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Abstract. In this paper, we first introduce the concepts of generalized (o, @, y)-Meir-Keeler hybrid
contractive mappings of type I and II via simulation functions by triangular (B, ¢¢)-admissible and com-
posite ¢i-admissible mapping pairs. Next, we study the sufficient conditions for the existence of unique
common fixed point theorems for such mappings in the setting of complete partial b-metric spaces. Then
we also provide two examples to show the applicability and validity of our results. Finally, we present
an application to the existence of solutions to an integral equation by means of one of our results.
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1. INTRODUCTION

The Banach fixed point theorem [6], which is known as Banach contraction principle, is a
rewarding result in fixed point theory. It has widespread applications in both pure and applied
mathematics and been extended in various different directions. One of the most popular and
interesting topics among them is the study of new classes of spaces and their fundamental
properties.

In 2014, Shukla [24] introduced the concept of partial b-metric spaces and proved some fixed
point theorems of contractive mappings in partial b-metric space. After that, some authors
have researched on the fixed point theorems of various new type of contractive conditions in
partial b-metric space. Pant et al. [21] obtained a fixed point theorem which is the first Meir-
Keeler type solution. In [25], Choudhury and Chaitali proved a Meir-Keeler type coupled fixed
point results in metric spaces. Aoyama and Toyoda [4] provided characterizations of a Meir-
Keeler type mapping and a fixed point theorem for the mapping in a metric space endowed with
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a transitive relation. Aydi et al. [5] considered some Nemytzki-Edelstein-Meir-Keeler type
results and Debnath [9] presented some new set-valued Meir-Keeler, Geraghty and Edelstein
type fixed point theorems in b-metric spaces. Azam and Shagari [2] proved a Meir-Keeler type
common fixed point theorem for soft set-valued map and point-to-point mapping. The authors
[12, 14] introduced a-Meir-Keeler and generalized cx—Meir-Keeler contractions on Branciari
b-metric spaces. Gholamian and Khanehgir [15] introduced the notion of generalized Meir-
Keeler contraction mappings in the setting of b-metric-like spaces.

In 2022, Karapinar et al. [13] reviewed Meir-Keeler contraction mappings results on various
abstract spaces. Karapinar et al. [3] presented a fixed point theorem for generalized (¢, y)-
Meir-Keeler type contractions in the setting of generalized h-metric spaces. Mamud and Tola
[17] introduced the notion of generalized («, ¢)-Meir-Keeler hybrid contractive mappings of
type I and II via simulation function and established fixed point theorems for such mappings
in the setting of complete b-metric spaces. Jain et al. [10] introduced & — (@, B)-contractive
mappings in b-metric spaces. In [7], Cvetkovi¢ discussed the relation between F-contractions
and Meir-Keeler contractions in complete metric space. Salvador Romaguera and Pedro Tirado
[22] studied quasi-metric versions of the famous Meir-Keeler fixed point theorem from which
they deduced quasi-metric generalizations of Boyd-Wong’s fixed point theorem. Saiedinezhad
[23] established the Boyd-Wong type and Meir-Keeler type contractions in new generalized b-
metric spaces. For recent development on fixed point theory, we referto [1, 8, 11, 16, 18, 19, 20].

In this paper, motivated and inspired by [17, Theorems 4] and [20, Theorem 26], using trian-
gular (B, a)-admissible mapping and composite a-admissible mapping pairs, we introduce the
notions of generalized (o, @, y)-Meir-Keeler hybrid contractive mappings of type I and II via
simulation functions and studied the sufficient conditions for the existence of unique common
fixed point theorems for such mappings in partial b-metric spaces. Two examples are provided
to support our results. Finally, we give an application to the existence of solutions to an integral
equation by means of one of our results.

2. PRELIMINARIES
Firstly, we recall some definitions and lemmas in partial b-metric spaces.

Definition 2.1. ([24]) Let G be a nonempty set and s > 1 be a given real number. A mapping
p:G X G — [0,4o0) is said to be a partial b-metric if, for all x, 7,0 € G, s > 1, the following
conditions are satisfied:

(i) p(x,y) >0, k = tif and only if p(k, 7) = p(k, k) = p(7,7);

(i) p(x, &) < p(K,7);

(iii) p(k, 7) = p(7, K);

(iv) p(x,7) < s(p(x,v)+p(t,v)) —p(v,V).

The pair (G, p) is called a partial b-metric space. It is clear that the class of partial b-metric
spaces is larger than that of partial metric spaces.

Remark 2.2. Every partial b-metric p defines b-metric p*, where p*(k,7) =2p(k, T) —p(K, K) —
p(7,7).
Definition 2.3. ([19]) Let (G,p) be a partial b-metric space with parameter s > 1. Then a

sequence {k,} in G is said to be:
(i) convergent if and only if there exists k¥ € G such that lim, . p(k;,, k) = p(k, K);



SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS 3

(ii) a Cauchy sequence if and only if lim,, ;e P( K, K ) €Xists (and is finite).
A partial b-metric space is called complete if each Cauchy sequence in this space is conver-
gent to a point k € G such that limy, ;e P(%, &) = limy 00 P( K, K) = p(K, K).

Lemma 2.4. ([19]) A sequence {k,} is a Cauchy sequence in a partial b-metric space (G,p) if
and only if it is a b-Cauchy sequence in the b-metric space (G, p®).

Lemma 2.5. ([19]) A partial b-metric space (G,p) is pp-complete if and only if the b-metric
space (G, p*) is b-complete. Moreover, limy, p—sc0 p* (K, K ) = 0 if and only if

oJm_p (i, ) = lim p(ic:, ) = p(ic, x).

Definition 2.6. Let A and B be two self-mappings on a nonempty set G. Let C(A, B) denote the
set of all coincidence points of A and B. If w = Ax = Bk, for some k € G, then K is said to be
the coincidence point of A and B, where w is called the point of coincidence of A and B.

Definition 2.7. ([16]) Let f and g be two self-mappings defined on a nonempty set G. Then
f and g is said to be weakly compatible if they commute at every coincidence point, that is,

fex = gfk forevery k € C(f,g).

We also need the following lemmas to obtain our main results.

Lemma 2.8. ([19]) Let (G,p) be a partial b-metric space with parameter s > 1. Assume that
{K,} and {7,} are convergent to x and 7, respectively. Then,

1 1

S_zp(Ka T) - Ep(Kv K) _p(fv T)

< liminfp (1, %) < limsupp(ky, ) < sp(ic, ) +57p(7,7) +5’p(k, 7).
n—rco n—oo

In particular, if p(x,T) = 0, then we have lim,_, p(K;, T,) = 0. Moreover, for each v € G,

llo(rc,w —p(x, k) <liminfp(i,, v) <limsupp(i;,, v) < sp(x, V) +sp(k, k).
S n—oo N1—> 00

Furthermore, ifp(k, k) =0, then %p(l{, v) <liminf, e p(Ky, V) <limsup,_,.. p(K,, V) < sp(k, V).

