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Abstract. The Mann algorithm has been extensively studied as one of the most fundamental iterative
schemes designed to find a fixed point of an averaged operator. In this paper, we aim to develop a new
parallel algorithm improving the Mann algorithm with double inertial extrapolations to find a common
fixed point of a finite family of nonexpansive mappings. Our proposed algorithm allows iterations to
be carried out simultaneously. We prove the weak convergence under suitable conditions, and we give
an example in infinite-dimensional spaces. Finally, we apply our algorithm in the context of image
restoration to deblur images without prior knowledge of the blurring operator.
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1. INTRODUCTION

Restoration problem. The image restoration problem is to remove blurring and noise in a
degraded image. The blur is generally modeled by using a system of linear equations. This cel-
ebrated problem is now widespread in various fields such as forensic research, medical imaging,
photographic enhancement, and astronomical imaging. A common difficulty in image restora-
tion is to restore images when the blurring operator involved is unknown. Traditional restoration
procedures often require prior knowledge of the blurring process. In real-world situations, the
blurring operator involved is, however, not available and has to be estimated.

Deblurring photographs requires a technique flexible enough to deal with ambiguities regard-
ing the degradation process. To handle uncertainties in the data, optimization procedures are
always needed to find the best approximation of the original image. The blur corresponds to the
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presence of an area in an image lacking its sharpness. This degeneration occurs under several
well-identified factors such as camera physical properties, subject movement, poor focusing,
and narrow aperture that results in a shallow depth of field. Recently, efforts were made to
overcome or reduce the difficulty of image restoration without prior knowledge of the blurring
operator; see, e.g., [5, 19, 32, 39]. The four most common forms of blur effects in digital imag-
ing are the average, out-of-focus, gaussian, and motion blur. In this paper, we only focus on
the motion blur generated by relative movement between the camera and the subject producing
stretching effects along the direction of motion.

Motivation and objectives. In this paper, we are motivated by recent interest in using Mann’s
iteration process at the heart of an embarrassingly parallel algorithm to speed up the numeri-
cal solving process for image blind deblurring. Our work builds upon this process known to
converge weakly in some class of infinite-dimensional Banach spaces. The purpose of this pa-
per is to devise the Mann-type algorithm for finding a common fixed point for a finite family
of nonexpansive mappings. In particular, the finite (namely countable) family of nonexpan-
sive mappings is well-adapted to encompass a generated collection of motion blurs containing
commonly accepted potential directions (and length) for the unknown motion blur without the
estimation of unknown parameters precisely (as an initial guess).

In our algorithm, we combine Mann’s iteration process with double inertial extrapolations
to further speed up the solving process while ensuring its convergence along iterations. The
theoretical objective of this paper is to establish the weak convergence of the proposed method
to find a common fixed point under suitable conditions and restrictions. Also, the objective
is to provide an example in an infinite dimensional space to approximate the solution of the
inclusion problem. Finally, the targeted application of our proposed algorithm is to perform
image restoration without prior knowledge of the blurring operator. This real-world problem is
recognized as a hard problem and classically known as blind image deblurring. In this paper,
our goal is to improve the readability of blurry characters so that the blurred characters are
visible enough to be detected by an optical character recognition system.

Contribution. Our main contribution is a new fixed point iteration method integrating Mann
iteration with double inertial extrapolations. Our algorithm is embarrassingly parallel to be
implemented on GPU. We establish the weak convergence of this method for finding a common
fixed point for a finite family of nonexpansive mappings.

2. TECHNICAL BACKGROUND

In this section, we present several technical background related to inertial techniques as ac-
celeration methods such as the fixed point theory (i.e. nonexpansive mappings and fixed point
sets), iterative schemes (i.e. iteration process, Mann iteration, inertial terms and inertial extrap-
olation) and their generalizations (i.e. double inertial, proximal point algorithm).

Fixed point theory. The fixed point theory is an important optimization theory which is
widely recognized across many fields such as medicine, economics, image processing, data
classification, machine learning, and signal processing, and so on; see, e.g., [9, 10, 17, 28, 30].

Nonexpansive mapping. The Browder’s theorem [3] demonstrates the existence of a fixed
point for a nonexpansive mapping. In this work, we consider a real Hilbert space .7 with
an inner product (-,-) and the corresponding norm || - ||. Let ¥ be a nonempty, convex, and
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closed subset of 7. A mapping . : € — % is called nonexpansive if, for each u,w € €,
| u— ]| < Jlu—w].

