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MULTI-STEP INERTIAL ACCELERATED ALGORITHMS FOR SOLVING MIXED
SPLIT FEASIBILITY PROBLEMS

JUNAN GONG, JINTAO ZHAN, JIAWEN WEN, YITONG WANG, PEICHAO DUAN∗
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Abstract. The split feasibility problem has significant applications in various fields such as medical
image reconstruction, signal processing, radiation therapy, and signal recovery. With the widespread
adoption of multimodal data and large-scale complex systems, efficiently solving mixed split feasibil-
ity problems which involve multiple operator constraints and linear equality conditions is now under the
spotlight of research in optimization theory. In this paper, we propose two new accelerated iterative algo-
rithms for MSFP: one accelerates the iterative process through multi-step inertial terms and proves weak
convergence in Hilbert spaces; the other one further incorporates the viscosity approximation method to
achieve strong convergence. We prove that our algorithm converges strongly under suitable conditions.
Finally, numerical results illustrate the performances of our algorithms.
Keywords. Multi-step inertial algorithm; Split feasibility problem; Viscosity approximation method.
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1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces. The description of the split feasibility problem
(SFP) is to

find ū∗ ∈C such that Aū∗ ∈ Q,

where A : H1 →H2 is a linear and bounded operator, C and Q are nonempty, convex, and
closed sets in H1 and H2, respectively.

In view of the wide applications of the SFP, such as medical image reconstruction [24], signal
processing [6] and intensity modulated radiation therapy [7], this problem, which was first
introduced by Censor and Elfving [6] in finite dimensional Hilbert spaces, has been extensively
studied numerically; see, e.g., [8, 9, 19, 20, 26, 27] and the references therein. To solve the
SFP, Censor and Elfving proposed an iterative algorithm based on projections, which involves
the computation of the inverse of a matrix [6]. However, this approach may be inefficient in
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practice. Byrne [4, 5] introduced the celebrated CQ algorithm, which overcomes this drawback
by introducing an appropriate step-size selection. Indeed, it can avoid the computation of matrix
inverses and improve algorithmic efficiency. The split feasibility problem with two operators
(SFPT) is an extension of the celebrated SFP, involving two bounded linear operators A and B.
The problem is defined as finding ū∗ ∈C such that

Aū∗ ∈ Q and Bū∗ ∈M ,

where C, Q, and M are nonempty, convex, and closed subsets of Hilbert spaces H1, H2, and
H3, respectively.

Recently, Jailoka et al. [12] proposed a self-adaptive CQ type algorithm for the SFPT. They
proved that the sequence {uk} generated by their algorithm strongly converges to a solution of
the SFPT. Recently, inertial methods have been widely investigated in recent years to accelerate
the convergence of various algorithms. Liang proposed a multi-step inertial operator splitting
method in [13]. Similar with the q-step method in [16], xn+1 in Liang′s method involves at most
q+1 previous iterations {xn,xn−1, · · · ,xn−q}. Let Q = {0,1, · · · ,q−1},q ∈N+. The multi-step
inertial form is as following:

yn = xn + ∑
i∈Q

δi,n(xn−i− xn−i−1).

The numerical example showed the superiority of Liang’s method. Therefore, the ideas of
alternated inertial and multi-step inertial are widely used, as in Dong, He, and Rassias [10],
and Duan and Zhang [11]. Wang, Liu, and Yang [25] proposed an alternated multi-step inertial
iterative algorithm for the SFPT in Hilbert spaces and strong convergence result is obtained
under some mild conditions, which showed the superiority in many aspects.

The split feasibility problem with multiple output sets (SFP-MOS), which was introduced and
studied by Reich, Tuyen, and Mai in [22] , is a generalization of the SFP and SFPT, involving
multiple sets and multiple Hilbert spaces. Given nonempty, convex, and closed subsets C ⊂H
and Qi ⊂Hi (i = 1,2, · · · ,N), and linear and bounded operators Bi, the goal is to find x∗ such
that

x∗ ∈C and Bix∗ ∈ Qi, ∀ i,

which extends the SFPT by considering multiple operators Bi and multiple target sets Qi, mak-
ing it applicable to scenarios where multiple constraints across different spaces need to be sat-
isfied. The split equality problem (SEP) is another extension of the SFP, which involves finding
(x,y) such that

x ∈C, y ∈ Q and Ax = By,

where C and Q are nonempty, convex, and closed subsets of Hilbert spaces H1 and H2, respec-
tively and A : H1→H3, B : H2→H3 are linear and bounded operators. This problem, which
was first introduced by Moudafi et al. [14, 15], is applicable to fields such as game theory,
decomposition methods for PDE, decision sciences, and inertial Nash equilibria [1, 2].