Lemma 2.9. ([8]) Let (G,p) be a partial b-mertic space with parameter s > 1 and {x,} be a
sequence in G such that {p(K,, K,+1)} is non-increasing and limy,_,e p(Ky, K1) = 0. If {21 }
is not a Cauchy sequence, then there exist € > 0 and two sequences {my} and {n;} of positive
integers such that my > ny > k and four following sequences:

0 (K2my s Komg ) s (Ko s Komet1), P(K2me—15 Komg ) s 9 (Ko — 1, Kop+-1)

satisfy
€ < liminf p(Kom,, Kop, ) < limsup p(Kopm, , K2p, ) < SE,
k—roo k—yo0

.. . 2
< h]glnf p(Kka7 K2nk—|—l) < lll’l’lSllp p(K2mka K2nk+l) <s%€,
o k—o0

< liminf p(Kom—1, Kop,) < limsup p(Kom,—1, Kon,) < SE,
k—yeo k—>oo
and

&€ .. . 2
— <liminf p(Kopmy—1, Kang+1) < limsup p(km—1, Ko +1) < 57€.
S k—boo k—ro0
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3. MAIN RESULTS

In this section, we establish some results for the existence of common fixed points of gener-
alized weakly contractive mappings in the setting of complete partial b-metric spaces.

Let ® denote the class of the functions @ : RT — R satisfying the following conditions:

(1) ¢ is non-decreasing,

(2) @ is continuous,

(3) ¢(t) =0 if and only if r = 0.

Let W denote the class of the functions ¥ : R™ — R satisfying the following conditions:

(1) w(r) < o(t) forallt € RT,

(2) v is upper semi-continuous.

Let Z denote the class of the functions & : RT x RT — R satisfying the following conditions:

(1) £(0,0) =0,

(2) E(t,s) <s—tforallz,s > 0.

Let (G,p) be a partial b-metric space with s > 1 and A, B be two self-mappings on G. We
define a mapping M : G x G — R by
M(x.7) = max{p(Bx. Bv), (A, Bx),p(at, Br), PATBK) LPAKET)

p(AKk,BKx)p(At,BT) p(AK,BK)p(AT,BT)
1+p(Ak,AT) = 1+p(Bk,Bt)
1+p(Ax,Bt) + p(BK,AT)
1+ sp(Ax,Bx) + sp(At,BT)

Let p: G x G — R™ be a mapping. The following conditions are be used in this section:

(P}) x # 7 and p(Ak, Bx) < p(Bxk,Bt) imply p(k,7) < M(x,7);

(PE) Komy, # Komg+1 and limy_eo SUP P (A Koy, BKom, ) < 1img—seo SUpP(B K2y, BK2y, +1) imply
P(Komy s Komp+1) < MKy, Kogt1)-
Definition 3.1. Let (G,p) be a partial b-metric space with parameter s > 1, and let A,B :
G — G, a:GxG — [0,400) be given mappings. The mapping A is said to be triangular
(B, )—admissible if, for all k,7,v € G, the following conditions are satisfied:

(1) a(Bk,Bt) > s? implies o(AKk,AT) > s%;

() a(k,7) = a(t,x);

(3) a(x,7) > s? and a(7,Vv) > s? imply a(k, V) > 5%

p(AK,BK)}.

Remark 3.2. For p(x, k) = 0,Vk € G, the definition reduces to the definition of a triangular
(B, o) —admissible mapping in a partial metric space.

Let (G,p) be a pp-complete partial b-metric space with parameter s > 1 and let ¢ : G x G —
[0,+0c0). Then,

(a) If {AK,—1} is a sequence in G such that Ak;,,_| — z as n — oo, then there exists a subse-
quence {Ak;, 1} of {Ax, |} with a(Ak;,_1,z) > s* forall i € N.

(b) If {AK,—1} is a sequence in G such that Ak;,,_| — z as n — oo, then there exists a subse-
quence {Aky,,—1} of {AK,_1} with (AK;,—1,Az) > s* for all k € N,

(¢) For all z,w € C(A,B), a(z,w) > s%.

Definition 3.3. Let A, B be two self-mappings on a partial b-metric space (G,d) and & € E.
Suppose that p : G x G — R* is a function that satisfies (P},) and (Pg). Then A, B are said to
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be the generalized (o, ¢, y)-Meir-Keeler hybrid contractive mappings of type I if the following
conditions are satisfied:

(i) for any € > 0, there exists 8(¢) > 0 such that k¥ # 7 and p(k,7) < €+ 6(€) imply
p(Ax,AT) < &

(i) k # 7 and p(k,7) > 0 imply & (@ ((a(Bk,Bt)+s 9)p(AK,AT)), y(p(K,7))) > 0, where
ped, ye¥, & cEandqg > 1isaconstant.

Remark 3.4. If A,B are the generalized (a, @, y)-Meir-Keeler hybrid contractive mappings
of type I, p(Ak,At) > 0, then @((ot(Bx,B7)+ s 9)p(Ax,A7)) < y(p(k,7)) < @(p(K,7)) <
(M(x,1)).

Proof. If p(x,7) = 0, from Definition 3.3, we have p(k,7) < €+ 6(¢€) for any € > 0, which
implies 0 < p(Ax,At) < £. But € > 0 is arbitrary. Thus p(Ak,At) = 0. We consider p(k,7) >
0, and p(Ak,At) > 0. In this case, according to the nature of the function £ and Definition 3.3,
we have

0 < E(@((a(Br, BT) +5~)p(AK,AT)), y(p(K, 7))
< ¥(p(k,1)) — ¢((a(BK, BT) +5~9)p(AK,AT)).
This completes the proof. U

Theorem 3.5. Let (G,p) be a complete partial b-metric space with parameter s > 1 and let
o:GxG —[0,40), A,;B: G — G be given mappings and A(G) C B(G). Suppose ¢ € P,
v e, & eEandq> 1. If the following conditions are satisfied:

(i) A, B are the generalized (o, ¢, y)—Meir-Keeler hybrid contractive mappings of type I,

(ii) A is a triangular (B, &) —admissible mapping,

(iii) there is Ky € G with a(Axy, Bkp) > 52,

(iv) properties (a), (b) and (c) are satisfied,

(v) B(G) is complete and (A, B) is weakly compatible,

then A, B have a unique common fixed point.

Proof. By (iii), there exists ko € G such that at(Akp, Bky) > s2. Define two sequences {k; } and
{t,} in G by 1, = AK;, = BK;,+1 for all n € N. If p(7,, T,+1) = 0 which implies 7, = 7,41 for
some n € N, then 7, = BK,, 11 = AK,1+1 = T,+1 and it is easy to see that A and B have a point of
coincidence. Without loss of generality, we assume that p(7,, T,41) > O for all n € N. By the
condition (ii), we have

o(Bxy,Bk]) = a(Bkp,AKp) > 52,

a(Bx1,Bio) = a(AKy,Aky) > 5%,
and

a(Biy, Bk3) = ol(AK),AKy) > 2.
Therefore, by induction, we obtain &(BK, 1,Bk,2) = &t(Ty, Ty 1) > s> for all n € N. It follows
from Definition 3.1 that a(BK,,; 1, BKy41) = 0(Ty, Tn) > s° for all n,m € N.