In this paper, we study the celebrated fixed point problem that aims to find a point u# such that
u = .%u, where {5”,}5\': , 1s a finite family of nonexpansive mappings on J#. A point u is called
a common fixed point of .%; if u € Y| .7 (.7)).

Fixed point set. For any mapping . : 5 — JZ, the fixed point set of . is denoted by
F () and given by F () :={u € S :u= Su}.

Iteration process. The initial point of any iteration scheme is denoted by ug. Picard [26]
introduced the iteration process, as follows:

ur1 =Sy, k=>0.

Mann iteration. The Mann iteration [22] is an averaged process (by nature) generating a
sequence {uy } recursively by:

w1 = Prug 4 (1= Br) Lwg, k>0,

where the initial u is selected arbitrarily, and the sequence {f} lies within the interval (0, 1).

Inertial and momentum terms. In the context of the gradient algorithm, inertial terms
were introduced by Polyak [27] to speed up the convergence of iterative algorithms. Also
introduced by Polyak, the heavy ball method introduces a momentum term o (1 — uy_1), given
the starting points ug = u_1 € R,

U1 = U + O (uk—uk_l) —lng (uk), k>0,

where {0y} € [0,00) and A; > 0 is the step-size parameter.
Inertial extrapolation. Mainge [23] modified the Mann algorithm with an inertial extrapo-
lation by introducing the following algorithm. Let u_1, ug € 57,

Wi = Uy + O (U — ug—1),
U1 = Browr + (1= B) Swi, k>0,

where { o} € [0,00) and { B¢} C [0, 1]. It is worth noting that the iterative sequence {u; } defined
by this algorithm converges weakly to a fixed point of . under certain mild assumptions.

Generalizing inertial methods. In recent years, the adoption of inertial techniques as accel-
eration methods has attracted significant attention in research. Various fast iterative algorithms
incorporating inertial terms were developed. For instance, the inertial technique [27] was gen-
eralized by Iyiola and Shehu [16] with the introduction of the double inertial and proximal point
algorithms as follows. Let u_1,up, wy € ¢, and

o
U1 =Jg we,
Wil = Ukt + O (g —ug) + A (g —ug—1), k>0,

where o7 : 7 — 277 is a maximal monotone operator and the parameters of o, A and § satis-
fying conditions as presented in [16].

Other improvements include the inertial extragradient methods introduced by Dong [11], In-
ertial Mann algorithms [12, 29, 33], inertial extragradient algorithms [14, 38], inertial forward-
backward algorithms [1, 37], and the fast iterative shrinkage-thresholding algorithm (FISTA) [4].
These algorithms were proven to be valuable for both theoretical and numerical evaluations,
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with applications in areas such as image processing, signal recovery, and machine learning. For
further insights, we refer the readers to [2, 7, 8, 20, 31].

Parallel inertial methods. Parallel algorithms were used to speed up the computation by
executing multiple tasks across various processing elements simultaneously. This class of algo-
rithms is ideal for solving large-scale and data-intensive problems encountered in various fields
such as computer science, engineering, and bioinformatics. Recently, Jun-On et al. [18] mod-
ified inertial extrapolation and parallel monotone hybrid method to find a common fixed point
for a finite family of nonexpansive mappings in .. Starting with u_1,ug, the parallel algorithm
is written as follows:

Vi = up+ o (e — 1),
wix = (1= Bix) v+ BixTivis (2.1)
vikk = (1=%xk) S+ Yk Wik,
Uprp = argmlax{|]y,-7k—vk|] ti=1,...,N}, fork>0,

where {.#;})Y | is nonexpansive mappings and the sequences {0y}, {B;x} and {y; s} satisfy the
conditions that are as presented in [18]. Applications in signal recovery of parallel methods
include scenarios with unknown noise types using various blurred matrices and noise for the
LASSO problem. Some results involving the parallel method for solving the fixed point problem
can be found in [5, 6, 13, 34, 35, 36].

3. PRELIMINARIES

We recall specific definitions and lemmas that are fundamental in our work to derive our
proposed proof.