The mixed split feasibility problem (MSFP), which was introduced and studied by Reich et
al. [21], is a further generalization of the SFP, combining the SFP-MOS and the SEP. It aims to
find a point x∗ such that

x∗ ∈
N⋂

i=1

{x ∈C : Aix ∈ Qi} and
N

∑
i=1

Bi(Aix∗) = y,
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where C and Qi are nonempty, convex, and closed subsets of Hilbert spaces H and Hi, re-
spectively, Ai : H →Hi and Bi : Hi→K are linear and bounded operators, and y is a given
element in K . Recent studies focused on various iterative algorithms for solving the MSFP,
including the methods based on unconstrained optimization approaches and self-adaptive step-
sizes. The SFP-MOS can be viewed as a special case of the MSFP if Bi are zero operators for
all i and y = 0. In this scenario, the MSFP reduces to finding a point x∗ ∈C such that Aix∗ ∈ Qi
for all i, which is precisely the SFP-MOS. The SEP can be derived from the MSFP under spe-
cific conditions. Specifically, when N = 2, H = H1×H2, C = Q1×Q2 and the operators Ai
are defined such that A1(x(1),x(2)) = x(1) and A2(x(1),x(2)) = x(2), with B1 = −B2 and y = 0,
the MSFP reduces to the SEP. This reduction shows that the SEP is a particular instance of the
MSFP, highlighting the versatility and generality of the MSFP framework.

In this paper, we also consider the MSFP. The following assumptions are imposed
(A.1) Hi(i = 1,2, · · · ,N),H and K are real Hilbert spaces; C and Qi(i = 1,2, · · · ,N) are

nonempty, convex, and closed subsets of H and Hi, respectively.
(A.2) Ai : H →Hi and Bi : Hi→K (i = 1,2, · · · ,N) are linear and bounded operators.
(A.3) y is a given element in K .
(A.4) Ω = ∩N

i=1{x ∈C : Aix ∈ Qi}∩{x ∈C : ∑
N
i=1 Bi(Aix) = y} 6= /0.

For each x ∈H , we define the function F : H → R by

F(x) :=
‖(IH −PH

C )(x)‖2
H

2
+

∑
N
i=1 ‖(IHi−PHi

Qi
)(Aix)‖2

Hi

2

+
‖∑

N
i=1 Bi(Aix)− y‖2

K

2
.

It is not difficult to see that F is a differentiable convex function and that the MSFP is equivalent
to the unconstrained optimization problem: minx∈H F(x). Consequently, x∗ is a solution to the
MSFP if and only if ∇F(x∗) = 0, where

∇F(x) := (IH −PH
C )(x)+

N

∑
i=1

A∗i (I
Hi−PHi

Qi
)(Aix)+

N

∑
i=1

A∗i B∗i

(
N

∑
i=1

Bi(Aix)− y

)
.

Moreover, ∇F(x∗) = 0 means x∗ = x∗− γ∇F(x∗), where γ is a positive real number. This
implies that x∗ is a fixed point of the operator I-γ∇F.

In [21], Reich et al. proposed an iterative method (Algorithm 1) for finding a solution of the
MSFP. Their algorithm reads

Algorithm 1
Step 1. Let ρn ∈ [a,b]⊂ (0,2) for all n ∈ N. Choose x0 ∈H arbitrarily, set n := 0.
Step 2. Given xn, compute xn+1 = xn− γn∇F(xn), where

γn =

ρn
Dn

En
, En 6= 0,

0, En = 0,

where

Dn := ‖(IH −PH
C )(xn)‖2

H +
N

∑
i=1
‖(IHi−PHi

Qi
)(Aixn)‖2

Hi
+‖

N

∑
i=1

Bi(Aixn)− y‖2
K
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and

En := ‖(IH −PH
C )(xn)+

N

∑
i=1

A∗i (I
Hi−PHi

Qi
)(Aixn)+

N

∑
i=1

A∗i B∗i

( N

∑
i=1

Bi(Aixn)− y
)
‖2

H .

Step 3. Set n← n+1 and go to Step 2.

2. PRELIMINARIES

In this section, we collect some definitions and lemmas which are used in the next section.
We denote the strong convergence and the weak convergence of sequence {xn} to x by xn→ x
and xn ⇀ x, respectively.

Consider a nonempty, convex, and closed subset C of a real Hilbert space H . For each
x ∈H , there exists a unique point PH

C (x) ∈C satisfying

‖x−PH
C (x)‖= inf

w∈C
‖x−w‖. (2.1)

The mapping PH
C : H → C defıned by (2.1) is termed the metric projection of H onto C.

Recall that a mapping U : C→C is said to be nonexpansive if ‖U(x)−U(y)‖ ≤ ‖x− y‖ for all
x,y∈C. We denote the set of fixed points of an operator U : C→C by Fix(U), that is, Fix(U) =
{x ∈ C : U(x) = x}. It is well established that the metric projection PH

C is a nonexpansive
mapping and satisfies Fix(PH

C ) =C.

