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Abstract. In recent years, breakthroughs were made in the field of deep reinforcement learning, but, their
applications in the real world were seriously affected due to the instability of algorithms and the difficulty
in ensuring convergence. As a typical algorithm in reinforcement learning, although the SAC algorithm
enhances the robustness and agent’s exploration ability by introducing the concept of maximum entropy,
it still has the disadvantage of instability in the training process. In order to solve the problems, this pa-
per proposes an Adaptive Normalization-based SAC (AN-SAC) algorithm. By introducing the adaptive
normalized reward mechanism into the SAC algorithm, our method can dynamically adjust the normal-
ized parameters of the reward during the training process so that the reward value has zero mean and
unit variance. Thus it better adapts to the reward distribution and improves the performance and stability
of the algorithm. Experimental results demonstrate that the performance and stability of the AN-SAC
algorithm are significantly improved compared with the SAC algorithm.
Keywords. Adaptive normalization; Deep reinforcement learning; Reward mechanism; Soft actor-critic
algorithm.
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1. INTRODUCTION

It is known that there is a significant difference between the learning mechanisms of rein-
forcement learning and supervised learning. In supervised learning, the model relies on human-
annotated dataset labels for learning, with the aim of identifying mappings between inputs and
outputs. In contrast, reinforcement learning algorithms learn through direct interaction with the
environment, with the goal of maximizing the rewards received from the environment to explore
and optimize strategies. With the advent of Deep Q-Learning (DQN) algorithms [1], it is possi-
ble to combine reinforcement learning with deep neural networks, which enables reinforcement
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learning algorithms to deal with more complex and high-dimensional problems. This innova-
tion has greatly improved the performance of reinforcement learning algorithms, making them
widely used in many fields such as Go [2, 3], video games [4, 5], navigation planning [6, 7],
investment and trading [8, 9, 10], and recommendation systems [11, 12].

Recently, remarkable work shave been made in the field of deep reinforcement learning.
OpenAI researchers developed a reinforcement learning method that facilitates agents to con-
tinuously identify and master new skills through implicit course learning [13]. Mendonca et
al. [14] proposed a supervised learning-based meta-reinforcement learning algorithm that can
effectively assist exploration, especially in the environment of sparse rewards. Efroni et al. [15]
proposed a reinforcement learning algorithm based on a finite time-domain look-ahead strategy,
which achieved good results by using the return value of the optimal tree path to back up the
descendant values of nodes. Ciosek et al. [16] proposed an algorithm called OAC (Optimistic
Actor Critic), which uses two confidence intervals to estimate the value function, with a higher
confidence interval to guide exploration and a lower confidence interval to prevent overfitting.
Haarnoja et al. [17] proposed an algorithm called SAC (Soft Actor Critic), which enhances the
exploration power of the Actor-Critic algorithm by introducing maximum entropy. Although
the SAC algorithm achieves a good balance between exploration and utilization, there is still
instability in its training process, which may lead to the inability of agents to adapt to changes
in the environment during the exploration process, which affects the performance and stability
of the algorithm.

In view of the shortcomings of the unstable SAC training process, this paper proposes an
Adaptive Normalization-based SAC (AN-SAC) algorithm that combines the advantages of the
SAC algorithm and the advantages of the adaptive normalization reward mechanism. Not only
it can the principle of maximum entropy be used to enable the agent to pursue reward maximiza-
tion and explore new space at the same time when executing the strategy, but also dynamically
adjust the normalized parameters of the reward according to the agent’s performance in the
environment, so as to improve the performance and stability of the algorithm.

The core contributions of this paper are mainly threefold: (1) it is proposed to integrate an
adaptive normalized reward method into the SAC algorithm to effectively improve the supe-
riority and stability of the algorithm; (2) the beta distribution of the (−1,1) range is used to
initialize the neural network, and the training of the neural network can be accelerated in many
problems. (3) Experiments are carried out in a variety of environments, and the results of the
AN-SAC algorithm are compared with the classical SAC algorithm, and the superiority of the
algorithm is verified.