An operator P is said to be metric projection of 7" onto nonempty, convex, and closed
subset % if, for every u € S, there exists a unique nearest point in % denoted by Z4u such
that ||u — Pyu| < ||lu—w|| for all w € €. Let 7 be a real Hilbert space. It is known the
following statements hold:

() [l =wl? = [|ue]® = [Iw]]* = 2, w), Ve, w €

Q) |lu+w||? < ||ul*>+2(w,u+w), Yu,w e H;

Q) lau+ (1—a)w|]* = alul*+ (1—a)|w|* —a(l—a) |u—w|? Vo € [0,1], u,w €
T

Lemma 3.1. (Opial Property [24]). We denote by ¢ the Hilbert space. 7 is said to have
the Opial property if for every weakly convergent sequence {uy} in & with a weak limit z,
liminfy . ||ug — z|| < liminfy . ||ux — w||, for all w € F with w # z.

Lemma 3.2. (Goebel Sequence [15]). Let € be a nonempty, convex, and closed subset of F,
and let . : € — € be a nonexpansive mapping. Assume that {u;} is a sequence in €. If
up —u* €6 and { S w —u} — v €E, then Su* —u* =v.

Lemma 3.3. (Osilike Sequences [25]). Let {s},{tx}, and {6} be nonnegative sequences such
that sgr1 < (14+0k)sg+t, k> 1 IF Y | O < +ooand Y7t < +oo, then limy_,.. Sy exists.

Lemma 3.4. (Opial Sequences [24]. Let Q be a subset of 7 and {u;} be a sequence in H°
that satisfy:
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(i) for every p € Q, limy_,o ||ugx — p|| exists;
(ii) each weak-cluster point of the sequence {uy} is in Q.
Then, {u;} converges weakly to an element in Q.

4. PARALLEL DOUBLE INERTIAL MANN-TYPE ALGORITHM

In this section, we provide the convergence theorem of parallel double inertial Mann algo-
rithm for nonexpansive mappings in a real Hilbert space. Let {%}f’: | be a family of nonexpan-
sive mappings on .7, and N, . (.;) be nonempty.

Algorithm 4.1. A modified parallel Mann algorithm ending with a double inertial method
Initialization : Let w_1,wo,ug € J€ be arbitrary, O, Ay € (—oo,00), Biy € (0,1) for all i =
L., Nwith Y  Bix=1.

Iteration Step: for k = 0, compute

N
Wit = Bottk+ Y, Bi kT itti
i

U1 = Wik 1 + 0 (Wi 1 — wi) + (Wi — wi—1).

Then, set k = k+ 1 and update in Iteration Step.

Theorem 4.2. Let 57 be a real Hilbert space and {5’,}5\]: | 1 A — H be a family of nonex-
pansive mappings such that (Y., F (.%;) is nonempty. Let {u;} be defined by Algorithm 4.1.
Assume that the following conditions are satisfied:

(1) Xy |0l [[Wie 1 = wie|| < 003

(i) Xy y el [wie = wie—i || < oo

(iii) li,?ligfﬁovk’ﬁivk >0foralli=1,2,...,N.

Then, {u;} converges weakly to a point in (X, F (7).

Proof. Let p € N, .7 (7). We find that |[wiy1 — p|| < Bollux — pll + XX, Bixll e — pl| <
|ux — pl| and [Jugs1 — pl| < ||wier — p| 4 o] [|[wir1 — wiel| + | Ax|||wk — wi—1]|. Thus

e = Il < Nlux = pll + ol wier s = wil | + Al [wie = wia ]

From Lemma 3.3, we have that limy_,. ||ux — p|| exists. Thus {uy} is bounded, so is {wy}.
Next, we show that {u; } converges weakly to a point in (Y., .% (.#;). Consider

N N
w1 = pII* = Bollue = pII* + Y Biall - = plI* = Bo Y, Biell-huae — |
i=1 i=1

N
< e = plI* = Box Y Bill-S e — ug||*. (4.1)
i=1

Note that
1 — plI* = Wk + o (W1 —wi) + A (Wi — wi_1) — pl|*

< Wit — I 4 2(0 (Wi 1 —wi) + Ae(we — wi_ 1), g1 — ). 4.2)
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Combining (4.1) and (4.2), we obtain

st — Pl <||ux — plI* +2( (Wit — wr) + Ae(wie —wi—1), g1 — p)

