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ON A GENERALIZATION OF PETRYSHYN’S FIXED POINT THEOREM
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Abstract. The Petryshyn’s fixed point theorem is applied for the condensing maps with respect to Kura-
towski measure of noncompactness satisfying a boundary condition. This paper extends this theorem by
using a new boundary condition and the measure of noncompactness defined by the system of axioms.
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1. INTRODUCTION

Fixed points of nonlinear operators are powerful in various research fields. The measure of
noncompactness, which is a useful tool in nonlinear functional analysis, can used employed
to investigate existence results for various nonlinear differential equations as well as nonlinear
functional integral equations in various Banach spaces; see, e.g., [3, 4, 10, 11, 13]. Recently, au-
thors investigate various nonlinear problem by using fixed points of nonlinear operators, which
can be written as a condensing operator with respect to a suitable measure of noncompactness.
Compact operators are important in obtaining strong convergence of various schemes in infinite
dimensional spaces. For condensing operators, they are also known as the operators satisfy-
ing a certain condition concerning compactness. Condensing operators are a generalizations of
compact operators. One mentions here that measure of noncompactness was first introduced
as Kuratowski or Hausdorff measure of noncompactness. From [14], one sees measure of non-
compactness is one of the main roles in proving the well-known Darbo’s fixed point theorem. In
[3, 4], the authors gaven an axiomatic definition of the measure of noncompactness. There are
several systems of axioms which are not equivalent. However they have some axioms common.
The Darbo’s fixed point theorem, which finds extensively real applications in numerous fields,
such as economics, was extended in different directions; see, e.g., [4, 6, 8, 9]. But most of these
generalizations required a self-mapping condition for the operators involved, thatis F : D — D
while varying the conditions imposed on the condensing operator. In [12], Petryshyn replaced
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the self-mapping condition by a weaker boundary condition which was first introduced in case
that the domain D is a ball centered at the origin.

In this paper, we consider themeasure of noncompactness defined by a simple system of ax-
ioms to prove a generalization of the Darbo’s fixed point theorem. W apply the fixed point
theorem to solve a Hadamard fractional integral equation. Although this equation was inves-
tigated for two variables and a fixed initial value of the solution in [1], we emphasize that the
initial value of the solution in our equation follows a compact operator.

2. PRELIMINARIES

The following tools are needed for our main results.
Let .# be a family of subsets of a Banach space E such that {u} € .# for all u € E. If
Q e . #, then

(i) QU{u},Q € A4 whenever Q) C Q
(ii) comv(Q) € A
Recall that an operator @ : .#Z — R is said to be a measure of noncompactness (MNC for
short) [10] if
P (conv(Q)) =P(Q), forall Qe .

Example 2.1. [3] Let X = C([a,b];R) be the space of continuous functions on [a,b] with the
supremum norm, and let .# be the class of bounded subset in X. For u € X and 6 > 0, let

w(u,0) = sup{|u(t) —u(s)| : t,s € [a,b], |t —s| < 5}.
The modulus of continuity of the subset Q € .# is defined as
w(Q,8) =sup{w(u,d) :u € Q}.
Then the following operator is a MNC on .#
uQ)= 61LI{)1+W(Q, 0).
The notion of Kuratowski MNC, which was introduced by Kuratowski, is defined by, for each
bounded subset Q C E,
o(Q) =inf{d > 0:Q C UL B;,diam(B;) < d},

where diam(B;) = sup{|lu—v||g : u,v € E}; see [3].
Further more, we have the following example.

Example 2.2. [10] Let E be a Banach space and X := C(I, E) be the space of continuous valued
E functions on / with the supremum norm

|u| := sup||u(t)]|, u € X.
rel
Let .# stand for the class of bounded equicontinuous subsets in X. Then o is a MNC on
(X,. )
Definition 2.3. The MNC & is said to be
(a) regular if it satisfies the following condition

®(Q) = 0 if and only if Q is relatively compact;
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(b) monotone if, for all Q € .# and Q| C Q,, then & (Q;) <D (Q);

(c) nonsingular if, for all Q € .# and u € E, then ® (QU {u}) = ®(Q);

(d) positive-homogeneous if, for all Q € .# and k > 0, then @ (kQ) = kP(Q);
(€) semi-additive if, for all Q,Q € ./, then @ (Q) + Q) < ®(Q)) + P ().

