκn+1,Bκn+1)p(Aκn+2,Bκn+2)

1+p(Bκn+1,Bκn+2)
,

1+p(Aκn+1,Bκn+2)+p(Bκn+1,Aκn+2)

1+ sp(Aκn+1,Bκn+1)+ sp(Aκn+2,Bκn+2)
p(Aκn+1,Bκn+1)},

=max{p(τn,τn+1),p(τn+1,τn),p(τn+2,τn+1),
p(τn+2,τn)+p(τn+1,τn+1)

2s
,

p(τn+1,τn)p(τn+2,τn+1)

1+p(τn+1,τn+2)
,
p(τn+1,τn)p(τn+2,τn+1)

1+p(τn+1,τn)
,

1+p(τn+1,τn+1)+p(τn,τn+2)

1+ sp(τn+1,τn)+ sp(τn+2,τn+1)
p(τn+1,τn)}= max{p(τn,τn+1),p(τn+1,τn+2)}.

By (i) and Remark 3.4, we see that
ϕ(p(τn+1,τn+2)) = ϕ(p(Aκn+1,Aκn+2))

≤ ϕ((α(Bκn+1,Bκn+2)+ s−q)p(Aκn+1,Aκn+2))

< ψ(p(κn+1,κn+2))≤ ϕ(M(κn+1,κn+2)).

(3.1)

If M(κn+1,κn+1) = p(τn+1,τn+2), we find by (3.1) that ϕ(p(τn+1,τn+2))≤ ϕ(p(τn+1,
τn+2)), which yields a contradiction. So, M(κn+1,κn+2) = p(τn,τn+1). We deduce

ϕ(p(τn+1,τn+2))< ϕ(p(τn,τn+1)).

Since ϕ is non-decreasing, we see that p(τn+1,τn+2)< p(τn+1,τn). Therefore, {p(τn,τn+1)} is
a decreasing sequence, and limn→∞ p(τn,τn+1) = p ≥ 0. Let ε = p > 0. One can choose a N.
When n > N, there exists p = ε < p(τn,τn+1) < ε + δ (ε), and it follows that p(κn+1,κn+2) ≤
M(κn+1,κn+2) = p(τn,τn+1)< ε +δ (ε), which implies p(Aκn+1,Aκn+2) = p(τn+1,τn+2)≤ ε

s ,
that is, ε < p(τn+1,τn+2)≤ ε

s . This is a contradiction. It follows that limn→∞ p(τn,τn+1)= p= 0.
We next prove that {τn} is a Cauchy sequence in the partial b-metric space (G,p). Suppose

that is not true. Then, using Lemma 2.9, we see that exists ε > 0 and two sequences {mk} and
{nk} of positive integers such that mk > nk > k and the four following sequences

p(τ2mk ,τ2nk),p(τ2mk ,τ2nk+1),p(τ2mk−1,τ2nk),p(τ2mk−1,τ2nk+1)

satisfy
ε ≤ liminf

k→∞
p(τ2mk ,τ2nk)≤ limsup

k→∞

p(τ2mk ,τ2nk)≤ sε,

ε

s
≤ liminf

k→∞
p(τ2mk ,τ2nk+1)≤ limsup

k→∞

p(τ2mk ,τ2nk+1)≤ s2
ε,

ε

s
≤ liminf

k→∞
p(τ2mk−1,τ2nk)≤ limsup

k→∞

p(τ2mk−1,τ2nk)≤ sε,

and
ε

s2 ≤ liminf
k→∞

p(τ2mk−1,τ2nk+1)≤ limsup
k→∞

p(τ2mk−1,τ2nk+1)≤ s2
ε.
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Let κ = κ2mk , τ = κ2nk+1 and κ 6= τ . One can deduce that p(Aκ2mk ,Bκ2mk) = p(τ2mk ,τ2mk−1)
and p(Bκ2mk , Bκ2nk+1) = p(τ2mk−1,τ2nk). It follows that

lim
k→∞

supp(Aκ2mk ,Bκ2mk)≤ lim
k→∞

supp(Bκ2mk ,Bκ2nk+1)

which implies p(κ2mk ,κ2nk+1)≤M(κ2mk ,κ2nk+1) by (P2
M), where

M(κ2mk ,κ2nk+1) = max{p(Bκ2mk ,Bκ2nk+1),p(Aκ2mk ,Bκ2mk),p(Aκ2nk+1,Bκ2nk+1),

p(Aκ2nk+1,Bκ2mk)+p(Aκ2mk ,Bκ2nk+1)

2s
,

p(Aκ2mk ,Bκ2mk)p(Aκ2nk+1,Bκ2nk+1)

1+p(Aκ2mk ,Aκ2nk+1)
,

p(Aκ2mk ,Bκ2mk)p(Aκ2nk+1,Bκ2nk+1)

1+p(Bκ2mk ,Bκ2nk+1)
,

1+p(Aκ2mk ,Bκ2nk+1)+p(Bκ2mk ,Aκ2nk+1)

1+ sp(Aκ2mk ,Bκ2mk)+ sp(Aκ2nk+1,Bκ2nk+1)
p(Aκ2mk ,Bκ2mk)},

= max{p(τ2mk−1,τ2nk),p(τ2mk ,τ2mk−1),

p(τ2nk+1,τ2nk),
p(τ2nk+1,τ2mk−1)+p(τ2mk ,τ2nk)

2s
,

p(τ2mk ,τ2mk−1)p(τ2nk+1,τ2nk)

1+p(τ2mk ,τ2nk+1)
,
p(τ2mk ,τ2mk−1)p(τ2nk+1,τ2nk)

1+p(τ2mk−1,τ2nk)
,

1+p(τ2mk ,τ2nk)+p(τ2mk−1,τ2nk+1)

1+ sp(τ2mk ,τ2mk−1)+ sp(τ2nk+1,τ2nk)
p(τ2mk ,τ2mk−1)}.

Taking the upper limit as k→ ∞, one can obtain
limsup

k→∞

ϕ(M(κ2mk ,κ2nk+1)) =ϕ(limsup
k→∞

M(κ2mk ,κ2nk+1))

≤ϕ(max{sε,0,0,
s2ε + sε

2s
,0,0,0}) = ϕ(sε).