Lemma 2.1. (see [3]) Let PH
C be the metric projection of a real Hilbert space H onto a

nonempty, convex, and closed subset C of H . Then the following statements hold true:
(i) 〈x−PH

C (x),y−PH
C (x)〉H ≤ 0 for all x ∈H and y ∈C;

(ii) 〈x− y,(IH −PH
C )(x)− (IH −PH

C )(y)〉H ≥ ‖(IH −PH
C )(x)− (IH −PH

C )(y)‖2
H for

all x,y ∈H .
It follows that IH −PH

C is a firmly nonexpansive mapping.

Lemma 2.2. (see [17]) Let H be a real Hilbert space ,and let {xn} be a sequence in H such
that xn ⇀ z as n→ ∞. Then liminfn→∞ ‖xn− z‖H < liminfn→∞ ‖xn− x‖H for all x ∈H and
x 6= z.

Lemma 2.3. (see [3]) Let C be a nonempty, convex, and closed subset of a Hilbert space H .
Let T : C→H be a nonexpansive mapping. Then the mapping IH −T is demiclosed, that is,
whenever {xn} is a sequence in C for which xn ⇀ x ∈ C and xn−T (xn)→ y ∈H , it follows
that x−T (x) = y.

Lemma 2.4. Let H be a real Hilbert space. Then the following statements hold.
(i) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2, ∀x,y ∈H ;
(ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈x+ y,y〉, ∀x,y ∈H ;
(iii) ‖αx+(1−α)y‖2 = α‖x‖2+(1−α)‖y‖2−α(1−α)‖x−y‖2, for all α ∈R and x,y ∈H .

Lemma 2.5. (see [23]) Let an+1 ≤ (1− bn)an + bncn, where {bn} is a real sequence in (0,1)
such that ∑

∞
n=1bn = ∞ and {cn} and {an} are real positive sequences. If limsupk→∞ cnk ≤ 0 for

every subsequence {ank} of {an} satisfying liminfk→∞(ank+1−ank)≥ 0, then limn→∞ an = 0.

Lemma 2.6. (see [18]) Let an+16 (1+λn)an+µn, where {an}, {λn}, and {µn} are nonnegative
real sequence such that ∑

∞
n=0 λn <+∞ and ∑

∞
n=0 µn <+∞. Then limn→∞ an exists.
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3. MAIN RESULTS

In this section, for solving the MSFP, we propose two new accelerated iterative algorithms:
Algorithm 2 accelerates the iterative process through multi-step inertial terms and proves weak
convergence in Hilbert spaces; Algorithm 3 further incorporates the viscosity approximation
method to achieve strong convergence.

Algorithm 2
Step 1. Let ρn ∈ [a,b] ⊂ (0,2) for all n ∈ N. Choose x0, x−1, · · · , x−q ∈H arbitrarily, non-
negative real number εn with ∑

∞
n=0 εn < ∞ , β ≥ 3 and set n := 0.

Step 2. Given xn, xn−1, · · · , xn−q, computeyn = xn + ∑
i∈Q

∆i,n(xn−i− xn−i−1),

xn+1 = yn− γn∇F(yn),

(3.1)

where Q := {0,1, · · · ,q−1}, q ∈ N+, and ∆i,n satisfies 0≤ |∆i,n| ≤ ∆n, where ∆n is defined by

∆n =


min{ n−1

n+β −1
,

εn

∑i∈Q ‖xn−i− xn−i−1‖
}, ∑

i∈Q
‖xn−i− xn−i−1‖ 6= 0,

n−1
n+β −1

, ∑
i∈Q
‖xn−i− xn−i−1‖= 0,

γn =

ρn
Dn

En
, En 6= 0,

0, En = 0,

where

Dn := ‖(IH −PH
C )(yn)‖2

H +
N

∑
i=1
‖(IHi−PHi

Qi
)(Aiyn)‖2

Hi
+‖

N

∑
i=1

Bi(Aiyn)− y‖2
K

and

En := ‖(IH −PH
C )(yn)+

N

∑
i=1

A∗i (I
Hi−PHi

Qi
)(Aiyn)+

N

∑
i=1

A∗i B∗i

( N

∑
i=1

Bi(Aiyn)− y
)
‖2

H .

Step 3. Set n← n+1 and go to Step 2.

The weak convergence of the sequence generated by Algorithm 2 is established in the fol-
lowing theorem.

Theorem 3.1 If Ω 6= /0, then the sequence {xn} generated by Algorithm 2 converges weakly to
a solution of the MSFP.