Now, we show that {p(7,,T,+1)} is monotone decreasing. Since
p(TnJrlaTn) = p(AKn+1:BKn+1) = P(BKn+1,BKn+2),
we have
P(Knt 15 Kn+2) < M(Knt1, Knt2)
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by (PA14), where

M (K41, Kni2)
=max{p(BKyt1,BKn12), P(AKyt1,BKny1), P (AKyt2, BKnt2),
p(AKn+27BKn+1) +p(AKn+laBKn+2)
2s ’

P(AKy1,BKy1)p(AKyt2,BKat2) P(AKy 41, Bk 11)P(AKy 2, B, 42)

1+p(AKn+17AKn+2) ’ 1+p(BKn+laBKn+2)

1+ p(AKnJrl 7BKn+2) + p(BKnJrl 7AKn+2)

1 +Sp(AKn+laBKn+l) +Sp(AKn+27BKn+2)

P(Thr2, Tn) + (Tt 1, Tt 1)
2s ’

Y

p(AKut1,BKnt1)},

:max{p(fn7 Tn+1)7p(fn+lyfn)ap(fn+27 Tn+1)7

P(Tut 15 T)P (Tnt2s Tut 1) P(Tat1, Tn)P(Tus2, Tas1)
1+p(fn+17Tn+2) ’ 1+p(Tn+l7Tn)
1+ p(Tus1, Tatr1) +P(Tn, Tus2)
1 +Sp(Tn+1 ) 7}1) +Sp(fn+2; Tn—i—l)
By (i) and Remark 3.4, we see that

O(P(Tpt1,Thr2)) = O(P(AKpt1,AK42))
< o((a(BKyy1,BKni2) +5 )p(AKyy1,AK12)) (3.1)
<Y (p(Knt1, Knt2)) < Q(M(Kni1, Kni2)).-

If M(Kpt1, K1) = P(Tut1, Tug2), we find by (3.1) that @(p(Tpr1, Tur2)) < @(P(Tut1,
T,+2)), which yields a contradiction. So, M (K41, Ky+2) = P(Tn, Tyt1). We deduce

PP (Tut1, Tr2) < @(P(Tuy Tust1))-

Since ¢ is non-decreasing, we see that p(T,+1, Tp+2) < P(Tu+1,Tn). Therefore, {p(Ty, Th+1)} is
a decreasing sequence, and limy,_,c P(Ty, Ty+1) = p > 0. Let € = p > 0. One can choose a N.
When n > N, there exists p = € < p(Ty, Ty+1) < €+ 8(€), and it follows that p(k,+1, Ky+2) <
M(Kn+1, Knt2) = P(Tu, Tt 1) < €+ 6(€), which implies p(AKy+1,AKy+2) = P(Tut1, Tur2) < 5,
thatis, € <p(Tuy1,Tus2) < £. This is a contradiction. It follows that lim,, e p( Ty, Tyi1) = p =0.

We next prove that {7,} is a Cauchy sequence in the partial b-metric space (G,p). Suppose
that is not true. Then, using Lemma 2.9, we see that exists € > 0 and two sequences {n;} and

{ni} of positive integers such that m; > n; > k and the four following sequences

Y

P(Tur1, Tn) } = max{p(Tu, Tor1), P(Tus1, Tat2) -

p(szku Tan)ap(T2mk7 Tan+1)ap(T2mk71 9 T2nk) ) p(Tkafl ) TanJrl)
satisfy
€ <liminf p(Tom,, T2, ) < limsup p(Tom,, Ton,) < SE,
k—oo k—so00

< hlggmf 9 (T, T2n+1) < Hmsupp(Tom,, Tan 1) < 87€,
o0 k—>oo

< liminf p(Tom—1,T2n,) < imsupp(om—1, T2n,) < SE,
k—yoo k—so0
and

€ .. . . 2
2 S hlgf_l}nf P(T2m—1, Tamg+1) < imsupp(Tam—1, Tan+1) < S7€.
*° k—ro0
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Let K = Kom,, T = Kon,+1 and K # 7. One can deduce that p(AKo, , BKom,) = P(T2m; Tome—1)
and p(BKom, , BKon,+1) = P(Toame—1, T2n,)- It follows that

lim supp (A Kka ) BKka) < lim Supp<BK2mk ) BKan-I—l)
k—roo k—yo0

which implies p(&om,, Kon+1) < M(Komy, Kon+1) by (PAZ/I), where
M(szw Kan-i-l) = max{p(BKka7BK2nk+l)7p(A szk7BK2mk)7p(A Koni+1 7BK2"1<+1)7
p(AKon 11, BKom, ) + P(AKoy , BKop 1)
2s ’
p(AKka7BK2mk)p(AK2nk+lvBK2nk+l)
1 +p(AK2mk,AK2nk+1)
p(AKka7BK2mk)p(AK2nk+17BK2nk+l>
1 +p(BK2mkaBK2nk+l)
1+ p(AKZWZk’BKZkaLI) + p(BK2mk’AK2nk+1)
1+sp(A K2my» BKka) +sp(A K2ny+1 7BK2n/<+1)
= max{p(Tka*I’ TZ"k)’p(TZWZk’ szkfl)v

P (o1, T 1) + BT
p<T2nk+17T2nk)» ( My Mk 5e ( My ”k)’

p(szk’ T2my—1 )p(T2”k+1 ) Tan) p(T2mk7 Tomy—1 )p(T2nk+1 ) T2Vlk)
1 +p<12mk’€2nk+]) ’ 1 +p(T2mk_1’Tznk>
L+ p(Tomy, T, ) + P(Tome—1, Tong+1)
14 59(T2m;» Tame—1) + SP(Ton+1, Tan,
Taking the upper limit as k — oo, one can obtain

limsup @ (M (Ko, Kang 1)) =@ (M SUP M (K Koy 41))
k—>°° k—>oo

Y

Y

p(Aszk7BK2mk)}7

>P(szk,fzmk—1)}-

2
£ €
S(p(max{se,0,0, %70,070}) = ¢(S8)'
\Y

In view of Remark 3.4 and &(Bxoy,, BKon,+1) = Q(Tom—1,Ton,) > s%, we arrive at

O((* + 5™ (Tamg> Tam+1))

= @((s> +57)p(Akam, Al 1))

< @((a(Bxomy, Bkop1) + 5~ 1) p(Akom,, Ao 1))

< Y(p(Komy Komgr1)) < @M (K, Kongv1))
where

@(Sg +S_q_le) S limsup ¢((S2 + S_q)p(rzmka TanJrl)) = (P(hmsup(sz +S_q)p(T2mk7 TanJrl))-
k—ro0 k—>o00

Letting k — oo, we obtain @ (s + s~ 97 '¢) < @(s¢), which is impossible. This shows that {1,,}
is a Cauchy sequence and hence {7,} is a Cauchy sequence both in (G,p) and in (G,p*).
Since (G, p) is complete if and only if (G,p*) is b-complete, and there exists z € G such that
limy, ;500 P(Tn, Tm) = limy 0o (T4, 2) = P(2,2), or equivalently limy, ;00 p*( Ty, T) = 0. More-
over, in view of p*(T,, Ty) = 2p(Tu, Tm) — P(Tn, Tn) — P(Tim, Tm) and limy, e P( Ty, Tys1) = 0, We
have limy, ;00 P( Ty, Tn) = 0. It follows that lim,; j—yeo P( T, Tn) = limy—yee P(Tn,2) = p(z,2) = 0.
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Since 1, — z, {AK,} and {Bx,4+} converge to z. Assume that B(G) is complete. Then
there exists u € G such that z = Bu. We next show that z = Au. On the contrary, we as-
sume that p(z,Au) > 0. First of all, from condition (a), we can choose a subsequence {k,_1 }
of {K,_1} such that {AK, 1} — z with ot(BKy,,z) = @(Aky,_1,2) > s°. Letting k = kK, T =
u and x # 7, we have lim; . supp(AKy,, Bk,,) = 0 = lim; .. supp(BKy,, Bu), which implies
p(Kn;,u) < M(Ky;,u) by (P%), where

p(Au, BKy,) + p(AK,,, Bu)
2s ’