In view of Remark 3.4 and α(Bκ2mk ,Bκ2nk+1) = α(τ2mk−1,τ2nk)≥ s2, we arrive at

ϕ((s2 + s−q)p(τ2mk ,τ2nk+1))

= ϕ((s2 + s−q)p(Aκ2mk ,Aκ2nk+1))

≤ ϕ((α(Bκ2mk ,Bκ2nk+1)+ s−q)p(Aκ2mk ,Aκ2nk+1))

< ψ(p(κ2mk ,κ2nk+1))≤ ϕ(M(κ2mk ,κ2nk+1)),

where
ϕ(sε + s−q−1

ε)≤ limsup
k→∞

ϕ((s2 + s−q)p(τ2mk ,τ2nk+1)) = ϕ(limsup
k→∞

(s2 + s−q)p(τ2mk ,τ2nk+1)).

Letting k→ ∞, we obtain ϕ(sε + s−q−1ε)≤ ϕ(sε), which is impossible. This shows that {τ2n}
is a Cauchy sequence and hence {τn} is a Cauchy sequence both in (G,p) and in (G,ps).
Since (G,p) is complete if and only if (G,ps) is b-complete, and there exists z ∈ G such that
limn,m→∞ p(τn,τm) = limn→∞ p(τn,z) = p(z,z), or equivalently limn,m→∞ ps(τn,τm) = 0. More-
over, in view of ps(τn,τm) = 2p(τn,τm)−p(τn,τn)−p(τm,τm) and limn→∞ p(τn,τn+1) = 0, we
have limn,m→∞ p(τn,τm) = 0. It follows that limn,m→∞ p(τn,τm) = limn→∞ p(τn,z) = p(z,z) = 0.
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Since τn → z, {Aκn} and {Bκn+1} converge to z. Assume that B(G) is complete. Then
there exists u ∈ G such that z = Bu. We next show that z = Au. On the contrary, we as-
sume that p(z,Au) > 0. First of all, from condition (a), we can choose a subsequence {κni−1}
of {κn−1} such that {Aκn−1} → z with α(Bκni,z) = α(Aκni−1,z) ≥ s2. Letting κ = κni , τ =
u and κ 6= τ , we have limi→∞ supp(Aκni,Bκni) = 0 = limi→∞ supp(Bκni,Bu), which implies
p(κni,u)≤M(κni,u) by (P2

M), where

M(κni,u) = max{p(Bκni,Bu),p(Aκni,Bκni),p(Au,Bu),
p(Au,Bκni)+p(Aκni,Bu)

2s
,

p(Aκni,Bκni)p(Au,Bu)
1+p(Aκni,Au)

,
p(Aκni,Bκni)p(Au,Bu)

1+p(Bκni,Bu)
,

1+p(Aκni,Bu)+p(Bκni,Au)
1+ sp(Aκni,Bκni)+ sp(Au,Bu)

p(Aκni,Bκni)},

= max{p(τni−1,z),p(τni,τni−1),p(Au,z),
p(Au,τni−1)+p(τni,z)

2s
,

p(τni,τni−1)p(Au,z)
1+p(τni,Au)

,
p(τni,τni−1)p(Au,z)

1+p(τni−1,z)
,

1+p(τni,z)+p(τni−1,Au)
1+ sp(τni,τni−1)+ sp(Au,z)

p(τni,τni−1)}.

(3.2)

According to Remark 3.4, we have

ϕ((s2 + s−q)p(Aκni,Au))≤ ϕ((α(Bκni,Bu)+ s−q)p(Aκni,Au))

< ψ(p(κni,u))≤ ϕ(M(κni,u)).
(3.3)

Taking the upper limit as i→ ∞ in (3.2) and (3.3), we obtain

limsup
i→∞

ϕ(M(κni,u)) =ϕ(limsup
i→∞

M(κni,u))

≤ϕ(max{0,0,p(Au,z),
sp(Au,z)

2s
,0,0,0}) = ϕ(p(Au,z)),

ϕ((s+ s−q−1)p(z,Au))≤ limsup
i→∞

ϕ((s2 + s−q)p(Aκni,Au))

= ϕ(limsup
i→∞

(s2 + s−q)p(Aκni,Au)),

and

ϕ((s+ s−q−1)p(Au,z))≤ ϕ(p(Au,z)),

which is a contradiction. Therefore, p(z,Au) = 0 implies Au = z = Bu.
Since (A,B) is weakly compatible, one has Az=ABu=BAu=Bz. Next, we prove that Az= z.

On the contrary, we assume that p(z,Az)> 0. Similarly, by condition (b), we can also obtain a
subsequence {κnk−1} of {κn−1} such that {Aκnk−1} → z with α(Bκnk ,Bz) = α(Aκnk−1,Az) ≥
s2. Letting κ = κnk , τ = z and κ 6= τ , one can deduce

lim
k→∞

supp(Aκnk ,Bκnk) = 0≤ lim
k→∞

supp(Bκnk ,Bz).
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It follows that p(κnk ,z)≤M(κnk ,z) by (P2
M), where

M(κnk ,z) = max{p(Bκnk ,Bz),p(Aκnk ,Bκnk),p(Az,Bz),
p(Az,Bκnk)+p(Aκnk ,Bz)

2s
,

p(Aκnk ,Bκnk)p(Az,Bz)
1+p(Aκnk ,Az)

,
p(Aκnk ,Bκnk)p(Az,Bz)

1+p(Bκnk ,Bz)
,

1+p(Aκnk ,Bz)+p(Bκnk ,Az)
1+ sp(Aκnk ,Bκnk)+ sp(Az,Bz)

p(Aκnk ,Bκnk)},

= max{p(τnk−1,Az),p(τnk ,τnk−1),p(Az,Az),
p(Az,τnk−1)+p(τnk ,Az)

2s
,

p(τnk ,τnk−1)p(Az,Az)
1+p(τnk ,Az)

,
p(τnk ,τnk−1)p(Az,Az)

1+p(τnk−1,Bz)
,

1+p(τnk ,Az)+p(τnK−1,Az)
1+ sp(τnk ,τnk−1)+ sp(Az,Az)

p(τnk ,τnk−1)}.

(3.4)

According to Remark 3.4 again, we have

ϕ((s2 + s−q)p(Aκnk ,Az))≤ ϕ((α(Bκnk ,Bz)+ s−q)p(Aκnk ,Az))

< ψ(p(κnk ,z))≤ ϕ(M(κnk ,z)).
(3.5)

Letting k→ ∞ in (3.4) and (3.5), we obtain

ϕ((s+ s−q−1)p(z,Az))≤ limsup
k→∞

ϕ((s2 + s−q)p(Aκnk ,Az)),

limsup
k→∞

ϕ(M(κnk ,z)) =ϕ(limsup
k→∞

M(κnk ,z))

≤ϕ(max{sp(Az,z),0,p(Az,Az),
sp(Az,z)+ sp(z,Az)

2s
,0,0,0})

=ϕ(sp(Az,z)),

and
ϕ((s+ s−q−1)p(Az,z))≤ ϕ(sp(Az,z)),

a contradiction. Hence, p(z,Az) = 0 and this implies Az = z = Bz. That is, A,B have common
fixed point z.