Proof. The proof is split into several steps. Fix a pint p in Ω.
Claim 1. prove that {xn} is bounded.
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Indeed, using (3.1), we see that

‖yn− p‖H ≤ ‖xn− p‖H + ∑
i∈Q

∆n‖xn−i− xn−i−1‖H

≤ ‖xn− p‖H + εn.

We now observe that
〈∇F(yn),yn− p〉H
= 〈(IH −PH

C )(yn),yn− p〉H

+
N

∑
i=1
〈A∗i (IHi−PHi

Qi
)(Aiyn),yn− p〉Hi

+
N

∑
i=1

〈
A∗i B∗i

(
N

∑
i=1

Bi(Aiyn)− y

)
,yn− p

〉
K

= 〈(IH −PH
C )(yn),yn− p〉H +

N

∑
i=1
〈(IHi−PHi

Qi
)(Aiyn),Aiyn−Ai p〉Hi

+

〈
N

∑
i=1

Bi(Aiyn)− y,
N

∑
i=1

Bi(Aiyn)−
N

∑
i=1

Bi(Ai p)

〉
K

= 〈(IH −PH
C )(yn)− (IH −PH

C )(p),yn− p〉H

+
N

∑
i=1
〈(IHi−PHi

Qi
)(Aiyn)− (IHi−PHi

Qi
)(Ai p),Aiyn−Ai p〉Hi +‖

N

∑
i=1

Bi(Aiyn)− y‖2
K .

We find that

〈∇F(yn),yn− p〉H ≥ ‖(IH −PH
C )(yn)− (IH −PH

C )(p)‖2
H

+
N

∑
i=1
‖(IHi−PHi

Qi
)(Aiyn)− (IHi−PHi

Qi
)(Ai p)‖2

Hi

+‖
N

∑
i=1

Bi(Aiyn)− y‖2
K

= ‖(IH −PH
C )(yn)‖2

H +
N

∑
i=1
‖(IHi−PHi

Qi
)(Aiyn)‖2

Hi

+‖
N

∑
i=1

Bi(Aiyn)− y‖2
K

= Dn.

(3.2)

Note that
‖∇F(yn)‖2

H = En. (3.3)

Further, we have

‖xn+1− p‖2
H = ‖yn− p‖2

H −2γn〈∇F(yn),yn− p〉H + γ
2
n‖∇F(yn)‖2

H

≤ ‖yn− p‖2
H −2γnDn + γ

2
n En.
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Thus

‖xn+1− p‖2
H ≤


‖yn− p‖2

H , i f γn = 0,

‖yn− p‖2
H −ρn(2−ρn)

D2
n

En
, i f γn = ρn

Dn

En
.

Since ρn ∈ [a,b]⊂ (0,2), in both cases, we obtain

‖xn+1− p‖H ≤ ‖yn− p‖H ≤ ‖xn− p‖H + εn. (3.4)

Using mathematical induction, we find that ‖xn+1− p‖H ≤ ‖x0− p‖H +∑
n
k=0 εk, which yields

that {xn} is bounded.
Claim 2. For each i = 1,2, · · · ,N, show that

‖(IH −PH
C )(yn))‖2

H → 0, (3.5)

‖(IHi−PHi
Qi

)(Aiyn)‖2
Hi
→ 0, (3.6)

‖
N

∑
i=1

Bi(Aiyn)− y‖2
K → 0. (3.7)

In order to complete the proof of this claim, we consider the following two cases.
Case 1. γn = 0. From En = 0 and (3.3), we have ∇F(yn) = 0. Using (3.2), it follows that Dn = 0.
Case 2. γn 6= 0. Thus γn = ρn

Dn
En
. In this case, we have

ρn(2−ρn)
D2

n
En
≤ ‖yn− p‖2

H −‖xn+1− p‖2
H

≤ (‖xn− p‖H + εn)
2−‖xn+1− p‖2

H

≤ ‖xn− p‖2
H +2(‖xn− p‖H + εn)εn−‖xn+1− p‖2

H

≤ ‖xn− p‖2
H −‖xn+1− p‖2

H +M1εn,

(3.8)

where
M1 = 2sup

n≥0
{‖xn− p‖H + εn}< ∞.

Using the condition ρn ∈ [a,b]⊂ (0,2) and the above inequality, we have D2
n

En
→ 0. Applying the

inequality (a+b)2 ≤ 2(a2 +b2), for all a,b ∈ R, we deduce

En = ‖(IH −PH
C )(yn)+

N

∑
i=1

A∗i (I
Hi−PHi

Qi
)(Aiyn)+

N

∑
i=1

A∗i B∗i

( N

∑
i=1

Bi(Aiyn)− y
)
‖2

H

≤ 2max
{

1, max
1≤i≤N

{‖Ai‖2},N max
1≤i≤N

{‖AiBi‖2}
}

Dn.