M (%, u) = max{p(Bx,,,Bu),p(A%,,, Bx,,),p(Au,Bu),
p(AKy,, By, )p(Au,Bu) p(AKy,, By, )p(Au, Bu)
1+ p(Ax,,,Au) 1+ p(BKy,,Bu)

1 +p(Ax,,, Bu) + p(BK,,,Au) p(A . B )b,
1+ sp(AK,,, BK,,) + sp(Au, Bu) ’ ’

Y

3.2
p(Auvrni—l)—i_p(Tnin) ( )

2s ’

= max{p(fn,‘—l 7Z>7p(fn,<7 Tni—l)vp(Auvz)v

p(Tnm Tn,-fl)p(A”aZ) p(Tn,-a Tn,-fl)p(A”aZ)
1+p(Tni,ALl) , 1+p(fn,~—l7z)

1+P(Tn,~,Z) +p(Tni—laAu)

14+ sp( T, Tn;—1) +5p(Au,z

)p(TnHTni_])}'

According to Remark 3.4, we have

(s> +5)p(AKy, Au)) < @((0(BKy,, Bu) +5~)p(AK,, Au))

< Y(p(Ky,u)) < @(M(Ky,,u)). (3.3)

Taking the upper limit as i — oo in (3.2) and (3.3), we obtain
limsup @ (M (k) =@(lim sup M (i, )

sp(Au,2)
2s

g(p(maX{0,0,p(Au,z), 707070}) = (P(p(Au’Z»v

O((s+5~7p(z.Au)) < limsup @((s* +s™9)p(AK;,, Au)

[—yoo
= p(limsup(s> +5~)p(AK, Au),
i—3o0
and

o((s+3577")p(Au,2)) < 9(p(Au,2)),

which is a contradiction. Therefore, p(z,Au) = 0 implies Au = z = Bu.

Since (A, B) is weakly compatible, one has Az = ABu = BAu = Bz. Next, we prove that Az = z.
On the contrary, we assume that p(z,Az) > 0. Similarly, by condition (b), we can also obtain a
subsequence {k;, 1} of {x,—1} such that {Ax,, 1} — z with a(BK,,,Bz) = 0(AKy,—1,Az) >
52, Letting kK = K, T =z and kK # 7, one can deduce

lim supp(AKy, , BKy,) = 0 < lim supp(BK,,Bz).
k—roo k—roo
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It follows that p(Ky,,z) < M(ky,,z) by (P), where

p(szBKnk) +p(AKnkaZ)
2s ’

M (K, ,z) = max{p(B%,,,Bz),p(AKy,, Bk, ),p(Az,Bz),
p(AKy, , BKn )p(Az,Bz) p(AKy,, BKn)p(Az, Bz)
1+ p(AKy,,Az) ’ 1+ p(BKy,,Bz) ’

1+ p(AKy,,Bz) + p(BKy,,Az)
A T 7B n )
1+Sp(AKnkaBKnk)+Sp(AZ7BZ)p( Kk Kk)}

— max{p(5y_1,A2), (5, T 1), (A2 AL). p(Az, rnk_lgjp(rnk,Az) | (3.4)
P(Tugs T~ 1)P(AZ,A2) (T, T, 1)P(A2,A2)
L+p(tw,Az) 7 14p(Ty—1,B7)
o oA )
According to Remark 3.4 again, we have
O((s” +579)p(AKy, A2)) < @((at(By, Bz) +5)p(AKy,, Az)) 3.5)

<Y (p(Kn,2)) < @(M(K,2)).-
Letting kK — o0 in (3.4) and (3.5), we obtain

o((s+5777)p(z,Az)) < limsup @((s” +5~)p(AKy,,Az)),

k—soo

limsup @(M(Ky,,z)) =@(limsupM (K, ,z))

k—ro0 k—>o00
<¢@(max{sp(Az,z),0,p(Az,Az),
=0(sp(Az,z)),

sp(Az,z) +sp(z,Az2)

2S 70707 0})

and

O((s+577)p(Az,2)) < 9(sp(Az,2)),
a contradiction. Hence, p(z,Az) = 0 and this implies Az = z = Bz. That is, A, B have common
fixed point z.

Suppose on the contrary that there exists another common fixed point w of A and B. By
condition (c), we can also get &t(w,z) > s°. Letting k = z, T = w and k # T, we have p(Az, Bz) =
0 < p(Az,Aw) = p(z,w), which implies p(z,w) < M(z,w) by (P},), where M(z,w) = p(z,w).
Meanwhile, in light of Remark 3.4, we obtain

(s> +s5~Np(z, )) (s> +57)p(Az,Aw))

(

@((0t(Bz, Bw) +s~1)p(Az,Aw))
v(p(z,w)) < o(M(z,w))
<<p<p(z,w>>,

which is a contradiction. Therefore, p(z, w) = 0 implies z = w, and A, B have a unique common
fixed point. U
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Example 3.6. Let G = [0,2], p(k,7) = max{k?, 7>} + (k—7)?, s =2 and ¢ > 1. Define

mappings A, B by
A — 16> k€[0,1] Bre— 5 K €[0,1]
5 ke fa xe(12]

Since ABO = BAO = 0, (A, B) is weakly compatible. It is clear that A(G) C B(G) and B(G) is
complete. Define mappings & : G x G — [0, +c0) and a(k,T) = o(7, k) by

2 k,1€]0,1
a(K,T):{S, Y [72]7

0, otherwise

—

o(t)=y(t) =t,and
p(At,Bx)+p(AK,B7)
2s ’
p(Ax,Bx)p(At,Bt) 1+p(Ax,BT)+p(BK,AT)
1+p(Ak,AT) ' 1+sp(Ak,BK)+sp(At,BT)

p(x.7) = max{p(Bi, BT), p(AT, BY),

p(AK,BK)},

First, we note that p(K‘ 7) satisfies condition (P, ) and p(x,7) >0forall K # 7. For k,7 € G
such that &t(Bk, Bt) > 5% , we see that Bk, Bt € [0, 3], which implies that k, T € [0, 1]. It follows

that ot(Ak,At) > 52, since Ax,Bt € [0, 1 >), that is, A is a triangular (B, &) —admissible mapping.
For K, 7 € [0, 1], we choose §(¢) = 158. Then

32
32p(Ak,AT) < 1—28max{1€2 2} = maX{K 7%}
< p(Bx,B7) < p(K, r) < e+ 15¢,
which implies p(Ak,At) < £. For k € [0,1], T € (1,2], letting §(¢) = 1€, we have

6 , T° 1 1
Ak AT) < — — — Bx.,Bt) <
3p(AK,AT) < 64T _16+8+ <p(Bx,Bt) < p(K‘T)<8—|—28

which implies p(Ax,At) < §. For k € (1 2], T € [0, 1], taking §(¢&) = 1€, we deduce

6 2_ 1 1
3p(Ak,AT) < — — — Bx,B =

which implies p(Ax,At) < 5. For k,7 € (1,2], setting 6 (&) = %8, one can obtain
T K

6 2 2 K K 2
< < R A
3p(AK,Ar)_64max{1< T }_max{(4+4) 7(4%—4) }

1
<p(Bx,Bt) < p(k,7) < €+ 7%
which implies p(Ax,A7) < §. Then condition (i) of Definition 3.3 is met about Theorem 3.5.
Let £ € E be given by & (¢,s) = % —t. Now we consider the following cases. For k,7 € [0, 1],
K # T, we have

: (K_ T)zv

1 2
— max{Kk%,T }+256

p(AK,AT) = %6

and . .
p(Bx,BT) = Zmax{xz,rz} + Z(K’— 7)2,
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Thus
v(p(k,7)) — o((a(Bx,Bt) +5 7)p(AK,AT))

>>¥(p(Bx,BT)) — ((a(BK, BT) + 5 9)p(AK,AT))

—_— W N WD

:g(max{xz, 2} 4+ (k—1)%) - (6i4 +27978) (max{x?, 72} + (k — 7)%) > 0.