Suppose on the contrary that there exists another common fixed point w of A and B. By
condition (c), we can also get α(w,z)≥ s2. Letting κ = z, τ =w and κ 6= τ , we have p(Az,Bz) =
0 ≤ p(Az,Aw) = p(z,w), which implies p(z,w) ≤ M(z,w) by (P1

M), where M(z,w) = p(z,w).
Meanwhile, in light of Remark 3.4, we obtain

ϕ((s2 + s−q)p(z,w)) = ϕ((s2 + s−q)p(Az,Aw))

≤ ϕ((α(Bz,Bw)+ s−q)p(Az,Aw))

< ψ(p(z,w))≤ ϕ(M(z,w))

< ϕ(p(z,w)),

which is a contradiction. Therefore, p(z,w) = 0 implies z = w, and A,B have a unique common
fixed point. �
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Example 3.6. Let G = [0,2], p(κ,τ) = max{κ2,τ2}+ (κ − τ)2, s = 2 and q > 1. Define
mappings A,B by

Aκ =

{
κ

16 , κ ∈ [0,1]
κ

8 , κ ∈ (1,2]
,Bκ =

{
κ

2 , κ ∈ [0,1]
κ

4 +
1
4 , κ ∈ (1,2]

.

Since AB0 = BA0 = 0, (A,B) is weakly compatible. It is clear that A(G) ⊆ B(G) and B(G) is
complete. Define mappings α : G×G→ [0,+∞) and α(κ,τ) = α(τ,κ) by

α(κ,τ) =

{
s2, κ,τ ∈ [0, 1

2 ]

0, otherwise
,

ϕ(t) = ψ(t) = t, and

p(κ,τ) = max{p(Bκ,Bτ),p(Aτ,Bτ),
p(Aτ,Bκ)+p(Aκ,Bτ)

2s
,

p(Aκ,Bκ)p(Aτ,Bτ)

1+p(Aκ,Aτ)
,

1+p(Aκ,Bτ)+p(Bκ,Aτ)

1+ sp(Aκ,Bκ)+ sp(Aτ,Bτ)
p(Aκ,Bκ)},

First, we note that p(κ,τ) satisfies condition (P1
M) and p(κ,τ)> 0 for all κ 6= τ . For κ,τ ∈G

such that α(Bκ,Bτ)≥ s2 , we see that Bκ,Bτ ∈ [0, 1
2 ], which implies that κ,τ ∈ [0,1]. It follows

that α(Aκ,Aτ)≥ s2, since Aκ,Bτ ∈ [0, 1
2 ], that is, A is a triangular (B,α)−admissible mapping.

For κ,τ ∈ [0,1], we choose δ (ε) = 15ε . Then

32p(Aκ,Aτ)≤ 32
128

max{κ2,τ2}= 1
4

max{κ2,τ2}

≤ p(Bκ,Bτ)≤ p(κ,τ)< ε +15ε,

which implies p(Aκ,Aτ)< ε

2 . For κ ∈ [0,1], τ ∈ (1,2], letting δ (ε) = 1
2ε , we have

3p(Aκ,Aτ)≤ 6
64

τ
2 ≤ τ2

16
+

τ

8
+

1
16
≤ p(Bκ,Bτ)≤ p(κ,τ)< ε +

1
2

ε,

which implies p(Aκ,Aτ)< ε

2 . For κ ∈ (1,2], τ ∈ [0,1], taking δ (ε) = 1
2ε , we deduce

3p(Aκ,Aτ)≤ 6
64

κ
2 ≤ κ2

16
+

κ

8
+

1
16
≤ p(Bκ,Bτ)≤ p(κ,τ)< ε +

1
2

ε,

which implies p(Aκ,Aτ)< ε

2 . For κ,τ ∈ (1,2], setting δ (ε) = 1
2ε , one can obtain

3p(Aκ,Aτ)≤ 6
64

max{κ2,τ2} ≤max{(κ

4
+

κ

4
)2,(

τ

4
+

κ

4
)2}

≤ p(Bκ,Bτ)≤ p(κ,τ)< ε +
1
2

ε,

which implies p(Aκ,Aτ) < ε

2 . Then condition (i) of Definition 3.3 is met about Theorem 3.5.
Let ξ ∈ Ξ be given by ξ (t,s) = 2s

3 − t. Now we consider the following cases. For κ,τ ∈ [0,1],
κ 6= τ , we have

p(Aκ,Aτ) =
1

256
max{κ2,τ2}+ 1

256
(κ− τ)2,

and

p(Bκ,Bτ) =
1
4

max{κ2,τ2}+ 1
4
(κ− τ)2.
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Thus
2
3

ψ(p(κ,τ))−ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ))

≥2
3

ψ(p(Bκ,Bτ))−ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ))

=
1
6
(max{κ2,τ2}+(κ− τ)2)− (

1
64

+2−q−8)(max{κ2,τ2}+(κ− τ)2)≥ 0.

For other cases, we obtain α(Bκ,Bτ) = 0, which implies ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ)) ≤
2−q−5 max{κ2,τ2}. It follows that

2
3

ϕ(p(κ,τ))−ϕ((α(Bκ,Bτ)+ s−q)p(Aκ,Aτ))

≥ 7
96

max{κ2,τ2}−2−q−5(max{κ2,τ2}+(κ− τ)2)≥ 0.

To sum up, all conditions of Theorem 3.5 are satisfied. It is obvious that 0 is the unique common
fixed point of A,B.

Definition 3.7. Let A,B be two self-mappings on a partial b-metric space (G,p) and ξ ∈Ξ. Sup-
pose that p : G×G−→ R+ is a function that satisfies (P1

M) and (P2
M). Then A,B are said to be

the generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings of type I∗ if the following
conditions are satisfied:

(i) for any ε > 0, there exists δ (ε) > 0 such that κ 6= τ and p(κ,τ) < ε + δ (ε) imply
p(Aκ,Aτ)≤ ε

s ;
(ii) κ 6= τ and p(κ,τ)> 0 imply ξ (ϕ((α(Bκ,Bτ))p(Aκ,Aτ)),ψ(p(κ,τ)))≥ 0.