N
—Box Y, Biell -t — | |*-
i=1

Hence, we have
N

Box Y Bikll-Sur — ul|* <|lux — pl|* — lug+1 — pl|>
i=1
+ 2( 0 (Wit1 — wie) + Ae(w — wi—1), 1 — p).-
By assumptions (i)-(iii) and the fact that lim;_... ||ux — p|| exists, we obtain

lim || Fhu — | =0, forall i=12,...N. (4.3)
—»00

Since {u;} is bounded, we suppose that z is a weak sequential cluster point of {uy }. It follows
by (4.3) with Lemma 3.2 that z € (Y, .#(.#}). By using Lemma 3.4, we conclude that {u;}
converges weakly to an element in Y., .7 (.%). O

Remark 4.3. From Algorithm 4.1, we see that

(i) To use projection P, we can set .] = P4 to obtain ¢ = .7 (.A);

(ii) for the inclusion problem: find u € # such that 0 € (o/ + %B)u, where o7 : # — 27 and
B H# — A with the solution set zer(«Z + A), the resolvent operator of <7 is defined by
J§7 = (I1+682)"" where § > 0. It is well-known that if .27 is maximally monotone and % is

% —Lipschitz monotone, then we can set .%; = Jgj" (I— 8:%;), where &; € (0, %)

From the above remark, we can modify our algorithm to find a solution in ﬂf-vzz zer(a; +
%,’) Ne.

Algorithm 4.4. Parallel Mann algorithm with two inertial

Initialization : Let w_y,wo,ug € J€ be arbitrary, Oy, Ay € (—oo,00), Biy € (0,1) for all i =
0,1,....Nwith YN, Bix = 1.

Iteration Step for k = 0, compute

N
%
Wit = Boxtte+ BiaPeuw+ Y Biads (ux — §:Buy),
=
U1 = Wi 1+ O (Wit — wie) + A (Wi — wie—1).

Then, set k = k+ 1 and update in Iteration Step.

5. NUMERICAL EXPERIMENTS

To support our main theorem, we now give an example in infinitely dimensional spaces
L,[0, 1], where the Ly-norm is defined by ||u(z)|| = 1/ fol |u(t)|? dt with the inner product given

by (u,w) = fol u(t)w(t) dr where u(t) € L,[0,1]. The experiments were performed by using
MATLAB R2022A on an HP Laptop equipped with an Intel(R) Core(TM) 17-1165G7 CPU and
16.00 GB of RAM.
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Example 5.1. Let 5 = L,[0,1]. Define mappings .71, % : & — 7 by Ju(t) = %u(t) and
Fou(t) = gu(t), where u(t) € L,[0,1].

In the first part of this example, we select the optimal parameters for our algorithm by con-
sidering the number of iterations and CPU times. Table 1 shows the results when A = 0.1 with

various values of a; and .. In Table 2, we set a; = G +1 (510 with different A values. Additionally,

we plot the errors in Figures 1 and 2.
The initial points ug = 2log(t) + 1, w_; = 2t> +1 — 1, and wq = 2sin(¢). The sequences
Bo > Bik» Bax, B3k are 0.25 and the parameters of oy and A are selected by

. a .
mln{—k,a} , if werp #wy, k>N,
o = W1 —wi|

a, otherwise,

(5.1)

and

2
min{—k,/l} , if wy #wi_1, k> N;

Wi —wi—1]]
A, otherwise.

A= (5.2)

Moreover, we use Cauchy error as the stop criterion defined by |[uy41 — ukH%2 <1.5x107%.

TABLE 1. Errors plots with different a; and o for A = 0.1

0 T 10 T I

U (t1)?  t1)? (k1072 (ke 10

No. Iter 11 13 15 11 11
CPU time(s) | 1.9189 4.3841 5.5889 3.8600 1.6713

a 0.1 0.2 0.5 0.7 0.9

No. Iter 14 13 20 24 32
CPU time(s) | 2.0337 1.8994 2.8697 3.6784 4.6759

Table 1 shows that the number of iterations and CPU times are minimized when A = 0.1 and

ay = m. This indicates that these parameters are suitable choices for our algorithm.
TABLE 2. Errors plots with different A for a; = m