For other cases, we obtain &(Bk,Bt) = 0, which implies ¢((a(Bx,Bt) +s 9)p(Ak,AT)) <
27973 max{ k2, 72}. It follows that

20(p(x, 1) ~ 9((a(Bx, BY) 5~ )p(AK A7)

7
Z%maX{Kz, 72} =279 (max{x?, *} + (k — 7)?) > 0.

To sum up, all conditions of Theorem 3.5 are satisfied. It is obvious that O is the unique common
fixed point of A, B.

Definition 3.7. Let A, B be two self-mappings on a partial b-metric space (G, p) and & € E. Sup-
pose that p : G x G — R™ is a function that satisfies (P},) and (P%). Then A, B are said to be
the generalized (a, @, y)-Meir-Keeler hybrid contractive mappings of type I* if the following
conditions are satisfied:

(i) for any &€ > 0, there exists 6(€) > 0 such that k¥ # 7 and p(k,7) < € + d(€) imply
p(Ax,AT) < &

(i) k # 7 and p(x,7) > 0 imply &(@((a(Bx,B7))p(AK,AT)), ¥(p(k,7))) > 0.

Theorem 3.8. Let (G,p) be a complete partial b-metric space with parameter s > 1 and let
0:GxG —[0,40), A,B: G — G be given mappings and A(G) C B(G). Suppose ¢ € P,
v € Wand & € E. If the following conditions are satisfied:
(i) A, B are the generalized (&, @, w)—Meir-Keeler hybrid contractive mappings of type I*,
(ii) A is a triangular (B, a)—admissible mapping,
(iii) there is Koy € G with a(Aky, BKkp) > 5%,
(iv) properties (a), (b) and (c) are satisfied,
(v) B(G) is complete and (A, B) is weakly compatible,
then A, B have a unique common fixed point.

Proof. Since the proof of Theorem 3.8 is similar to that of Theorem 3.5, we omit it. UJ
If B=Ig and p(k, k) =0, for all ¥ € G in Theorem 3.8, we have a corollary.

Corollary 3.9. Let (G, p) be a complete b-metric space with parameter s > 1. Let o : G X G —
[0,4c) and A : G — G be given mappings. Suppose & € E. If the following conditions are
satisfied:

(i) A,B are the generalized (o, 9, W)—Meir-Keeler hybrid contractive mappings of type I*,
where the inequality becomes to

S(a(x,7)(p(AK,AT)), w(p(K,1))) >0,
(ii) A is a triangular o.—admissible mapping,
(iii) there is Ky € G with a(ky,AKy) > 52,
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(iv) A is continuous,

(v) properties (a), (b) and (c)(for all z,w € Fix(A), we have the condition of a(z,w) > s?) are
satisfied,
then A has a unique fixed point.

Letp: G x G — R be a mapping. The following conditions are used in the following part:
(Pin) K # T and p(k,Bk) < p(x,T) imply p(k, 7) < M(k,7T);
(B3) Komg 7 Kongr1 and limy_ oo SUP P (K1, BKop 1) < limye0 SUP P (K1, Ko, ) imply
P (K215 Komy) < IM(Kopt15 Komy)-
p(7,Bx) +p(K,AT)
2s ’

p(7,AT),

M(x,7) = max{p(7,A7),p(K,BK),p(K,T),

1+p(7,A7T)
1+p(AT,BK)p(K’BK)’
1+ p(x, A7) + p(z, BK)
1+sp(x,7)+sp(At,BK)

Definition 3.10. Let (G,p) be a partial b-metric space with parameter s > 1. Let A,B: G —
G and o : G x G — [0,+o0) be given mappings. The pair (A,B) is said to be composite -
admissible if, for all k,7,v € G, the following conditions are satisfied:

(1) a(Bx,At) > 5° implies o(ABK,BAT) > 5°;

2) o(x,7) = a(t,x);

(3) ok, ) > sPand (T, V) > s° imply a(k,v) > s°.

1+ p(x,Bx)
1+p(x,7)

p(x,Bx)}.

Let (G,p) be a pp-complete partial b-metric space with parameter s > 1 andlet ¢ : G x G —
[0, +c0). Then,

(d') if {Bxy,+1} is a sequence in G such that Bky, 1 — z as n — oo, then there exists a
subsequence {Bky,+1} of {Bkant1} with a(Bky,+1,Az) > s> forall i € N.

(b) for all z,w € C(A,B), we have a(z,w) > s°.

Definition 3.11. Let A, B be two self-mappings on a partial b-metric space (G,p) and & € E.
Suppose that p : G x G — R" is a function that satisfies (P};) and (B3,). Then A,B are
said to be the generalized (o, @, y)-Meir-Keeler hybrid contractive mappings of type II if the
following conditions are satisfied:

(i) for any € > 0 there exists 6(€) > 0 such that k¥ # 7 and p(x,7) < €+ d(€) imply
p(Bx,AT) < &

(ii) K # 7 and p(K, 7) > 0 imply & (¢((a(Bk,At)+s 9)p(Bk,AT), ¥ (p(K,7))) > 0.

Remark 3.12. If A, B are the generalized (&, ¢, y)-Meir-Keeler hybrid contractive mappings
of type II, p(Bx,AT) > 0, then

¢((a(Bx,AT)+5 )p(BK,AT)) <y (p(K, 7)) < @(p(k, 7)) < @(M(K, 7).
Proof. The proof is similar to that of Remark 3.4. U

Theorem 3.13. Let (G,p) be a complete partial b-metric space with parameter s > 1. Let
o:GxG—[0,+)and A,B: G — G be given mappings. Suppose ¢ € ®, w € ¥, & € B, and
q > 1. If the following conditions are satisfied:

(i) A, B are the generalized (@, @, w)—Meir-Keeler hybrid contractive mappings of type II,
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(ii) (A, B) is composite a—admissible,

(iii) there is Ky € G with a(Axy, BAky) > §°,

(iv) properties (a') and (b') are satisfied,

(v) p(Ax,Bx) < p(Kk,Ax) forall x € G,
then A, B have a unique common fixed point.