Remark 2.4. Assume that the MNC @ is regular, monotone, positive-homogeneous, and semi-
additive. Let up € E. Then

Q) C{kiug+kou:uy € E;u € Q. ki, kyp >0} = ®(Q)) < krD(Q;). (2.1)

For the Kuratowski MNC, we can find the properties in [2]. In the following proposition, we
list the ones which are used in the sequel.

Proposition 2.5. [2] Let E be a Banach space and o be the Kuratowski MNC in E. Then

(1) o is regular, monotone, nonsingular, homogeneous and semi-additive.
(2) If A C C([0,T),E) is a equicontinuous set such that the set A(t) = {u(t) :u € A} is
bounded for all t € [0,T)], then the functiont — a(A(t)) is continuous and one has

o ({/Otu(r)d’c:ueA}> < /Ota(A(r))dr.

Definition 2.6. Let ® be a MNC defined on a family .# of subsets of the Banach space E. A
continuous map F : D C E — E is said to be condensing with respect to ® (or ® — condensing)
if

(i) forevery Q C Dsuchthat Q € .#,F(Q) € 4

(ii) for every Q C D such that Q € .# and ®(Q) > 0, P(F(Q)) < P(Q).

Some authors defined the condensing maps in the sense of k-set contractive maps. We next
present the Darbo’s fixed point theorem which proved the existence of a fixed point of the k-set
contractive map with respect to Kuratowski MNC in the following theorem.

Theorem 2.7. [14] Let C be a nonempty, convex, bounded, and closed set in a Banach space
E, and let F : C — C be a k-set contractive mappings with respect to Kuratowski MNC o in E,
that is, F is continuous and o.(F(Q)) < ko (Q) for all Q@ C C and a(Q) > 0, where k € (0,1).
Then F has a fixed point theorem.

We see that if F' is k-set contractive with k € (0, 1), then F is condensing. In the following
theorem, Petryshyn proved the existence of fixed points of the condensing map F. However,
the result was proved in the case that C is a ball and under the weaker boundary condition than
the condition F(C) C C.

Theorem 2.8. [12] Let B be an closed ball centered at the origin in a Banach space E with
radius r > 0, and let F : B — E be a a-condensing mapping which satisfies the boundary
condition

(BC:) If F(u) = ku for some u € dB, then k < 1.

Then F has at least one fixed point in B.
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3. MAIN RESULTS

3.1. The generalized Petryshyn’s fixed point theorem. We first prove the following theorem
which was proved in [10] for another version.

Theorem 3.1. Let E be a Fréchet space, D C E be a nonempty, closed, and convex set, F :
D — D be a continuous map, and ® be a regular, nonsingular MNC defined on a family 4 of
subsets of E. Moreover, let F be ® — condensing and F (D) € .#. Then F has at least one fixed

point in D.

Proof. Let us choose a point u € conv(F (D)) and denote by 4 the class of all convex and closed
subsets Q of D such that Q € .#,u € Q and F(Q) C Q. Set
B= () Q, K==con(F(B)U{u}).
Qe#

Since F is ®—condensing, one asserts taht F(D) € .#. Thus conv(F (D)) € 4. Obviously,
B € ./ . Furthermore, from F(Q) C Q for all Q € 4, it follows that F(B) C B. Hence K € ./Z .

We proceed to show that B = K. Indeed, since u € B and F(B) C B, it follows that K C B,
which implies F(K) C F(B) C K. Hence K € 4, and B C K. Therefore the nonsingularity of
® shows that

B(B) = B(K) = B (F(B)U{u}) = D (F(B)).