2. PRELIMINARIES

Reinforcement learning is a machine learning paradigm that learns the optimal strategy through
the interaction of agents with the environment. Through a series of interactions with the environ-
ment, the agent obtains feedback from the environment (Reward) and updates its own strategy
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based on this feedback. The goal of reinforcement learning is to maximize the reward expec-
tation in order to obtain an optimal policy. In reinforcement learning, the Markov Decision
Process (MDP) framework is widely used to describe the process of agent interaction with the
environment. The MDP consists of four elements: a state set, an action set, a state transition
probability, and a reward-reward function. The agent obtains the state from the environment
at each time step, selects an action according to the strategy, and the environment returns a re-
ward and updates the state after the action is executed. The reward expectation at time t can be
expressed as:

Rt =
∞

∑
l=0

γ
lrt+l,

where γ is the discount factor, and the expectation of cumulative return in the current state is:

Vπ(s) = Eπ [
∞

∑
l=0

γ
lrt+l|st = s] = E[Rt |st = s].

The action value is expressed as Qπ(s,a) = E[Rt |st = s,a], and the optimal strategy is to select
the action with the largest value in each state, which is denoted as

Q∗(s,a) = max
π

Q(s,a).

With the Bellman equation, the value function and the action value function can be iteratively
calculated expressed as

Q∗(s,a) = E[rt + γmaxQ∗(st+1,at+1)].

With the introduction of deep neural networks, reinforcement learning algorithms can handle
more complex control and decision-making problems. However, the complexity of deep neu-
ral networks also brings some challenges, such as low training efficiency, poor stability, and
sensitivity to hyperparameters.

The SAC is a reinforcement learning method that follows the principle of maximizing en-
tropy. This algorithm adds entropy considerations to the objective function, which greatly en-
hances the algorithm’s exploration ability and adaptability to the environment. By seeking the
best balance between reward and entropy (i.e., the randomness of the strategy), the SAC can
avoid prematurely falling into suboptimal deterministic strategies and local optimal solutions.
Higher entropy means more environment exploration, which helps to avoid the convergence of
the strategy to the local optimum, thus speeding up the learning process. The SAC formula for
the optimal strategy is defined as:

π
∗ = argmax

π
Est ,at∼π(·|st)[

∞

∑
t=0

γ
tr(st ,at)+αH(π(·|st))],

where strategy π is used to update the largest total reward found; α is the entropy regularization
coefficient, which is used to control the importance of entropy; H(π(·|st)) = E[− logπ(·|st)]

represents entropy value, the higher the entropy, the greater the agent’s exploration of the envi-
ronment, enabling the agent to find a more efficient strategy, which helps to speed up subsequent
policy learning.
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The Q value of SAC can be calculated by using the Bellman variance based on entropy
improvement, expressed as

Q(st ,at) = Est+1∼D[r(st ,at)+ γV π(st+1)],

where st+1 is obtained from the empirical replay buffer D, and the state value function is defined
as

V (st) = Eat∼π [Q(st ,at)−α logπ(·|st)]

= Eat∼π [Q(st ,at)+H(π(·|st))],

where st represents the expected reward in a certain state. In addition, the policy network
πφ (st ,at), the soft state value network Vψ(st), the target state value network Vψ̃(st), and two
soft Q networks Qθ1,2(st ,at) in the SAC are parameterized by φ ,ψ , ψ̃ , and θ , respectively. In
order to achieve the optimal strategy for each network, the stochastic gradient descent method
is used to optimize their objective function

JV (ψ) = Est∼D[
1
2
(Vψ(st)−Eat∼πφ

[min
i=1,2

Qθi(st ,at)−α logπφ (at |st)])
2].

In addition, a form similar to a double-Q network is adopted, where the minimum value of soft
Q is taken as two Q functions parameterized by θ1 and θ2, which helps to avoid overestimating
inappropriate Q values and improves the training speed. The soft Q function is updated by
minimizing the Bellman error:

JV (ψ) = E(st ,at)∼D[
1
2
(min

i=1,2
Qθi(st ,at)− (r(st ,at)+Vψ̃(st+1)))

2].

The policy network is updated by minimizing the Kurbach-Leibler (KL) divergence:

Jπ(φ) = Est∼D,at∼π [logπφ (st ,at)− min
i=1,2

Qθi(st ,at)].