A 0 0.05 0.1 0.15 0.2 0.3
No. Iter 16 14 11 14 15 18

CPU time(s) | 2.3234 2.0627 1.6336 2.0553 2.2353 2.5481
A 04 0.5 0.6 0.7 0.8 0.9
No. Iter 19 23 25 28 34 45

CPU time(s) | 2.7443 3.2889 3.6294 4.1100 5.1567 6.6451

In Table 2, for a; = G +1 10 and different values of A, it is found that if A = 0.1, then the

number of iterations and CPU times are the lowest. Therefore, we will choose a; = -——= and

1
(k+10)°
A = 0.1 for our algorithm to compare with other algorithms.
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FIGURE 1. Numerical error plots (using L, norm in-between consecutive itera-
tions) for different values of a; and .
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FIGURE 2. Numerical error plots (using L, norm in-between consecutive itera-
tions) for different values of A.

Next, we present numerical experiments of the infinite space between Algorithm 4.1 and
Algorithm 2.1, where the parameters of o and Ay are defined by (5.1) and (5.2), respectively.

1

We choose ay = ———=, A = 0.1 for our algorithm and a; = m, Bix=0.99, Yk = ﬁ

(k+10)3°
for Algorithm (2.1).

TABLE 3. Comparison between our algorithm and Algorithm 2.1

Method Number of iterations CPU Time(s)
Algorithm 1.1 16 1.7968
Algorithm 3.1 11 1.6144

Table 3 shows a comparison of iterations and CPU time between our algorithm and Algo-
rithm 2.1. Our algorithm takes 1.6144 seconds for computation with tolerance of 1.5 x 1074,
which is less than that of Algorithm 2.1. Next, we present a plot of the Cauchy error for our
algorithm and Algorithm 2.1 in Figure 3.
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FIGURE 3. Error plots of Algorithm 4.1 and Algorithm 2.1

Example 5.2. Let .7 = L]0, 1]. Define
o ¢ ={u(r) € Lp[0,1] : [Ju(t) —€'|| <2}, with

u(t)—eé
e +2—"r if u(t) € ¢;
7 =4 Tt~ "
u(r), ifu(t)¢%.
o o :1,]0,1] = L5[0,1] by FAu(t) = 2u(t) and @(t) = 5u(t), ()€L2[0 1],
o %;:L5[0,1] = L»[0,1] by Byu(t) = 3u(t) and Bou(t) = Ju(t), Yu(t) € L,[0,1].
We obtain ngf' (uy— 8 Bruy,) = % and J%(uk—éz,%’zuk) %,where 01,0, >

0, u(t) € L[0,1] and ¢ € [0,1]. By employing the Algorithm 4.4, we can find a solution in
N3, (< + ;)= (0) N €. The initial points ug = 2sin(r) — 1, w_1 = log(t) + 1, wo = cos(t),

the sequences Bo x, Bi x, B2k, B3k =0.25, and §; is chosen in (0, I 2‘|2). The parameters o, and

Ay are selected by:

1

ifwk+1 #Wk,k>N;

oy = { K2 |[wigr —wil| (5.3)
Q, otherwise,
and
! if wy #£ k>N
5 Wi Wk—1, 5
A = K2 [wi — w1 || ! (5.4)

A, otherwise.

Moreover, we use Cauchy error as the stop criterion defined by ||uy41 — uk]\%2 < 107*. Next,
we present numerical experiments of infinite dimension space for A = 0.05 and various values
of o in Table 4 and Figure 4. After that, we set a = 0.1 with different A. The results are shown
in Table 5 and Figure 5.
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TABLE 4. Numerical errors (using L, norm in-between consecutive iterations)
in function of different values of o with fixed A = 0.05.

o 0 0.1 0.2 0.3 0.4

No. Iter 10 8 11 11 13
CPU time(s) | 25.5281 16.0457 19.1868 20.6780 22.0805

o 0.5 0.6 0.7 0.8 0.9

No. Iter 14 17 17 17 21
CPU time(s) | 40.3871 38.6881 34.5391 34.8597 40.2402

TABLE 5. Numerical errors (using L, norm in-between consecutive iterations)
in function of different values of A with fixed o = 0.1.