Since F is ®-condensing, it follows that ®(B) = 0 and B is relative compact by the regularity
of ®. Thus, from the Schauder-Tychonoff theorem, one concludes that there exists a fixed point
for the operator, F' : D — D. OJ

We are now in position to show the main result for this paper. It is a generalization of
Petryshyn’s fixed point theorem where the map acting in a nonempty convex closed subset in a
Banach space and the (BC) condition has been changed to be suitable for the domain.

Theorem 3.2. Let D be a nonempty, convex, and closed subset in a Banach space E. Let
F : D — E be a continuous map and ® be a regular, nonsingular MNC defined on a family .#
of subsets of E. Let ® satisfy condition (2.1), F be ®-condensing, and satisfy the boundary
condition

(BCx:) If F(u) = ug + k(u — ug) for some u € dD,k > 0, then k < 1, (3.1)
where uqy € int(D). Then F has at least one fixed point in D.

Proof. First, we define a map fi(u) € D for each u ¢ D as follow. Set g(k) = up+ k(u — ug),
where k is in [0, 1], and the sequences { ¢, } and {3, } as

aon, ﬁ(): 1;

A @

lfg (%ﬁn) € D, then Oy = %ﬁi’l, ﬁn—b—l :ﬁm
(0

We immediately see that {g(a,)}, C D, the sequence {a,}, C [0, 1] is increasing, and conse-
quently it converges to ¥ € (0, 1), where g(y) € D. Similarly, sequence {f,}, decreases to 7.
In fact, if B, — ¥ # v as n — oo, then ¥ < ¥ and there exist k such that %ﬁ" € (7v,7), which
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is impossible. Define fj(u) = g(ko). Since g(a,) € D,g(B,) ¢ D for all n, and D is closed, we
have fi(u) € dD.
We proceed to show that f o F' is condensing from D to D, where

u, ueb,
flu)= {fl(u), ugD.

In fact, for Q C E, set Qy = F(Q), Q1 = f(F(Q)). In view of the definitions of f and f}, one
sees that

Q) C{(l—kup+ku:ueQ,ke(0,1)}.
One concludes from (2.1) that ®(Q) < kP(Q,). That is,
O(foF(Q)) <kP(F(Q)), ke (0,1). (3.2)

Since F is ®-condensing, we have ®(F(Q)) < ®(Q) whenever ®(Q) > 0. It follows that if
®d(Q) >0, then ®(foF(Q)) < P(Q). We conclude that f o F is ®-condensing. From theorem
(3.1), f o F has at least one fixed point in D and we denote it by w.
We next claim w = F(w). Assume that w # F(w). Since w = f(F(w)) # F(w), we have
F(w) ¢ D, w= fi(F(w)) € dD and
w = uo+Y(F(w) —uo), v € (0,1).
Hence

1
F(w) =up+ ;/(w—uo),
where (1/y) > 1. This contradicts the assumption (BCx). Thus w is a fixed pointof F inD [

The important point to note here is the relation between the assumption F : D — D in Theorem
(3.1) and the condition BCx* (3.1). We have the following remark.

Remark 3.3. If D C E be a nonempty, strictly convex, and closed set, F : D — D, then condition
BCx (3.1) holds true.

Indeed, we suppose that F(u) = ug+ k(u — ug), where u € dD,ug € int(D) and k > 1. Then
u=(1/k)F(u)+ (1—(1/k))ug, where 0 < (1/k) < 1. Since F : D — D, then F (u) € D. Hence
u € int(D) as D is strictly convex. This is impossible.

3.2. Hadamard fractional integral equation. Let / = [1,7] and E be a Banach space. We
first introduce the following definition.