Proof. Tt follows from condition (iii) that there exists k) € G such that a(Aky, BAky) > s°.
Define the sequence {k,} in G by K11 = AKay, K212 = BKopt1 for all n € N. By the condition
(i1), we obtain

a(Bxi,AKy) = o(AKy, BAKy) > 5°,
o(Bxki,AKy) = a(ABx), BAKy
o(Bk3,AKy) = a(BAK>,ABK]

>,

~—  —

Zss,

By induction, one can obtain &(BKa,1,AKy,) = Q(Kani1, Kani2) > §° for all n € N. In view
of Definition 8, we have a(BKay1,AK2,) = 0(AKyn, BKomy1) = A(Kany1, Kamy2) > s° for all
n,m € N. If p(k2,41, Kant2) = 0 for some n € N, we deduce that k3,11 = Ko,42. It follows that
we assert that K3,,12 = K>p+3.

On the contrary, we assume that

P(K2nt2, K2043) = P(AKony2,BK2p 1) > 0.

According to p(k2+1,BKon+1) = P(Kan+1, Kont2), we have p(kay+1, Kopt2) < M(Kopt1, Kant2)
by (By), where

M(Kant1, K2nt2)
= max{p(Kon42,AK21+2), P(Kon41,BK2041), P(Kons1, K2ns2),
p(K2nt2,BKons1) + P (K2n41,AK2042)
2s ’
1+ p(K212,AK242)
1 +p(Ak2n42,BKony1
1+ p(Kont1,BKon+1)
1+ p(K2nr1, K2n12)
1+ p(K2nr1,AK2042) +P(K2n 12, BK2ny1)
1+ sp(Kont1, Kon+2) +5p(AK2n+2, BKan 1
= max{p(K2n+2, K2043): P(K2nt1, K2n42)» P(K2nt 1, Kont2),
P(Kon+2, Kont2) + P(K2n i1, K20t 3)
2s ’
1+p(Koni2, K2ni3) 1+ p(K2nt1, K2nt2)
1+ p(K2013, K2n+2)p "1+ p(Kong1, Kong2)
1+ p(K2n+1, K2n+3) + P(Kont2; Kant2)
1+ 5p(Kopg 1, Kons2) + 59 (K2ni3, Kons2
= p(K2042, K2043)-

)P(Kan,BKan),

p ( K2n+2, A K2n+2) 3

)P(K2n+1,BKzn+1)},

(K241, K2nt2) P (K42, Kont3),

)P(Kznﬂ, Kont2)}
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In light of (i) and Remark 3.12, we deduce
P (p(K2ni2, K2n43)) = Q(P(BKoni1,AKon42))
< o((a(Bkany1,AKn12) +5 )p(BKont1,AK242))
< Y(p(Kont1, K2ns2))
< o(M(K2nr1, K2n12))
= @(p(K2nt2, K2nt3)),
which gives a contradiction. So, p(Kzn42, K2n+3) = 0 which implies k2,43 = Kapt2 = Kont1s
that is, A and B have a point of coincidence.
Without loss of generality, we assume that p(k;,, K,+1) > 0 and n =even. Now, we show that
the sequence {p(72,, Ton+1)} is monotone decreasing. Since p(Kan—1,BKon—1) = P(Kon—1,Kon)s
we havet ]J(K'zn_l, K'zn) < W(Kzn_l, K'zn) by (‘Bflm), where

m(’anl; K-Zn) - maX{p(KZn;AKZn)ap(K2nflaBK2n71)7p(K2nfl7 KZn)a
p(K2n, BKop—1) +p(K2n—1,AK2)
2s ’
1—|—p(K2n,AK2n)
1+p(AK2n,BK2n,1)
1 +p(K2n—1,BK20-1)
14+ p(K20—1,K2n)
1 +p(K2n—1,AK2,) 4+ p(K20, BK2y—1)
1+ 5p(Kon—1, Kon) + 5P (AK2y, BKop—1
= max{p(Kan, K2n+1), P(K2n—1,K20), P(K2n—1, K20),
p(KZn; KZn) +p(7<2n—17 K2n+1)
2s ’
1+ p(K2n, Kons1) 1+p(K2n—1,K2n11)
1+p(K2n+17K2n) 1+p(K2n717K2n)
1+p(Kon—1, Kong1) + P(Kon, K2n)
1+ 5p(Kon—1, Kon) +5P(K2n+1, Kon
= max{p(Kau, K2n+1), P (K2n—1,%20) }-
According to condition (i) and Remark 3.12 above, we obtain
O(p(Kan, K2nt1)) = Q(P(BK2n—1,AK2,))
< (p((OC(BKZn—laA’Qn) +S_q)p(BK2n—1,AK2n)) (3.6)
< W(p(Kanla K-211) < (P(m(Kanla KZn))-

Since M(Kan—1,K20) = Max{Pp(Kan, K2nt1),P(Kon—1,K2)}, if M(K2n—1,K20) = 9(K20, K2041),
we find by (3.6) that @ (p (K2, K2nt1)) < @(p(Kan, K2n+1)), @ contradiction. Thus, M (kz,—1, K2p)
= p(Kznfl, Kzn), and (p(p(K'zn, K2n+1)) < (p(p(Kzn,h K'zn)). It follows that

p(KZI’U K'2114-1) < p(KZn—la KZn)-

Similarly, one obtains p(Ky, 1, Kont2) < P(Kon, Kont1). Hence, {p(Ky,, K,+1)} is a decreasing
sequence. Set limy, e P(Ky, K1) = p* > 0.

p(x2—1,BKn—1),

p(KZn:AKZn)a

)P(Kzn—hBKzn—l)}

p(K2n—1,K2n), p(K2n, Kont1),

)p(K2n—17 KZn)}
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Put € = p* > 0. It follows that there exists N such that p* = € < p(Ky, K,41) < €+ 0(€),
when n > N. Hence, p(koy—1,K2,) < M(Kkop—1,K0n) = p(K2n—1,Km) < €+ 6(€), which im-
plies p(Axpy, BKayy1) = P(Kani1, Kong2) < £. Consequently, &€ < p(Kan, Kopy1) < £, which is
impossible. Therefore, lim,, . p( Ky, K;41) = p* = 0.

Next, we present that {x;,} is a Cauchy in (G,p). Suppose that is not true. By Lemma 2.9,
we obtain that there is € > 0 and two sequences {my } and {n;} of positive integers such that
my > ng > k and

% < li]gio{}f P (Komy, Komp 1) < ligl_iljp P(Kamys Kong1) < s°€.
Taking T = Ko, K = Kop+1 and K # 7, we have p(Kop, +1,BKon+1) = P(Kon+1, Kon+2) and
1imy oo SUP P (K21, BKomg+1) < 1imyyoo SUPP(Kapy+-1, K2, ) Which implies p(Kan,+1, Kom, ) <
M (K241, Kom, ), Where
m(KZHH—lv Kka) = max{p(szwAKka)>p(K2nk+1 7BK2”k+1)7p(Kznk+1? Kka)?
p(Kom, s BKon+1) + 9 (K2, 4+1,AKom, )
2s ’
1+ p(i2my, AKom,)
1 +p(AK2mk7BK2nk+l)
1+ p(Kan+1, BKon 1)
1+ p(Kom+1, Komy)
1+ (Ko +1,AKom, ) + 9 (Kom, B2, +1)
1+ SP(Kan+17 Kka) +sp (AKkaaBKan+1)
= max{p(Kme szk+1)7p(K2nk+17 K2nk+2)7p(K2nk+17 Kka)a
P(Komys Komer2) +P(K2mt 1, Komgt 1)
2s ’
1+ p(Komy > Komy+1)
1+ (K415 Kom+2
1+ p(Kome+1, K2y 12)
1+ (K211, Komy)
1+ p(Komt1, Koy 1) + P (K2 Kong12)
1+ 5p(Kon415 Komy ) + P (Ko 41, Komg 42

Taking the upper limit as k — oo, we have

lim sup (P(SDT( Kan-‘rl ) K2mk)) =0 (hm sup m( Kan-‘rl ) Kka)>
k—>°° k—}oo

<@(max{0,0,s%¢,5%¢€,0,0,0}) = ¢(s%¢).

p(’an—H 7BK2nk+1 )7

p(KkaaAKka)v

p(Kan+] 7BK2nk+])}

)P(KznkH, Kon+2),

p(Kkaa szkJFl)?