A 0 0.05 0.1 0.15 0.2 0.3

No. Iter 11 8 11 12 12 14
CPU time(s) | 13.2278 17.6773 16.1834 22.5096 23.8145 35.4561

A 04 0.5 0.6 0.7 0.8 0.9

No. Iter 17 17 22 25 27 30
CPU time(s) | 31.6287 40.9257 35.9614 55.7404 65.2204 58.8247

- S :
10 12 14 16 18 20 22
Number of Iterations

FIGURE 4. Numerical error plots (using L, norm in-between consecutive itera-
tions) for different values of .
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FIGURE 5. Numerical error plots (using L, norm in-between consecutive itera-
tions) for different values of A.

As seen in Table 4, the number of iterations and the CPU time tend to increase for all sequences
when A increases. The observed pattern indicates that larger values of o leads to slower con-
vergence of our algorithm. In Table 5, it can be observed that the number of iterations and the
CPU time are increasing for all sequences when A increases. The observed result indicates that
larger values of A decrease the speed of convergence of the proposed method.

6. APPLICATION TO BLIND IMAGE DEBLURRING

The image recovery problem can be conceptualized as a linear equation represented by:
b=%u+p, (6.1)

where the original image is denoted as u € R"*!, the degraded image is labeled as b € R"*!, the
noise term is given by p € R”*!, and the blurring matrix is represented as 2 € R™*". Problem

(6.1) is similar to the following convex minimization model: min,cgn 5 |Zu — bl|3. We focus

on the following minimization problem:
min 5| Zyu—bi 3, min 5| Zou = b3, ... min 5| Zyvu—by|3,

where u is the original image, b; is the blurred image by the blurred matrix &; for all i =
1,2,...,N. For b; = b, we have

1 1 !
rmnEH@m—bH%,}fgg}lEH.@zu—bH%,...,QE}EEH.@Nu—bH%, (6.2)

ucR"
where the blurring operator is selected randomly by & without knowing the actual blurring op-
erator beforehand. This method aims to find a more practical way to restore images in real life.
Accordingly, (6.2) can be transformed to the inclusion problems (4.3) as %ju = J?ﬁ (u— 6;PBiu),

where %; (u) = D} (b— YD), o (u) =0, and & € (0, ﬁ) The parameters of Algorithm 4.1
ill2
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are defined by ﬁ()jk = 0.1, BLk = ﬁZ,k =...= ﬁ107k = 0.09, 3,' = ng?ﬁz for i = 1,2,3,..., 10.
The conditions of oy, Ay are given by (5.3) and (5.4), respectively. In this case, we choose
o =0.89, A =0.09 and the initial points w_1,wq, ug are blurred images.

We use a parallel approach to solve the motion blur problem. Ten blur matrices are used
in each concurrent cycle. We set 2; = (L,0), %> = (L+1,0), 23 = (L+2,0), 14 = (L,0),
Ds=(L,0—1),Ps=(L+1,0—1), 27=(L+2,0—1),Ps=(L,0+1),Py=(L+1,0+1),
and 210 = (L+2,6 + 1), where 6 is the angle and L is length of motion blur. We consider 5
cases with 8 = 135,140, 145,150 that are shown in Table 6.

TABLE 6. Groups of motion blurring matrix with different length (L) and angles
(6) to be run in parallel.

Case I Case II Case III Case IV Case V
Group I (L,8) | (67,135) (69,135) (71,135) (73,135) (75,135)
Group II (L,0) | (67,140) (69,140) (71,140) (73,140) (75,140)
Group III (L,0) | (67,145) (69,145) (71,145) (73,145) (75,145)
Group IV (L,0) | (67,150) (69,150) (71,150) (73,150) (75,150)

First, the input image to the algorithm is the blurred image of a car license plate. Then, we
apply our parallel algorithm using groups of motion blurring matrix with different length (L)
and angles (0) to recover the image. Next, we present the blurred images with 5000 iterations
for our algorithm in Figures 6, 8, 10 and 12. Moreover, Figures 7, 9, 11 and 13 show the plot
of the Cauchy error ||| — u,|| < 107>. We conduct numerical experiments of our proposed
algorithm in image restoration. The experiments were conducted by MATLAB R2022A on
a computer with an Intel(R) Core(TM) 19-9820X processor, graphics rtx2080 and 64.00 GB
RAM.