Definition 3.4. [7] The Hadamard fractional integral of order r > 0O for a Bochner-integrable
function g € L!(I,E) is defined as

("Ig) (1) = % /lt (hﬁ)r_1 89 4

T T

Here and subsequently, ||.|| is borrowed to stand for the norm in E and X := C(,E) is bor-
rowed to denote the space of continuous valued E functions on / with the supremum norm

u] == sup (@), u € X.
tel
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Furthermore, o is borrowed to stand for the Kuratowski MNC in E which is defined on the class
of bounded subsets and oy stands for the Kuratowski MNC in X which is defined on the class
of bounded equicontinuous subsets.

We next prove the existence result for the following equation

u(t) = (Bu)(t) + % /lt (m%)r_l Mdr,t el (3.3)

where B is a continuous compact operator from X — X satisfying
C: |Bu| <C,Vu e X,

and f: I x E — E is given continuous function. Our arguments are based on the following
assumptions.

(H1) There exits functions py, p» € C(I,R) such that, for all x € E andr € I,

1/ @) < p1(6) + pa() |lx]l;
(H2) Let |.| denote the norm in C(I,R). Then

| (tn(T))|pl
I'(r+1)

Lemma 3.5. [5] Assumption (H1) yields that if B is a bounded subset in E, then
o ({f(7,x) : x € B}) < [pa|(B).

Theorem 3.6. Assume that (HI) and (H2) hold, then equation (3.3) has a solution in X.

Proof. Let R > 0 be the large number which will be chosen later, and let Bg be the ball centered
at the origin with the radius R in X. The idea of the proof is to use the Theorem (3.2) to prove
the operator F : Bg — Br defined by

(Fu)(r) = (Bu)(1) + %/ll (m%)r_l Mdm el

has a fixed point in X.
We first prove that F' is continuous. Indeed, we see that

0< %/j (m%)r_] d% < r(r1+1) (In(T))", Vi €.

Therefore
| Fun(t) — Fu(r)|| <[|[B(u) — B(un)] (1)

o [y Sl St

T

< |[[B(u) = B(un)) (1)

T+ 1) (1n(T))r-§l€15)Hf(T,un(f))—f(f,u(f))H,

+
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for all u,,u € Bg, t € J. From the dominated convergence theorem, the compactness of B and
the continuity of f, we see the continuity of F'. For any u € X and t € I, we have

IFE)O) < B+ 1 [ (mt)" L)l

I'(r) T T
Lty il el
gcjtm/1 (ln;> ! Tz dt
< C L (il el

By assumption (H2), we can choose R large enough such that |F(u)| < R for all |u| < R. The
result is ' : Bg — Bg and boundary condition (3.1) is true with uy = 6.

We next prove that F'(Bg) is equicontinuous so that the condition (i) in the definition (2.6)
holds true. Let t; <1, 11, € J and u € Bg. Then

|Fu(ta)—Fu(n)|| < |[Bu(ts) — Bu(t) | + =~ /“H t)’”MHdT

el (%) —(ln%> IS

(1 _)’ 1|pl|+|pzllul
T

e

< ||Bu(t2) — Bu(t1)|| + ﬁ

ORI

By integration, we have

I

|p1|+T|pz||u| J

[Fu(ta)—Fu(t)|| < [|Bu(tz) — Bu(t1)||

+—|pil€:fi|)|u| Kln%y— (ln%)r+(ln(tz))r— (ln(tl))r] :

We see that the right-side of the above inequality tends to 0 as , — #;. Hence F (Bg) is equicon-
tinuous.

We finally prove that F is aix-condensing. Let Q C Bg, Q be equicontinuous and ¢ € I. From
the properties of Kuratowski MNC (see (2.5)) and lemma (3.5), we have

a(F(Q)(1) = a({(Fu)(r) :u € Q})
a({(Bu)(r) - u € Q})

+%a{/j(lnr>r l—f(T:( ))d’c:uEQ}
<L/t (ln£>r—1a({f(r,u(r)):ueﬂ})dr
1

—I(r) T T
U0y pele(Q(r)
< m/l <ln’_c> - dt

< %/j (m%)” d{ < Moy (Q).
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We conclude that F' is k-set contractive with k =M < 1. Thus F is ax-condensing. The proof
is completed. U
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