3. AN-SAC

The AN-SAC algorithm proposed in this paper introduces the adaptive normalized reward
mechanism into the SAC algorithm to improve the superiority and stability of the algorithm.
The innovation is as follows: First, it adopts a new network initialization method to initialize
network parameters through Beta distribution, which can distribute parameters within a reason-
able range and help the network converge faster. Second, in the training process, the AN-SAC
algorithm performs adaptive normalization of the cumulative reward, which is a method used to
process the reward value in reinforcement learning, in order to convert the reward value into a
data distribution with zero mean and unit variance. This conversion is beneficial for stabilizing
the learning process, especially in the case of large reward distributions.

In the AN-SAC of this paper, the optimal strategy and the calculation of the Q value are
expressed as:

π
∗ = argmax

π
Est ,at∼π(·|st)[

∞

∑
t=0

γ
trnew(st ,at)+αH(π(·|st))],
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and
Q(st ,at) = Est+1∼D[rnew(st ,at)+ γV π(st+1)],

where rnew(st ,at) represents the normalized cumulative reward, which is

rnew(st ,at) =
qualities−mean−reward

std−reward
,

where qualities is the tensor of the cumulative reward, mean−reward is the mean of the cu-
mulative reward, and std−reward is the standard deviation of the cumulative reward, which is
calculated by the following formulas:

mean−reward =
1
N

N

∑
i=1

qualities[i],

and

std−reward =

√
1
N

N

∑
i=1

(qualities[i]−mean−reward)2,

where N is the number of accumulated rewards.
AN-SAC not only follows the principle of maximum entropy of traditional SAC, but also uses

the Beta distribution to initialize parameters and adaptively normalize the cumulative rewards.
This improves the performance and stability of the algorithm.

Our method uses a new neural network initialization method, which takes a Beta distribution
in the range of (−1,1) to initialize neural network parameters. The Beta distribution is a con-
tinuous probability distribution with a flexible shape and good properties, which is suitable for
the initialization of neural networks. The Beta distribution can be expressed as:

f (x;α,β ) =
Γ(α +β )

Γ(α)Γ(β )
xα−1(1− x)β−1,x ∈ [0,1],

where α and β are the shape parameters of the Beta distribution, and x is a random variable. By
adjusting the values of α and β , we can obtain the Beta distributions of different shapes.

AN-SAC also adaptively normalizes cumulative rewards. This strategy makes the difference
between the predicted value and the target value of the value network smaller by normalizing
the cumulative reward, thereby improving the stability of the value network and the overall
performance of the algorithm. The normalized cumulative rewards can be used to update the
value network. In the AN-SAC algorithm, the update process of the value network is as fol-
lows: the cumulative reward r(st ,at) is first propagated forward through the neural network to
obtain the mean mean−reward and standard deviation std−reward of the cumulative reward.
Then, according to this information, the cumulative reward qualities is normalized to obtain
the normalized cumulative reward rnew(st ,at). Then, the target network is used to calculate the
state value and state-action value at the next moment as the update target of the value network.
Then, the normalized cumulative reward is input into the value network to obtain the predicted
value, and the difference between the predicted value and the target value is calculated by the
loss function, and finally the value network is updated according to the gradient calculated by
the loss function.

The AN-SAC approach is as follows (as shown in Algorithm 1):
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Algorithm 1 AN-SAC
1: Initialize the strategy network Π with the weights of the Beta distribution, and initialize the

two value networks Qθ1 and Qθ2 with random network parameters θ1 and θ2.
2: Initialize the target value network Qψ̃1 ,Qψ̃2 , copy the weights of Qθ1 , Qθ2 to Qψ̃1 ,Qψ̃2

3: Initialize the experience replay buffer D.
4: for sequence e = 1, ...,E do
5: Reset the environment to get the initial state s1.
6: for time step t = 1, ...,T do
7: Select action at = πθ based on the current strategy
8: Perform action at , get the reward rt , and the environment state changes to st+1
9: Store (st ,at ,rt ,st+1) into the experience replay buffer D

10: for epoch k = 1, ...,K do
11: Sample N tuples from D
12: Normalize the cumulative reward to get rnew(st ,at)

13: Use the target network to calculate the state value and state-action value at the next
moment as the update target of the value network

14: Input the normalized cumulative reward into the value network to obtain the pre-
dicted value

15: Update the critic network based on the calculation of the loss functio
16: Sample action ãt with the reparameterization technique, and then update the actor

network with the loss function
17: Update the entropy regularization coefficient α