Theorem 3.8. Let (G,p) be a complete partial b-metric space with parameter s ≥ 1 and let
α : G×G→ [0,+∞), A,B : G→ G be given mappings and A(G) ⊆ B(G). Suppose ϕ ∈ Φ,
ψ ∈Ψ and ξ ∈ Ξ. If the following conditions are satisfied:

(i) A,B are the generalized (α,ϕ,ψ)−Meir-Keeler hybrid contractive mappings of type I*,
(ii) A is a triangular (B,α)−admissible mapping,
(iii) there is κ0 ∈G with α(Aκ0,Bκ0)≥ s2 ,
(iv) properties (a), (b) and (c) are satisfied,
(v) B(G) is complete and (A,B) is weakly compatible,

then A,B have a unique common fixed point.

Proof. Since the proof of Theorem 3.8 is similar to that of Theorem 3.5, we omit it. �

If B = IG and p(κ,κ) = 0, for all κ ∈G in Theorem 3.8, we have a corollary.

Corollary 3.9. Let (G,p) be a complete b-metric space with parameter s≥ 1. Let α : G×G→
[0,+∞) and A : G→ G be given mappings. Suppose ξ ∈ Ξ. If the following conditions are
satisfied:

(i) A,B are the generalized (α,ϕ,ψ)−Meir-Keeler hybrid contractive mappings of type I∗,
where the inequality becomes to

ξ (α(κ,τ)ϕ(p(Aκ,Aτ)),ψ(p(κ,τ)))≥ 0,

(ii) A is a triangular α−admissible mapping,
(iii) there is κ0 ∈G with α(κ0,Aκ0)≥ s2,
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(iv) A is continuous,
(v) properties (a), (b) and (c)(for all z,w∈ Fix(A), we have the condition of α(z,w)≥ s2) are

satisfied,
then A has a unique fixed point.

Let p : G×G−→R+ be a mapping. The following conditions are used in the following part:
(P1

M) κ 6= τ and p(κ,Bκ)≤ p(κ,τ) imply p(κ,τ)≤M(κ,τ);
(P2

M) κ2mk 6= κ2nk+1 and limk→∞ supp(κ2nk+1,Bκ2nk+1)≤ limk→∞ supp(κ2nk+1,κ2mk) imply
p(κ2nk+1,κ2mk)≤M(κ2nk+1,κ2mk).

M(κ,τ) = max{p(τ,Aτ),p(κ,Bκ),p(κ,τ),
p(τ,Bκ)+p(κ,Aτ)

2s
,

1+p(τ,Aτ)

1+p(Aτ,Bκ)
p(κ,Bκ),

1+p(κ,Bκ)

1+p(κ,τ)
p(τ,Aτ),

1+p(κ,Aτ)+p(τ,Bκ)

1+ sp(κ,τ)+ sp(Aτ,Bκ)
p(κ,Bκ)}.

Definition 3.10. Let (G,p) be a partial b-metric space with parameter s ≥ 1. Let A,B : G→
G and α : G×G→ [0,+∞) be given mappings. The pair (A,B) is said to be composite α-
admissible if, for all κ,τ,ν ∈G, the following conditions are satisfied:

(1) α(Bκ,Aτ)≥ s5 implies α(ABκ,BAτ)≥ s5;
(2) α(κ,τ) = α(τ,κ);
(3) α(κ,τ)≥ s5and α(τ,ν)≥ s5 imply α(κ,ν)≥ s5.

Let (G,p) be a pb-complete partial b-metric space with parameter s≥ 1 and let α : G×G→
[0,+∞). Then,

(a′) if {Bκ2n+1} is a sequence in G such that Bκ2n+1 → z as n→ ∞, then there exists a
subsequence {Bκ2ni+1} of {Bκ2n+1} with α(Bκ2ni+1,Az)≥ s5 for all i ∈ N.

(b′) for all z,w ∈C(A,B), we have α(z,w)≥ s5.

Definition 3.11. Let A,B be two self-mappings on a partial b-metric space (G,p) and ξ ∈ Ξ.
Suppose that p : G×G −→ R+ is a function that satisfies (P1

M) and (P2
M). Then A,B are

said to be the generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings of type II if the
following conditions are satisfied:

(i) for any ε > 0 there exists δ (ε) > 0 such that κ 6= τ and p(κ,τ) < ε + δ (ε) imply
p(Bκ,Aτ)≤ ε

s ;
(ii) κ 6= τ and p(κ,τ)> 0 imply ξ (ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ),ψ(p(κ,τ)))≥ 0.

Remark 3.12. If A,B are the generalized (α,ϕ,ψ)-Meir-Keeler hybrid contractive mappings
of type II, p(Bκ,Aτ)> 0, then

ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ))< ψ(p(κ,τ))≤ ϕ(p(κ,τ))≤ ϕ(M(κ,τ)).

Proof. The proof is similar to that of Remark 3.4. �

Theorem 3.13. Let (G,p) be a complete partial b-metric space with parameter s ≥ 1. Let
α : G×G→ [0,+∞) and A,B : G→G be given mappings. Suppose ϕ ∈Φ, ψ ∈Ψ, ξ ∈ Ξ, and
q > 1. If the following conditions are satisfied:

(i) A,B are the generalized (α,ϕ,ψ)−Meir-Keeler hybrid contractive mappings of type II,
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(ii) (A,B) is composite α−admissible,
(iii) there is κ0 ∈G with α(Aκ0,BAκ0)≥ s5,
(iv) properties (a′) and (b′) are satisfied,
(v) p(Aκ,Bκ)≤ p(κ,Aκ) for all κ ∈G,

then A,B have a unique common fixed point.

Proof. It follows from condition (iii) that there exists κ0 ∈ G such that α(Aκ0,BAκ0) ≥ s5.
Define the sequence {κn} in G by κ2n+1 =Aκ2n, κ2n+2 =Bκ2n+1 for all n∈N. By the condition
(ii), we obtain

α(Bκ1,Aκ0) = α(Aκ0,BAκ0)≥ s5,

α(Bκ1,Aκ2) = α(ABκ1,BAκ0)≥ s5,

α(Bκ3,Aκ2) = α(BAκ2,ABκ1)≥ s5,

· · · · · · .

By induction, one can obtain α(Bκ2n+1,Aκ2n) = α(κ2n+1,κ2n+2) ≥ s5 for all n ∈ N. In view
of Definition 8, we have α(Bκ2m+1,Aκ2n) = α(Aκ2n,Bκ2m+1) = α(κ2n+1,κ2m+2) ≥ s5 for all
n,m ∈ N. If p(κ2n+1,κ2n+2) = 0 for some n ∈ N, we deduce that κ2n+1 = κ2n+2. It follows that
we assert that κ2n+2 = κ2n+3.