)p(Kan+la K2nk+2)}

In view of Remark 3.12 and &(Bkay+1,AKom,) = O(Komp+1, K2npt2) > s°, we obtain

Q((° +59)p(Komy+1, Kang+2))

= (s> + 5 )p(BKan+1,AKom,))

< o((0(BKopyt1,AKomy) +5~)p(BKang11,AKom, )
<Y (Kon+1,Km,)) < Q(M(Konet1, Komy ) )
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where

o(s%€+579738) < limsup @((s> +5~)p(Tamy+1, T2 +2))
k—>oo

= (p(hm Sup(SS + siq)p(Tka-‘rl ) Tan-i-Z)) .
k—yoo

It follows that @(s%¢ +s~972¢) < @(s%¢), which is a contradiction. Thus, {k»,} is a Cauchy
sequence and hence {k;,} is a Cauchy sequence both in (G, p) and in (G, p*).

It is the same as the proof of Theorem 3.5, we also obtain limy, ;.o P (K, Kn) = limy—se0 P (K, 2)
=p(z,z) = 0. Since k, — z, {AK>,} and {Bky, |} converge to z.

We now prove that z = Az. On the contrary, we assume that p(z,Au) > 0. From the condition
(iv), we can get a subsequence { K211} of { K241} such that {Bxy,, 11 } — z with o(Bkap,+1,Az) >
s>, Letting k = Kon+1, T=2zand K # T, we obtain lim; e SUpp(Kap,+1, BKan,+1) = 0 =1im;_,e. SUp
p(K2n,+1,z) and which imply p(Kap,+1,2) < DM (Kon,+1,2) by (B3y), where

m(K2ni+1aZ) = max{p(Z7AZ)7p<K2n,~+laBKZni—O—l)vp(KZni—i—laZ)a
p(z, BKon;+1) + (K2, 41,A2)
2s ’
1+p(z,Az)
1+p(AZ7BK2ni+1)
1+ p(K2n,41,A2) +p(z, BKap;41)
1 +SP(K2HH-1 7Z) +Sp(AZ>BK2ni+1

1+ p(Kon; 41, BKon; 1)
1+ p(K2n,41,2)

p<K2ni+laBK2ni+l>7 p<Z7AZ);

>P(K2n,-+1,BK2n,-+1)}

]J(Z, K2ni+2) +p(K2"i+1 7AZ)
2s ’
1+ p(Kon+1, Konmg42)
i i Z,AZ 7
p(Km e P

e maX{p(Z,AZ),p<Kznl+1, K2n1+2)7p(K2n,+1 7z>7
1+p(z,A2)
1+ p(AZ7 Konj+2
1+ p(K2n,41,A2) +p(z, Kon;12)
1+ sp(%an+1,2) +5p(Az, Kan12)

) p ( KZI’lH—l ) K2n,-+2)7

p(K2n;+1, Kan+2) }-
(3.7)
It follows from Remark 3.12 that
O((s* +577 p(2,42)) < @(((BKon+1,A2) +5))p(BKan+1,A2))
<YW (p(Kn41,2)) < Q(M(Kan;41,2))-
Taking the upper limit as i — oo in (3.7), one can deduce

limsup (M (k2 +1,2)) = (limsup M (i, 11,2))

[—yo0 [—yo0
A
S(P(maX{P(Az,Z),O,O,p( ;’Z)

:(P(p (AZ’ Z))»

o((s* +5717N)p(Az,2)) < 9(p(Az,2)),
which is a contradiction. Thus, p(Az,z) = 0 and which implies Az = z. By the condition (v),
we have p(z,Bz) = p(Az,Bz) < p(z,Az) = 0. Therefore, Az = z = Bz, and A, B have a common
fixed point z.

,0,p(Az,2),0})



SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS 17

Suppose that w is another common fixed point of A and B. The condition (c) ensures o (w,z) >
s7. Taking k¥ = z, T = w and K # 7, we have p(z,Bz) = 0 < p(z,w), which implies p(z,w) <
M(z,w) by (Piy), where M(z,w) = p(z,w). Moreover, in view of Remark 3.12, we obtain

P((s* +5 Dp(z.w)) = @((s*+5/)p(Bw,Az))
< o((a(Bw,Az) +5~)p(Bw,Az))
¥(p(z,w))
(M(z,w))
< o(p(z,w)),
a contradiction. It follows that p(z,w) = 0,which implies z = w, that is, A, B have a unique
common fixed point. This completes the proof. 0J

Example 3.14. Let G = [0,2], p(x,7) = max{k>, 7%} + (k — 7)%, s = 2, and ¢ > 1. Define
mappings A, B by
AK = {

ABK:{TES’ K € [0,1] BAK:{%, ke 0,1]
o .

Sl

, ke€l0,1]

1
k< (1,2] 5, ke(1,2]

R =

We have

o KE€(L2]
It is easy to show that p(Ak, Bk
[0,+c0) and o(k, T) = o (7, k) by

5
0
a(K,f)={s’ Kol ’12],

< p(x,Ax) for all k¥ € [0,2]. Deﬁne mappings & : G x G —

0, otherwise

and 3
t
(P(t) :tvlll(t) = 27
_ p(t,Bx)+p(k,AT) 14p(7,AT)
Pk, 7) = max{p(,A2), p(x, 1), P EEREE R RO p (o, B,
1+p(x,AT)+p(7,Bk
PIRATIH R0 . Br)),

1+sp(x,7)+sp(At,BK)

Obviously, p(k, 7) satisfies condition (pJy) and p(k,7) > 0 for all k # 7. For a(Bk,AT) > 5°,
one can see that Bk, At € [0, 5], which implies that «,7 € [0,1]. It is easy to prove that (A, B)
is composite oo—admissible. For x,7 € [0,2], letting 5 (&) = 8¢, we have

18p(Bx,At) < max{Kk?, 72} <p(x,7) < p(x,T) < €+ 8¢,

which implies p(Bx,A7) < §. It follows that Definition 3.3 is met about Theorem 3.13. Let
& € E be given by E(z,s) = % —t. Now we consider the following cases:

For x,7 € [0, 1], k # 7, we have
1

L
p(BK,AT) max{ 144 ﬁf }‘f—(ﬁK ET)

p(x,7) = max{k>,7°} + (k — 7)°.
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Thus

wn| &
—~

y(p(x,7)) — @((a(BK,AT) +5~7)p(BK,AT))

AV
RS IEN

v(p(k, 7)) — o((a(Bx,AT) +s 1)p(Bx,AT))
4

(max{x* 72} + (x — 7)%) — (5 —|—2_‘7_3é)(max{1<2, 72}) > 0.