Thus, it follows from that Dn → 0. Therefore, in both cases, we find that Dn → 0. Using the
definition of Dn, we derive the limits (3.5), (3.6), (3.7), as claimed.

Claim 3. Prove that {xn} converges weakly to x∗ ∈Ω.
Since {xn} bounded, one sees that there exists a subsequence {xnk} of {xn} which converges

weakly to some x∗ ∈H , such that xnk ⇀ x∗. From (3.4), it follows that ‖ynk − xnk‖ ≤ εnk → 0
as k→ ∞. Consequently, there exists a subsequence {ynk} of {yn} which ynk ⇀ x∗ ∈C. Then,
in light of Lemma 2.3 and (3.5), we deduce that x∗ ∈C.
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On the other hand, since Ai and Bi are linear and bounded, we have Aiynk ⇀ Ai(x∗) and
Bi(Aiynk) ⇀ Bi(Aix∗), for all i = 1,2, · · · ,N. Thus, using (3.6) and Lemma 2.3, we see that
Aiynk ∈ Qi for each i = 1,2, · · · ,N, so Aix∗ ∈ Qi. From (3.7), it follows that ∑

N
i=1 Bi(Aix∗) = y.

Therefore, we conclude that x∗ ∈Ω.
Finally, we eatablish that xn ⇀ x∗. Suppose, for the sake of contradiction, that there exists

another subsequence {xmk} of {xn} such that xmk ⇀ x̄∗ with x̄∗ 6= x∗. Using an argument which
is similar to the one used above, we again find that x̄∗ ∈Ω. It follows from Lemma 2.2 and the
existence of the finite limit of {‖xn− x∗‖H } that

liminf
k→∞

‖xnk− x∗‖H < liminf
k→∞

‖xnk− x̄∗‖H = liminf
k→∞

‖xmk− x̄∗‖H

< liminf
k→∞

‖xmk− x∗‖H = liminf
k→∞

‖xnk− x∗‖H .

However, this is a contradiction. Hence it follows that xmk ⇀ x∗. Therefore, we conclude that
xn ⇀ x∗, as claimed. This completes the proof. �

To derive a strong convergence theorem, we now combine Algorithm 2 with the viscosity
approximation method. Our second algorithm is formulated as follows:

Algorithm 3
Step 1. Let ρn ∈ [a,b] ⊂ (0,2) for all n ∈ N. Choose x0, x−1, · · · , x−q ∈H arbitrarily, β ≥ 3
and set n := 0.
Step 2. Given xn, xn−1, · · · , xn−q, compute

yn = xn + ∑
i∈Q

∆i,n(xn−i− xn−i−1),

zn = yn− γn∇F(yn),

xn+1 = αnh(yn)+(1−αn)zn,

(3.9)

where h : H →H is a strict contraction with constant δ ∈ [0,1), Q := {0,1, · · · ,q−1} with
q ∈ N+, and sequence {αn} ⊂ (0,1) satisfies

(i)αn ∈ [a,b]⊂ (0,1), lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞;

(ii)εn = o(αn), i.e., lim
n→∞

εn

αn
= 0.

(3.10)

And ∆i,n satisfies 0≤ |∆i,n| ≤ ∆n with ∆n defined by

∆n =


min{ n−1

n+β −1
,

εn

∑i∈Q ‖xn−i− xn−i−1‖
}, ∑

i∈Q
‖xn−i− xn−i−1‖ 6= 0,

n−1
n+β −1

, ∑
i∈Q
‖xn−i− xn−i−1‖= 0.

γn =

ρn
Dn

En
, En 6= 0,

0, En = 0,
(3.11)
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where

Dn := ‖(IH −PH
C )(yn)‖2

H +
N

∑
i=1
‖(IHi−PHi

Qi
)(Aiyn)‖2

Hi
+‖

N

∑
i=1

Bi(Aiyn)− y‖2
K

and

En := ‖(IH −PH
C )(yn)+

N

∑
i=1

A∗i (I
Hi−PHi

Qi
)(Aiyn)+

N

∑
i=1

A∗i B∗i

( N

∑
i=1

Bi(Aiyn)− y
)
‖2

H .

Step 3. Set n← n+1 and go to Step 2.

Theorem 3.2 If Ω 6= /0, then the sequence {xn} generated by Algorithm 3 converges strongly to
the unique solution to the equation x∗ = PΩ(h(x∗)).

Proof. The proof is divided into several steps. We take any p ∈Ω.

Claim 1. The sequence {xn} is bounded.