On the contrary, we assume that

p(κ2n+2,κ2n+3) = p(Aκ2n+2,Bκ2n+1)> 0.

According to p(κ2n+1,Bκ2n+1) = p(κ2n+1,κ2n+2), we have p(κ2n+1,κ2n+2)≤M(κ2n+1,κ2n+2)
by (P1

M), where

M(κ2n+1,κ2n+2)

= max{p(κ2n+2,Aκ2n+2),p(κ2n+1,Bκ2n+1),p(κ2n+1,κ2n+2),

p(κ2n+2,Bκ2n+1)+p(κ2n+1,Aκ2n+2)

2s
,

1+p(κ2n+2,Aκ2n+2)

1+p(Aκ2n+2,Bκ2n+1)
p(κ2n+1,Bκ2n+1),

1+p(κ2n+1,Bκ2n+1)

1+p(κ2n+1,κ2n+2)
p(κ2n+2,Aκ2n+2),

1+p(κ2n+1,Aκ2n+2)+p(κ2n+2,Bκ2n+1)

1+ sp(κ2n+1,κ2n+2)+ sp(Aκ2n+2,Bκ2n+1)
p(κ2n+1,Bκ2n+1)},

= max{p(κ2n+2,κ2n+3),p(κ2n+1,κ2n+2),p(κ2n+1,κ2n+2),

p(κ2n+2,κ2n+2)+p(κ2n+1,κ2n+3)

2s
,

1+p(κ2n+2,κ2n+3)

1+p(κ2n+3,κ2n+2)
p(κ2n+1,κ2n+2),

1+p(κ2n+1,κ2n+2)

1+p(κ2n+1,κ2n+2)
p(κ2n+2,κ2n+3),

1+p(κ2n+1,κ2n+3)+p(κ2n+2,κ2n+2)

1+ sp(κ2n+1,κ2n+2)+ sp(κ2n+3,κ2n+2)
p(κ2n+1,κ2n+2)}

= p(κ2n+2,κ2n+3).
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In light of (i) and Remark 3.12, we deduce

ϕ(p(κ2n+2,κ2n+3)) = ϕ(p(Bκ2n+1,Aκ2n+2))

≤ ϕ((α(Bκ2n+1,Aκ2n+2)+ s−q)p(Bκ2n+1,Aκ2n+2))

< ψ(p(κ2n+1,κ2n+2))

≤ ϕ(M(κ2n+1,κ2n+2))

= ϕ(p(κ2n+2,κ2n+3)),

which gives a contradiction. So, p(κ2n+2,κ2n+3) = 0 which implies κ2n+3 = κ2n+2 = κ2n+1,
that is, A and B have a point of coincidence.

Without loss of generality, we assume that p(κn,κn+1)> 0 and n =even. Now, we show that
the sequence {p(τ2n,τ2n+1)} is monotone decreasing. Since p(κ2n−1,Bκ2n−1) = p(κ2n−1,κ2n),
we havet p(κ2n−1,κ2n)≤M(κ2n−1,κ2n) by (P1

M), where

M(κ2n−1,κ2n) = max{p(κ2n,Aκ2n),p(κ2n−1,Bκ2n−1),p(κ2n−1,κ2n),

p(κ2n,Bκ2n−1)+p(κ2n−1,Aκ2n)

2s
,

1+p(κ2n,Aκ2n)

1+p(Aκ2n,Bκ2n−1)
p(κ2n−1,Bκ2n−1),

1+p(κ2n−1,Bκ2n−1)

1+p(κ2n−1,κ2n)
p(κ2n,Aκ2n),

1+p(κ2n−1,Aκ2n)+p(κ2n,Bκ2n−1)

1+ sp(κ2n−1,κ2n)+ sp(Aκ2n,Bκ2n−1)
p(κ2n−1,Bκ2n−1)}

= max{p(κ2n,κ2n+1),p(κ2n−1,κ2n),p(κ2n−1,κ2n),

p(κ2n,κ2n)+p(κ2n−1,κ2n+1)

2s
,

1+p(κ2n,κ2n+1)

1+p(κ2n+1,κ2n)
p(κ2n−1,κ2n),

1+p(κ2n−1,κ2n+1)

1+p(κ2n−1,κ2n)
p(κ2n,κ2n+1),

1+p(κ2n−1,κ2n+1)+p(κ2n,κ2n)

1+ sp(κ2n−1,κ2n)+ sp(κ2n+1,κ2n)
p(κ2n−1,κ2n)}

= max{p(κ2n,κ2n+1),p(κ2n−1,κ2n)}.

According to condition (i) and Remark 3.12 above, we obtain

ϕ(p(κ2n,κ2n+1)) = ϕ(p(Bκ2n−1,Aκ2n))

≤ ϕ((α(Bκ2n−1,Aκ2n)+ s−q)p(Bκ2n−1,Aκ2n))

< ψ(p(κ2n−1,κ2n)≤ ϕ(M(κ2n−1,κ2n)).

(3.6)

Since M(κ2n−1,κ2n) = max{p(κ2n,κ2n+1),p(κ2n−1,κ2n)}, if M(κ2n−1,κ2n) = p(κ2n,κ2n+1),
we find by (3.6) that ϕ(p(κ2n,κ2n+1))<ϕ(p(κ2n,κ2n+1)), a contradiction. Thus, M(κ2n−1,κ2n)
= p(κ2n−1,κ2n), and ϕ(p(κ2n,κ2n+1))< ϕ(p(κ2n−1,κ2n)). It follows that

p(κ2n,κ2n+1)< p(κ2n−1,κ2n).

Similarly, one obtains p(κ2n+1,κ2n+2) < p(κ2n,κ2n+1). Hence, {p(κn,κn+1)} is a decreasing
sequence. Set limn→∞ p(κn,κn+1) = p∗ ≥ 0.
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Put ε = p∗ > 0. It follows that there exists N such that p∗ = ε < p(κn,κn+1) < ε + δ (ε),
when n > N. Hence, p(κ2n−1,κ2n) ≤M(κ2n−1,κ2n) = p(κ2n−1,κ2n) < ε + δ (ε), which im-
plies p(Aκ2n,Bκ2n+1) = p(κ2n+1,κ2n+2) ≤ ε

s . Consequently, ε < p(κ2n,κ2n+1) ≤ ε

s , which is
impossible. Therefore, limn→∞ p(κn,κn+1) = p∗ = 0.