For other cases, one can obtain @(Bx,A7) = 0, which implies

>

o((a(Bx,At)+s 9)p(Bx,AT)) < 2_‘]_1émax{1<2, %)

Consequently,
4 _
s W(p(x,7)) — @((a(Bx,AT) +5~7)p(BK, A1)
> %max{Kz,Tz} — 2‘11$max{1<2,72} > 0.

In summary, all the conditions of Theorem 3.13 are fulfilled. Here, O is the unique common
fixed point of A, B.

Theorem 3.15. Let (G,p) be a complete partial b-metric space with parameter s > 1 . Let
o :GxG—[0,4o) and A,B: G — G be given mappings. Suppose ¢ € ®, y € ¥, £ € E and
q > 1. If the following conditions are satisfied:

(i) A, B are the generalized (Q, @, y)—Meir-Keeler hybrid contractive mappings of type II*,
where the inequality becomes to

S(@((a(Bx,A1))p(Bk,AT), ¥(p(K,1))) = 0,
(ii) (A, B) is o—admissible mapping pairs,
(iii) there is Ky € G with a(Aky, BAky) > §°,
(iv) properties (a’) and (b’) are satisfied,
(v) p(Ak,Bx) < p(k,AK) for all k € G,
then A, B have a unique common fixed point.

Proof. Since the proof of Theorem 3.15 is similar to that of Theorem 3.13, we also omitit. [J

4. APPLICATIONS

In this section, we present the existence of solutions to an integral equation by means of one
of our results.
Consider the following integral equation

k(1) = /O " K1, (w))dw, @4.1)

where [ € [0,L], L >0 and K : [0,L] x [0,L] x R — R. The aim of this section is to give an
existence theorem for a solution to the above integral equation by use of Theorem 3.8.
Let G = C[0,L] and define p : G x G — R ™" by

p(x,7) = sup |k(l) — ()" + (max{ sup [k(l)|, sup |T(])[})".(p=2)
1€[0,L] l€]0,L] l€[0,L]
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It is obvious that (G, p) is a p,—complete partial b-metric space with s = 2P~ !,
Consider the mapping A, B : G — G defined by

Ax(l) = /O " Ky (o, k() dw, and Bie(l) = /0 " Kol w, () v

Let £ : R x R — R be a given function.

Theorem 4.1. Let A, B be self mappings on a partial b-metric space (G,p). Suppose the fol-
lowing hypotheses hold:

(i) K1,K» : [0,L] x [0,L] x R — R,

(ii) AG C BG and BG is p,—complete,

(iii) ABK = BAK, whenever Ak = Bx for some k € C[0,L],

(iv) there exists Ky € G such that §(Axy(1),Bko(l)) > 0 forall I € [0,L],

(v)foralll € [0,L) and x,7 € G, E(Bx(I),By(l)) > 0 implies (Ax(l), At(l)) >0,

(vi) properties (a), (b) and (c) are satisfied,

(vii) there exists a continuous function h : [0,L] x [0,L] — R such that fOLh(l,w)dw <d
(3<8<1),

(viii) for each u,v € R, 0 < k < 1 and each l,s € [0, L],

1K1 (1w, k(W) — K1 (v, T(w)| < (/Sgh(z,w)wx—my

and

C/ k
max{|K;(I,w, k(w))|, |Ki(l,w,T(w)|} < mmax{]Kg(l,w,K(w))L|K2(l,w,r(w)|}.
Then integral equation (4.1) has a unique solution u € C[0, L.

Proof. Define p(k,7) =M(k, 1), (t) =1, y(t) = ¢t,and E(t,5) = as — ¢, where (0 < g,a < 1)
and Ga = k0. Meanwhile, define o : G x G — [0, +0) by

2 .
fS(x(l),7(l)) >0
a(K,T): S, 1&(()7())— .
0, otherwise
It is easy to prove that A is (B, a)-admissible and AG C BG and BG is pp-complate. For

K, T € G, by virtue of assumptions (i) — (viii), one see that there exists (&) = € such that

L L
25p(AK,AT) =25 sup | [ Ki(l,w, k(w))dw— / K1 (1, w, (w))dw|?
0

lefo,r] /0
L L
+ (max{ sup | [ Ki(l,w,x(w))dw|, sup | [ Ki(l,w,T(w))dw|})?)
lefo,r] 70 lejo,] 70

L
<25 sup ([ Ki(Lw,(w) = K1, w, 700) )
] 0

le[0,L
L L
+ (max{ sup | [ Ki(l,w,x(w))dw|, sup | [ Ki(l,w,T(w))dw|})”
lefo,r] 70 lefo,] 70
< sup |Bx(l) —Bt(l)|” + (max{ sup |Bx(l)[, sup |B7(l)|})”
1€[0,L] 1€[0,L] 1€[0,L]

<p(Bx,B7) < p(k,T) < €+E¢,
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which implies d(Ax,At) < £. Then the condition (i) of Definition 3.7 is satisfied, and we also
have

s?p(AK,AT)
L L
—s2 sup | [ Ki(Lw,k(w))dw— / K1 (1, w, 7(w))dw|?
1e[o,L) 0

L L
+ s*(max{ sup | Kl(l,w, K(w))ds|, sup | [ Ki(l,w,t(w))ds|})?
le[o L] lejo,r] Y0

<s* sup ( ]Kl (Lw,x(w)) =K1 (1w, T(w))|dw)?P
l€]0,L]

L L
+5? 2(max{ sup | Kz(l w,k(w))dw|, sup | [ Ky(l,w,t(w))dw|})P
4s 1€[0,L] lefo,L] 70

2 sup / </> h(l,w)dw)? sup |Bk(l)—Bz(I)|?
le[OL] 1€[0,L]

L
™ (max{ sup | Kz(l w,kK(w))dw)l, sup | [ Ka(l,w,T(w))dw|})
4 1€[0,L] lefo,r] 70

<s? / ﬁ/ h(L,w)dw)? sup |Bi(l)— Bz(l)|?
le[OL] le[0,L]

+4(max{ sup |Bx(!)], sup [Bz(l)[})".
l€[0,L] 1€]0,L]

+

By hypothesis (vii), there exists }1 < & <1 such that f(f h(l,w)dw < 8. Thus

szp(AK,AT) < kd( sup |Bk(l)—Bz(l)|” + (max{| sup Bk(l)|,| sup Bzt(l)|})?)
le[0,L] 1€[0,L] l€[0,L]

— kSp(BK, BT) < k3p(x,7) = cap(k,7) = gaM(k, ),

so &(p(a(Bx,BT)p(AK,AT)),w(M(k,7))) > 0. Therefore, all the conditions of Theorem 3.8
hold. As a result, A and B have unique point u € C[0, L], which is a solution to integral equation
4.1). 0J

5. CONCLUSIONS

In this paper, we introduced the notions of generalized (a, @, y)-Meir-Keeler hybrid con-
tractive mappings of type I and II via simulation functions, and gave the sufficient conditions
for the existence and uniqueness of common fixed points for such mappings in the framework
of complete partial b-metric spaces. Moreover, we provided examples that elaborated the use-
ability of our results. As an application, we presented the existence of solutions to an integral
equation.
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