Indeed, it follows from (3.9) and 0 < αn < 1 that
‖xn+1− p‖H = ‖αnh(yn)+(1−αn)zn− p‖H

= ‖αn(h(yn)− p)+(1−αn)(zn− p)‖H
≤ αn‖h(yn)− p‖H +(1−αn)‖zn− p‖H
≤ αn[‖h(yn)−h(p)‖H +‖h(p)− p‖H ]+ (1−αn)‖zn− p‖H
≤ αn[δ‖yn− p‖H +‖h(p)− p‖H ]+ (1−αn)‖zn− p‖H .

(3.12)

Employing an argument similar to the one used in the proof of Claim 1 of Theorem 3.1, we
obtain

‖zn− p‖H ≤ ‖yn− p‖H ≤ ‖xn− p‖H + εn. (3.13)
Using (3.4), (3.12), and (3.13), we infer that

‖xn+1− p‖H ≤ (1−αn(1−δ ))‖yn− p‖H +αn‖h(p)− p‖H

≤ (1−αn(1−δ ))(‖xn− p‖H + εn)+αn(1−δ )
‖h(p)− p‖H

1−δ

≤ (1−αn(1−δ ))‖xn− p‖H +αn(1−δ )
‖h(p)− p‖H + εn/αn

1−δ

≤max{‖xn− p‖H ,
‖h(p)− p‖H + εn/αn

1−δ
}.

Consequently, applying mathematical induction establishes that

‖xn+1− p‖H ≤max{‖x0− p‖H ,M2},

where M2 = supn≥0{
‖h(p)−p‖H +εn/αn

1−δ
}. Therefore, {xn} is bounded, so are {yn} and {h(yn)}.

Claim 2. Prove
‖xn+1− p‖2

H ≤ ‖xn− p‖2
H +Θn (3.14)

where

Θn =

{
αnM3 +M1εn, γn = 0,

αnM3 +M1εn−ρn(2−ρn)
D2

n
En
, γn = ρn

Dn
En
,
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where M3 = supn≥0{‖h(yn)− p‖2
H }< ∞. Indeed, using (3.9), we have

‖xn+1− p‖2
H ≤ αn‖h(yn)− p‖2

H +(1−αn)‖zn− p‖2
H

≤ αnM3 +‖zn− p‖2
H .

(3.15)

Employing an argument similar to the one used in the proof of Claim 1 of the Theorem 3.1, and
using (3.9) and (3.11), we find that

‖zn− p‖2
H ≤

{
‖yn− p‖2

H i f γn = 0,

‖yn− p‖2
H −ρn(2−ρn)

D2
n

En
i f γn = ρn

Dn
En

(3.16)

and
‖yn− p‖2

H ≤ (‖xn− p‖H + εn)
2

≤ ‖xn− p‖2
H +2(‖xn− p‖H + εn)εn

≤ ‖xn− p‖2
H +M1εn,

(3.17)

Now, using (3.15), (3.16), and (3.17), we obtain inequality (3.14), as claimed.
Claim 3. Prove the following inequality:

an+1 ≤ (1−bn)an +bncn, ∀n≥ 1, (3.18)

where an := ‖xn− p‖2
H , bn := αn(1−δ ), and

cn :=
M1εn/αn +2〈h(p)− p,xn+1− p〉H

(1−δ )
.

Indeed, using (3.9), (3.16), (3.17), and Lemma 2.4, we see that

‖xn+1− p‖2
H

= ‖αn(h(yn)−h(p))+αn(h(p)− p)‖2
H +(1−αn)(zn− p)‖2

H

≤ ‖αn(h(yn)−h(p))+(1−αn)(zn− p)‖2
H +2αn〈h(p)− p,xn+1− p〉H

≤ αn‖h(yn)−h(p)‖2
H +(1−αn)‖zn− p‖2

H +2αn〈h(p)− p,xn+1− p〉H
≤ αnδ‖yn− p‖2

H +(1−αn)‖yn− p‖2
H +2αn〈h(p)− p,xn+1− p〉H

= (1−αn(1−δ ))‖yn− p‖2
H +2αn〈h(p)− p,xn+1− p〉H

≤ (1−αn(1−δ ))‖xn− p‖2
H +αn(1−δ )

M1εn/αn +2〈h(p)− p,xn+1− p〉H
(1−δ )

.

It is not hard to see that the above inequality can be rewritten in the form (3.18), as claimed.
Claim 4. Prove that {xn} converges strongly to x∗, which is a unique solution to x = PΩ(h(x)).

We use Claim 3 to replacing p by x∗ and prove that an→ 0 by using Lemma 2.5. To begin
this, we assume that {||xnm− x∗||2H } is an arbitrary subsequence of {‖xn− x∗||2H } such that

liminf
m→∞

(‖xnm+1− x∗‖2
H −‖xnm− x∗‖2

H )≥ 0.

Next, we consider the following two cases.
Case 1. γnm = 0.

It follows from Enm = 0 and (3.3) that ∇F(ynm) = 0. Using (3.4), we find that Dnm = 0.
Besides, using the definition of zn, we know that ‖znm− ynm‖H = 0.