Next, we present that {κn} is a Cauchy in (G,p). Suppose that is not true. By Lemma 2.9,
we obtain that there is ε > 0 and two sequences {mk} and {nk} of positive integers such that
mk > nk > k and

ε

s
≤ liminf

k→∞
p(κ2mk ,κ2nk+1)≤ limsup

k→∞

p(κ2mk ,κ2nk+1)≤ s2
ε.

Taking τ = κ2mk , κ = κ2nk+1 and κ 6= τ , we have p(κ2nk+1,Bκ2nk+1) = p(κ2nk+1,κ2nk+2) and
limk→∞ supp(κ2nk+1,Bκ2nk+1) ≤ limk→∞ supp(κ2nk+1,κ2mk) which implies p(κ2nk+1,κ2mk) ≤
M(κ2nk+1,κ2mk), where

M(κ2nk+1,κ2mk) = max{p(κ2mk ,Aκ2mk),p(κ2nk+1,Bκ2nk+1),p(κ2nk+1,κ2mk),

p(κ2mk ,Bκ2nk+1)+p(κ2nk+1,Aκ2mk)

2s
,

1+p(κ2mk ,Aκ2mk)

1+p(Aκ2mk ,Bκ2nk+1)
p(κ2nk+1,Bκ2nk+1),

1+p(κ2nk+1,Bκ2nk+1)

1+p(κ2nk+1,κ2mk)
p(κ2mk ,Aκ2mk),

1+p(κ2nk+1,Aκ2mk)+p(κ2mk ,Bκ2nk+1)

1+ sp(κ2nk+1,κ2mk)+ sp(Aκ2mk ,Bκ2nk+1)
p(κ2nk+1,Bκ2nk+1)}

= max{p(κ2mk ,κ2mk+1),p(κ2nk+1,κ2nk+2),p(κ2nk+1,κ2mk),

p(κ2mk ,κ2nk+2)+p(κ2nk+1,κ2mk+1)

2s
,

1+p(κ2mk ,κ2mk+1)

1+p(κ2mk+1,κ2nk+2)
p(κ2nk+1,κ2nk+2),

1+p(κ2nk+1,κ2nk+2)

1+p(κ2nk+1,κ2mk)
p(κ2mk ,κ2mk+1),

1+p(κ2nk+1,κ2mk+1)+p(κ2mk ,κ2nk+2)

1+ sp(κ2nk+1,κ2mk)+ sp(κ2mk+1,κ2nk+2)
p(κ2nk+1,κ2nk+2)}

Taking the upper limit as k→ ∞, we have

limsup
k→∞

ϕ(M(κ2nk+1,κ2mk)) =ϕ(limsup
k→∞

M(κ2nk+1,κ2mk))

≤ϕ(max{0,0,s2
ε,s2

ε,0,0,0}) = ϕ(s2
ε).

In view of Remark 3.12 and α(Bκ2nk+1,Aκ2mk) = α(κ2mk+1,κ2nk+2)≥ s5, we obtain

ϕ((s5 + s−q)p(κ2mk+1,κ2nk+2))

= ϕ((s5 + s−q)p(Bκ2nk+1,Aκ2mk))

≤ ϕ((α(Bκ2nk+1,Aκ2mk)+ s−q)p(Bκ2nk+1,Aκ2mk))

< ψ(p(κ2nk+1,κ2mk))≤ ϕ(M(κ2nk+1,κ2mk)),
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where
ϕ(s2

ε + s−q−3
ε)≤ limsup

k→∞

ϕ((s5 + s−q)p(τ2mk+1,τ2nk+2))

= ϕ(limsup
k→∞

(s5 + s−q)p(τ2mk+1,τ2nk+2)).

It follows that ϕ(s2ε + s−q−3ε) ≤ ϕ(s2ε), which is a contradiction. Thus, {κ2n} is a Cauchy
sequence and hence {κn} is a Cauchy sequence both in (G,p) and in (G,ps).

It is the same as the proof of Theorem 3.5, we also obtain limn,m→∞ p(κn,κm)= limn→∞ p(κn,z)
= p(z,z) = 0. Since κn→ z, {Aκ2n} and {Bκ2n+1} converge to z.

We now prove that z = Az. On the contrary, we assume that p(z,Au)> 0. From the condition
(iv), we can get a subsequence {κ2ni+1} of {κ2n+1} such that {Bκ2n+1}→ z with α(Bκ2ni+1,Az)≥
s5. Letting κ = κ2ni+1, τ = z and κ 6= τ , we obtain limi→∞ supp(κ2ni+1,Bκ2ni+1)= 0= limi→∞ sup
p(κ2ni+1,z) and which imply p(κ2ni+1,z)≤M(κ2ni+1,z) by (P2

M), where

M(κ2ni+1,z) = max{p(z,Az),p(κ2ni+1,Bκ2ni+1),p(κ2ni+1,z),

p(z,Bκ2ni+1)+p(κ2ni+1,Az)
2s

,

1+p(z,Az)
1+p(Az,Bκ2ni+1)

p(κ2ni+1,Bκ2ni+1),
1+p(κ2ni+1,Bκ2ni+1)

1+p(κ2ni+1,z)
p(z,Az),

1+p(κ2ni+1,Az)+p(z,Bκ2ni+1)

1+ sp(κ2ni+1,z)+ sp(Az,Bκ2ni+1)
p(κ2ni+1,Bκ2ni+1)}

= max{p(z,Az),p(κ2ni+1,κ2ni+2),p(κ2ni+1,z),
p(z,κ2ni+2)+p(κ2ni+1,Az)

2s
,

1+p(z,Az)
1+p(Az,κ2ni+2)

p(κ2ni+1,κ2ni+2),
1+p(κ2ni+1,κ2ni+2)

1+p(κ2ni+1,z)
p(z,Az),

1+p(κ2ni+1,Az)+p(z,κ2ni+2)

1+ sp(κ2ni+1,z)+ sp(Az,κ2ni+2)
p(κ2ni+1,κ2ni+2)}.

(3.7)

It follows from Remark 3.12 that

ϕ((s4 + s−q−1)p(z,Az))≤ ϕ((α(Bκ2ni+1,Az)+ s−q)p(Bκ2ni+1,Az))

< ψ(p(κ2ni+1,z))≤ ϕ(M(κ2ni+1,z)).