(D) Case III (E) Case IV (F) Case V

FIGURE 6. Restored images (b-f) of car license plates for Group I with respect
to the input blurred image (a).
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FIGURE 7. Numerical error plots (using L, norm in-between consecutive itera-
tions) for Group I in function of the number of iterations. The top-right frame
shows a close-up view of the error around the 600th iteration. The bottom-right
frame shows a close-up view of the error around the 2600th iteration.

In Figure 6, the numbers on the car license plate are visible and readable. However, both the
large and small letters on the license plate are not visible in every instance. This means that
Group I is not yet suitable for recovering the image. In Figure 7, the graph of the Cauchy error
is shown. From the graph, it can be observed that in every case, the error gradually decreases
with each iteration, indicating that the calculated values are converging towards the true or
desired value.

(D) Case III (E) Case IV (F) Case V

FIGURE 8. Restored images (b-f) of car license plates for Group II with re-
spect to the input blurred image (a).
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FIGURE 9. Numerical error plots (using L, norm in-between consecutive itera-
tions) for Group II in function of the number of iterations. The top-right frame
shows a close-up view of the error around the 500th iteration. The bottom-right
frame shows a close-up view of the error around the 2600th iteration.

In Figure 8, the image recovered by Group II yields results similar to those of Group I, where
the numbers are readable in every case, but the large and small letters are still unreadable.
Moreover, in Figure 9, it is observed that the Cauchy error graph gradually decreases in each
case.

(D) Case III (E) Case IV (F) Case V

FIGURE 10. Restored images (b-f) of car license plates for Group III with
respect to the input blurred image (a).
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FIGURE 11. Numerical error plots (using L, norm in-between consecutive it-
erations) for Group III in function of the number of iterations. The top-right
frame shows a close-up view of the error around the 600th iteration. The bottom-
right frame shows a close-up view of the error around the 2700th iteration.

In Figure 10, we observe that images recovered in Group III allow the numbers and letters on
the license plate to be clearly readable in each case. This indicates that Group III is favorable
for the recovery of motion blur. Furthermore, the results in Figure 11 also support convergence
in each case.

(D) Case III (E) Case IV (F) Case V

FIGURE 12. Restored images (b-f) of car license plates for Group IV with re-
spect to the input blurred image (a).



16 P. INKRONG, P. PAIMSANG, P. CHOLAMIIAK, Y. SAVOYE, W. CHOLAMIJIAK

05
! case |
045+ | case |l
| case Il
04 t case IV
case V
035
03r |
S o025}
w

—

02r

|

0.1+

0.05

0 1 1 " _l
0 500 1000 1500 2000 2500 3000

Number of Iterations

FIGURE 13. Numerical error plots (using L, norm in-between consecutive iter-
ations) for Group IV in function of the number of iterations. The top-right frame
shows a close-up view of the error around the 600th iteration. The bottom-right
frame shows a close-up view of the error around the 2700th iteration.

Figure 12 shows the Group IV used for image recovery. The results indicate that for the Cases
I-II, large numbers and letters are readable but small letters remain hardly identifiable. Ad-
ditionally, some numbers are unclear in Cases III-IV-V and neither the large or small letters
can be identified clearly. Consequently, the Group IV is suitable for image identification. Fi-
nally, we observe that Group III is the most favorable group for recovering the license plate
image among all groups. In all cases, all parts of the license plate’s details are apparent. It is
observed that Cases I-II-III show more subtle details than Cases IV-V.

7. CONCLUSION

In this paper, we developed a novel parallel algorithm expanding the Mann algorithm with
double inertial extrapolations to identify a common fixed point for a finite family of nonexpan-
sive mappings. As part of the convergence analysis, we established the weak convergence of
our algorithm under some conditions. Furthermore, we presented an approach to approximate
the solution of the inclusion problem in an infinite dimensional space. Our algorithm was uti-
lized to enhance the readability of characters present in a collection of blurred car license plate
images by selecting well-known blur matrices for different potential motion blurs. The key
benefit of our algorithm is that the propose approach does not require the explicit estimation of
the direction and length of the unknown motion blur in the input image. Finally, our experi-
ments demonstrated the effectiveness of our algorithm to address the problem of blind image
deblurring allowing intricate details to be clearly discernible in various image components.
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