Case 2. γnm = ρnm
Dnm
Enm

.
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It follows from Claim 2, (3.8), (3.10) and ρnm ∈ [a,b] ⊂ (0,2) that D2
nm

Enm
→ 0, which implies

that Dnm → 0. In addition, from (3.3) and (3.9), we also have

‖znm− ynm‖2
H = γ

2
nm
‖∇F(ynm)‖2

H = γ
2
nm

Enm = ρ
2
nm

D2
nm

Enm

≤ b2 D2
nm

Enm

→ 0.

Therefore, in both cases, we have ‖znm−ynm‖H → 0, and it follows from (3.13) that ‖yn−xn‖≤
εn. Thus there exists a subsequence {xnm} of {xn} such that ‖ynm−xnm‖→ 0 and ‖znm−xnm‖→
0. Using the definition of Dn, we infer that ‖(IH −PH

C (ynm)‖2
H → 0, ‖(IHi−PHi

Qi
)(ynm)‖2

Hi
→

0, and ‖∑
N
i=1 Bi(Aiynm)− y‖2

K → 0 for all i = 1,2, · · · ,N. Using the boundedness of {ynm} and
{h(ynm)}, we see that

‖xnm+1− xnm‖H = ‖αnm(h(ynm)− xnm)+(1−αnm)(znm− xnm)‖H
≤ αnm‖h(ynm)− xnm‖H +(1−αnm)‖znm− xnm‖H
≤ αnmM4 +(1−αnm)‖znm− xnm‖H ,

(3.19)

where M4 = supm ‖h(ynm)− xnm‖H . Thus ‖xnm+1− xnm‖H → 0. In light of Claim 3, to apply
Lemma 2.5, it is sufficient to prove limsupm→∞ cnm ≤ 0, which is equivalent to proving that

limsup
m→∞

M2εnm

αnm

+ 〈h(x∗)− x∗,xnm+1− p〉H ≤ 0.

To achieve this, we first observe that

〈h(x∗)− x∗,xnm+1− x∗〉H
= 〈h(x∗)− x∗,xnm+1− xnm〉H + 〈h(x∗)− x∗,xnm− x∗〉H
≤ ‖h(x∗)− x∗‖H ‖xnm+1− xnm‖H + 〈h(x∗)− x∗,xnm− x∗〉H .

(3.20)

Since {xnm} is a bounded sequence (Claim 1), one sees that there exists a subsequence {xnm j
}

of {xnm} which converges weakly to some z ∈H such that

limsup
m→∞

〈h(x∗)− x∗,xnm− x∗〉H = limsup
j→∞

〈h(x∗)− x∗,xnm j
− x∗〉H = 〈h(x∗)− x∗,z− x∗〉H .

Using an argument similar to one used in the proof of Claim 3 in Theorem 3.1, we find that
z ∈Ω. Additionally, from the definition of x∗ and Lemma 2.1, we obtain

limsup
m→∞

〈h(x∗)− x∗,xnm− x∗〉H = 〈h(x∗)− x∗,z− x∗〉H ≤ 0.

Using (3.10) and (3.20), we find that limsupm→∞ cnm ≤ 0. Now it is not difficult to see that all
the hypotheses of Lemma 2.5 are satisfied. Hence, we obtain ‖xn− x∗‖H → 0, specifically,
xn→ x∗. This completes the proof. �

4. NUMERICAL EXPERIMENTS

In this section, we verify the effectiveness and performance of the proposed algorithm through
a series of numerical experiments. In the experiments, we conducted a detailed comparison of
the number of iterations, errors and running times of three algorithms (Algorithm 1, Algorithm
2 and Algorithm 3) under different parameter settings. All experiments were carried out in the
same computational environment to ensure the fairness and comparability of the results.
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We consider the MSFP under the following settings: for i = 1,2,3, H = Rm,Hi = Rki , and
K = Rl are finite-dimensional Euclidean spaces. The sets C and Qi are defined as:

C = {x ∈ Rm : 〈ζ0,x〉 ≤ β0}

and

Qi = {x ∈ Rmi : 〈ζi,x〉 ≤ βi},

where βi = i+1, i = 0,1, · · · , 3, and the coordinates of ζ0 and ζi are randomly generated in the
intervals [0,10], [5,15], [10,20], and [15,25]. The bounded linear operators Ai : Rm→ Rki and
Bi : Rki →Rl are matrix randomly generated in the closed interval [−20,20] for each i = 1,2,3.
Setting y = 0 in this experiment ensures Ω 6= /0 because 0 ∈ Ω. We implement Algorithm l ,
Algorithm 2, and Algorithm 3 with m = 100,k1 = 200,k2 = 300,k3 = 400, l = 500, and the
coordinates of the initial point x0, x−1, · · · , x−q are randomly generated in the closed interval
[−5,5]. In this case, we see x∗ = 0. We choose the control parameter αn = n−1 and use the
stopping condition: err = ‖xn− x∗‖, which is required to fall below a specified tolerance TOL.