Taking the upper limit as i→ ∞ in (3.7), one can deduce

limsup
i→∞

ϕ(M(κ2ni+1,z)) =ϕ(limsup
i→∞

M(κ2ni+1,z))

≤ϕ(max{p(Az,z),0,0,
p(Az,z)

2
,0,p(Az,z),0})

=ϕ(p(Az,z)),

ϕ((s4 + s−q−1)p(Az,z))≤ ϕ(p(Az,z)),

which is a contradiction. Thus, p(Az,z) = 0 and which implies Az = z. By the condition (v),
we have p(z,Bz) = p(Az,Bz)≤ p(z,Az) = 0. Therefore, Az = z = Bz, and A,B have a common
fixed point z.
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Suppose that w is another common fixed point of A and B. The condition (c) ensures α(w,z)≥
s5. Taking κ = z, τ = w and κ 6= τ , we have p(z,Bz) = 0 ≤ p(z,w), which implies p(z,w) ≤
M(z,w) by (P1

M), where M(z,w) = p(z,w). Moreover, in view of Remark 3.12, we obtain

ϕ((s5 + s−q)p(z,w)) = ϕ((s5 + s−q)p(Bw,Az))

≤ ϕ((α(Bw,Az)+ s−q)p(Bw,Az))

< ψ(p(z,w))

≤ ϕ(M(z,w))

< ϕ(p(z,w)),

a contradiction. It follows that p(z,w) = 0,which implies z = w, that is, A,B have a unique
common fixed point. This completes the proof. �

Example 3.14. Let G = [0,2], p(κ,τ) = max{κ2,τ2}+(κ − τ)2, s = 2, and q > 1. Define
mappings A,B by

Aκ =

{
κ

12 , κ ∈ [0,1]
κ

6 , κ ∈ (1,2]
,Bκ =

{
κ

14 , κ ∈ [0,1]
1
8 , κ ∈ (1,2]

.

We have

ABκ =

{
κ

168 , κ ∈ [0,1]
1

96 , κ ∈ (1,2]
,BAκ =

{
κ

168 , κ ∈ [0,1]
κ

84 , κ ∈ (1,2]
.

It is easy to show that p(Aκ,Bκ) ≤ p(κ,Aκ) for all κ ∈ [0,2]. Define mappings α : G×G→
[0,+∞) and α(κ,τ) = α(τ,κ) by

α(κ,τ) =

{
s5, κ,τ ∈ [0, 1

12 ]

0, otherwise
,

and
ϕ(t) = t,ψ(t) =

3t
4
,

p(κ,τ) = max{p(τ,Aτ),p(κ,τ),
p(τ,Bκ)+p(κ,Aτ)

2s
,

1+p(τ,Aτ)

1+p(Aτ,Bκ)
p(κ,Bκ),

1+p(κ,Aτ)+p(τ,Bκ)

1+ sp(κ,τ)+ sp(Aτ,Bκ)
p(κ,Bκ)},

Obviously, p(κ,τ) satisfies condition (p1
M) and p(κ,τ)> 0 for all κ 6= τ . For α(Bκ,Aτ)≥ s5,

one can see that Bκ,Aτ ∈ [0, 1
12 ], which implies that κ,τ ∈ [0,1]. It is easy to prove that (A,B)

is composite α−admissible. For κ,τ ∈ [0,2], letting δ (ε) = 8ε , we have

18p(Bκ,Aτ)≤max{κ2,τ2} ≤ p(κ,τ)≤ p(κ,τ)< ε +8ε,

which implies p(Bκ,Aτ) < ε

2 . It follows that Definition 3.3 is met about Theorem 3.13. Let
ξ ∈ Ξ be given by ξ (t,s) = 4s

5 − t. Now we consider the following cases:
For κ,τ ∈ [0,1], κ 6= τ , we have

p(Bκ,Aτ) = max{ 1
144

κ
2,

1
196

τ
2}+(

1
14

κ− 1
12

τ)2,

p(κ,τ) = max{κ2,τ2}+(κ− τ)2.
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Thus
4
5

ψ(p(κ,τ))−ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ))

≥ 4
5

ψ(p(κ,τ))−ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ))

≥ 3
5
(max{κ2,τ2}+(κ− τ)2)− (

4
9
+2−q−3 1

9
)(max{κ2,τ2})≥ 0.

For other cases, one can obtain α(Bκ,Aτ) = 0, which implies

ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ))≤ 2−q−1 1
9

max{κ2,τ2}.

Consequently,
4
5

ψ(p(κ,τ))−ϕ((α(Bκ,Aτ)+ s−q)p(Bκ,Aτ))

≥ 3
5

max{κ2,τ2}−2−q−1 1
9

max{κ2,τ2} ≥ 0.

In summary, all the conditions of Theorem 3.13 are fulfilled. Here, 0 is the unique common
fixed point of A,B.

Theorem 3.15. Let (G,p) be a complete partial b-metric space with parameter s ≥ 1 . Let
α : G×G→ [0,+∞) and A,B : G→G be given mappings. Suppose ϕ ∈Φ, ψ ∈Ψ, ξ ∈ Ξ and
q > 1. If the following conditions are satisfied:

(i) A,B are the generalized (α,ϕ,ψ)−Meir-Keeler hybrid contractive mappings of type II*,
where the inequality becomes to

ξ (ϕ((α(Bκ,Aτ))p(Bκ,Aτ),ψ(p(κ,τ)))≥ 0,

(ii) (A,B) is α−admissible mapping pairs,
(iii) there is κ0 ∈G with α(Aκ0,BAκ0)≥ s5,
(iv) properties (a’) and (b’) are satisfied,
(v) p(Aκ,Bκ)≤ p(κ,Aκ) for all κ ∈G,

then A,B have a unique common fixed point.

Proof. Since the proof of Theorem 3.15 is similar to that of Theorem 3.13, we also omit it. �

4. APPLICATIONS

In this section, we present the existence of solutions to an integral equation by means of one
of our results.

Consider the following integral equation

κ(l) =
∫ L

0
K(l,w,κ(w))dw, (4.1)

where l ∈ [0,L], L > 0 and K : [0,L]× [0,L]×R→ R. The aim of this section is to give an
existence theorem for a solution to the above integral equation by use of Theorem 3.8.

Let G=C[0,L] and define p : G×G→ R+ by

p(κ,τ) = sup
l∈[0,L]

|κ(l)− τ(l)|p +(max{ sup
l∈[0,L]

|κ(l)|, sup
l∈[0,L]

|τ(l)|})p.(p≥ 2)



SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS 19

It is obvious that (G,p) is a pb−complete partial b-metric space with s = 2p−1.
Consider the mapping A,B : G→G defined by

Aκ(l) =
∫ L

0
K1(l,w,κ(w))dw, and Bκ(l) =

∫ L

0
K2(l,w,κ(w))dw.

Let ξ : R×R→ R be a given function.

Theorem 4.1. Let A,B be self mappings on a partial b-metric space (G,p). Suppose the fol-
lowing hypotheses hold:

(i) K1,K2 : [0,L]× [0,L]×R→ R,
(ii) AG⊆ BG and BG is pb−complete,
(iii) ABκ = BAκ , whenever Aκ = Bκ for some κ ∈C[0,L],
(iv) there exists κ0 ∈G such that ξ (Aκ0(l),Bκ0(l))≥ 0 for all l ∈ [0,L],
(v) for all l ∈ [0,L] and κ,τ ∈G, ξ (Bκ(l),By(l))≥ 0 implies ξ (Aκ(l), Aτ(l))≥ 0,
(vi) properties (a), (b) and (c) are satisfied,
(vii) there exists a continuous function h : [0,L]× [0,L]→ R+ such that

∫ L
0 h(l,w)dw ≤ δ

(1
4 < δ ≤ 1),

(viii) for each u,v ∈ R, 0 < k < 1 and each l,s ∈ [0,L],

|K1(l,w,κ(w))−K1(l,v,τ(w)| ≤
p

√
k
s3 h(l,w)|Bκ−Bτ|

and

max{|K1(l,w,κ(w))|, |K1(l,w,τ(w)|} ≤
p

√
k

4s2 max{|K2(l,w,κ(w))|, |K2(l,w,τ(w)|}.

Then integral equation (4.1) has a unique solution u ∈C[0,L].

Proof. Define p(κ,τ) = M(κ,τ), ϕ(t) = t, ψ(t) = ςt, and ξ (t,s) = as− t, where (0 < ς ,a < 1)
and ςa = kδ . Meanwhile, define α : G×G−→ [0,+∞) by

α(κ,τ) =

{
s2, if ξ (κ(l),τ(l))≥ 0
0, otherwise

.

It is easy to prove that A is (B,α)-admissible and AG ⊆ BG and BG is pb-complate. For
κ,τ ∈G, by virtue of assumptions (i)− (viii), one see that there exists δ (ε) = ε such that

2sp(Aκ,Aτ) =2s( sup
l∈[0,L]

|
∫ L

0
K1(l,w,κ(w))dw−

∫ L

0
K1(l,w,τ(w))dw|p

+(max{ sup
l∈[0,L]

|
∫ L

0
K1(l,w,κ(w))dw|, sup

l∈[0,L]
|
∫ L

0
K1(l,w,τ(w))dw|})p)

≤2s sup
l∈[0,L]

(
∫ L

0
|K1(l,w,κ(w))−K1(l,w,τ(w))|dw)p

+(max{ sup
l∈[0,L]

|
∫ L

0
K1(l,w,κ(w))dw|, sup

l∈[0,L]
|
∫ L

0
K1(l,w,τ(w))dw|})p

≤ sup
l∈[0,L]

|Bκ(l)−Bτ(l)|p +(max{ sup
l∈[0,L]

|Bκ(l)|, sup
l∈[0,L]

|Bτ(l)|})p

≤p(Bκ,Bτ)≤ p(κ,τ)< ε + ε,
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which implies d(Aκ,Aτ)< ε

s . Then the condition (i) of Definition 3.7 is satisfied, and we also
have

s2p(Aκ,Aτ)

=s2 sup
l∈[0,L]

|
∫ L

0
K1(l,w,κ(w))dw−

∫ L

0
K1(l,w,τ(w))dw|p

+ s2(max{ sup
l∈[0,L]

|
∫ L

0
K1(l,w,κ(w))ds|, sup

l∈[0,L]
|
∫ L

0
K1(l,w,τ(w))ds|})p

≤s2 sup
l∈[0,L]

(
∫ L

0
|K1(l,w,κ(w))−K1(l,w,τ(w))|dw)p

+ s2 κ

4s2 (max{ sup
l∈[0,L]

|
∫ L

0
K2(l,w,κ(w))dw|, sup

l∈[0,L]
|
∫ L

0
K2(l,w,τ(w))dw|})p

≤s2 sup
l∈[0,L]

(
∫ L

0

p

√
κ

s2 h(l,w)dw)p sup
l∈[0,L]

|Bκ(l)−Bτ(l)|p

+
κ

4
(max{ sup

l∈[0,L]
|
∫ L

0
K2(l,w,κ(w))dw)|, sup

l∈[0,L]
|
∫ L

0
K2(l,w,τ(w))dw|})p

≤s2 sup
l∈[0,L]

(
∫ L

0

p

√
κ

s2 h(l,w)dw)p sup
l∈[0,L]

|Bκ(l)−Bτ(l)|p

+
κ

4
(max{ sup

l∈[0,L]
|Bκ(l)|, sup

l∈[0,L]
|Bτ(l)|})p.

By hypothesis (vii), there exists 1
4 < δ ≤ 1 such that

∫ L
0 h(l,w)dw≤ δ . Thus

s2p(Aκ,Aτ)≤ kδ ( sup
l∈[0,L]

|Bκ(l)−Bτ(l)|p +(max{| sup
l∈[0,L]

Bκ(l)|, | sup
l∈[0,L]

Bτ(l)|})p)

= kδp(Bκ,Bτ)≤ kδ p(κ,τ) = ςap(κ,τ) = ςaM(κ,τ),

so ξ (ϕ(α(Bκ,Bτ)p(Aκ,Aτ)),ψ(M(κ,τ))) ≥ 0. Therefore, all the conditions of Theorem 3.8
hold. As a result, A and B have unique point u ∈C[0,L], which is a solution to integral equation
(4.1). �

5. CONCLUSIONS

In this paper, we introduced the notions of generalized (α,ϕ,ψ)-Meir-Keeler hybrid con-
tractive mappings of type I and II via simulation functions, and gave the sufficient conditions
for the existence and uniqueness of common fixed points for such mappings in the framework
of complete partial b-metric spaces. Moreover, we provided examples that elaborated the use-
ability of our results. As an application, we presented the existence of solutions to an integral
equation.
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spaces, Appl. Set-Valued Anal. Optim. 4 (2022) 271-275.

[2] A. Azam, M. S. Shagari, Variants of Meir-Keeler fixed point theorem and applications of soft set-valued
maps, Appl. Appl. Math. 15 (2020) 256-272.

[3] E. Ameer, H. Aydi, H. A. Hammad, W. Shatanawi, N. Mlaiki, On (ϕ,ψ)-metric spaces with applications,
Symmetry 12 (2020) 1459.

[4] K. Aoyama, M. Toyoda, Fixed point theorem for a Meir-Keeler type mapping in a metric space with a
transitive relation, Transylv J. Math. Mech. 14 (2022) 1-9.
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