The parameters for Algorithm 2 and Algorithm 3 are similar to those of Algorithm 1, but with
the addition of extra parameters related to multi-step inertia and inertia coefficient calculations
in the algorithm’s running parameters. Specifically, we set β = 3, αn = 1

n+1 , εn = αn
n0.01 , and

h(x) = 0.05x in Algorithm 3. In the experiments, we selected different values for the parameter
ρn , namely 0.3, 0.5, 1.3 and 1.5, to observe their impact on the performance of the algorithms.
Additionally, for each value of ρn , we set the tolerance error (TOL) to 10−5, 10−7 and 10−9

to evaluate the algorithms’ performance under different precision requirements. The specific
experimental results are shown in the following table:

From the experimental results above, it can be seen that all three algorithms can effectively
converge to the expected solution under different parameters ρn and tolerance error TOL.

Specifically, The iteration count (n): As the tolerance error TOL decreases, the iteration count
for all algorithms increases. This indicates that more iterations are required to achieve higher
precision. Under different ρn values, Algorithm 3 generally has fewer iterations, especially
when TOL is small, suggesting that it has an advantage in convergence speed.

Error (err): The error of all algorithms gradually decreases with iterations and eventually
reaches or falls below the set tolerance error TOL. Under the same parameter settings, the error
of Algorithm 2 and Algorithm 3 is slightly lower than that of Algorithm 1, indicating that they
may have better accuracy.

Running Time (Time): In terms of running time, Algorithm 3 generally shows faster com-
putational speed in most cases, especially when TOL is small. This may be due to certain
optimizations in its algorithm structure or implementation, enabling it to handle computational
tasks more efficiently.

To more intuitively demonstrate the performance of the algorithms, we have also plotted
the relationship between the iteration count and error under different ρn values. These figures
further validate the analysis of the numerical results presented above.

Under varying parameters ρn and tolerance error TOL, all three algorithms effectively con-
verge. As TOL decreases, the number of iterations increases, yet Algorithm 3 demonstrates
a faster convergence rate. In terms of accuracy, Algorithms 2 and 3 outperform Algorithm 1.
Regarding computation time, Algorithm 3 is faster in most cases, especially when TOL is small.
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TABLE 1. Numerical results and comparisons among algorithms.

ρn TOL Algorithm 1 Algorithm 2 Algorithm 3
1×10−5 n 55 43 36

err 9.36×10−6 7.63×10−6 6.90×10−6

Time 0.06 0.04 0.04
0.3 1×10−7 n 72 55 51

err 9.41×10−8 9.95×10−8 8.72×10−8

Time 0.06 0.05 0.04
1×10−9 n 95 71 66

err 8.21×10−10 8.08×10−10 8.83×10−10

Time 0.05 0.05 0.04
1×10−5 n 46 38 32

err 9.14×10−6 8.39×10−6 7.47×10−6

Time 0.03 0.02 0.03
0.5 1×10−7 n 61 48 45

err 6.82×10−8 9.16×10−8 8.90×10−8

Time 0.06 0.02 0.03
1×10−9 n 79 67 63

err 8.07×10−10 7.43×10−10 6.20×10−10

Time 0.04 0.06 0.03
1×10−5 n 61 51 40

err 8.71×10−6 7.96×10−6 9.74×10−6

Time 0.04 0.03 0.04
1.3 1×10−7 n 82 60 53

err 8.94×10−8 8.93×10−8 6.86×10−8

Time 0.07 0.03 0.03
1×10−9 n 108 76 69

err 9.38×10−10 7.72×10−10 8.60×10−10

Time 0.09 0.06 0.03
1×10−5 n 62 53 45

err 8.12×10−6 9.00×10−6 7.67×10−6

Time 0.04 0.02 0.02
1.5 1×10−7 n 84 68 59

err 9.15×10−8 7.63×10−8 7.42×10−8

Time 0.05 0.05 0.03
1×10−9 n 112 89 73

err 8.21×10−10 8.49×10−10 7.58×10−10

Time 0.07 0.05 0.05

5. CONCLUDING REMARKS

We presented two new inertial accelerated algorithms. Our algorithms are improvements and
extensions of Algorithm 1 studied by Reich et al. [21]. We adopt multi-step inertial techniques
and the viscosity approximation method, and further we prove the weak and strong convergence
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FIGURE 1. The behavior of err with TOL = 10−7

of the introduced algorithms. Finally, we demonstrate the applicability and efficiency of our
methods through numerical experiments.
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