18: Update the target network
19: end for
20: end for
21: end for

4. EXPERIMENTS

OpenAI Gym [18] is an open-source reinforcement learning toolkit designed to facilitate the
comparison of research and algorithms. It offers a variety of benchmarking environments, such
as the Atari 2600 game, and provides a common interface for third-party tasks. This provides a
convenient platform and challenging tasks for developers and researchers in the field of artificial
intelligence. As shown in Figure 1, the Gym CarPole-v1, Acrobot-v1, LunarLander-v2, and
MountainCar-v0 were selected as the environments in this paper, and the AN-SAC algorithm is
experimentally compared with the SAC algorithm in different task environments.

In this experiment, the operating system is Win11, the language development environment is
Python 3.8, and the neural network framework is built with Pytorch 2.2. In order to compare
the improvement effect of the AN-SAC algorithm and make its hyperparameters completely
consistent with those of the SAC algorithm, Table 1 sets the specific values of the hyperparame-
ters, uses ReLU for all activation functions, and uses Adam as the optimizer to adjust the model
parameters.
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(a) CartPole-v1 (b) Acrobot-v1

(c) LunarLander-v2 (d) MountainCar-v0

FIGURE 1. Gym environment

Table 1 Hyperparameters settings.
Hyperparameters value parameter description

num epochs 100 number of training rounds
capacity 500 experience buffer capacity
actor lr 0.001 policy network learning rate
critic lr 0.001 value network learning rate
alpha lr 0.001 trainable parameter learning rate

tau 0.01 soft-update parameters
gamma 0.9 discount factor

In this paper, the performance and stability of the algorithm are evaluated by comparing
the cumulative rewards of the algorithm in different environments, and the learning curve is
shown in Figure 2. Compared with the traditional SAC algorithm, AN-SAC uses the normalized
cumulative reward to train the value network, which enables the algorithm to better adapt to the
changes in reward distribution and improve the performance of the algorithm. As an advanced
version of the SAC algorithm, AN-SAC has different degrees of improvement compared with
SAC in all the tasks for comparison. As can be seen from Figure 2(a), in the task CartPole-v1,
the reward value of AN-SAC is higher than that of SAC most of the time, especially between
the 69th and 77th epochs, the reward value of AN-SAC rises sharply to the highest point, while
SAC is relatively low. This means that AN-SAC has better adaptability and strategy adjustment
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during certain periods. In Figures 2(b) and (c), the reward value of AN-SAC is also higher
than that of SAC most of the time, although there is no peak like 2(a) in these two tasks, the
reward curve of AN-SAC is relatively stable and fluctuates less, while the reward curve of SAC
fluctuates greatly, which means that AN-SAC is better in terms of stability. In general, the
performance of AN-SAC in these tasks is higher than that of SAC most of the time, and the
curve is relatively stable and fluctuates less than that of the SAC algorithm. Therefore, on the
whole, the stability and performance of AN-SAC are better than those of the SAC algorithm.

(a) CartPole-v1 (b) LunarLander-v2

(c) Acrobot-v1 (d) MountainCar-v0

FIGURE 2. Training curves of AN-SAC and SAC.

Table 2 Final performance of AN-SAC and SAC.

Task
CartPole-v1 Acrobot-v1 LunarLander-v2 MountainCar-v0

AN-SAC SAC AN-SAC SAC AN-SAC SAC AN-SAC SAC

Mean 33.65 18.69 -222.41 -364 -134.65 -219.78 -8486 -65634
median 32 14.5 -222.5 -326 -152.0 172.42 -19306 -55721

std 16.07 9.47 92.56 133.95 41.27 126.73 7107 61316

Table 2 demonstrates the mean, median, and standard deviation of the cumulative rewards
obtained by the AN-SAC algorithm and the SAC algorithm on the corresponding tasks at the
end of the above task training, and the algorithm data with good performance in each task is
bolded. It is clearly that the AN-SAC algorithm has obvious advantages in several other tasks
except for the large standard deviation of the task CartPole-v1. This demonstrates that the
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performance of AN-SAC is better than that of the SAC algorithm in these tasks, and its stability
is also better in Acrobot-v1, LunarLander-v2, and MountainCar-v0.

5. CONCLUSION

In this paper, an AN-SAC algorithm was proposed, which integrates an adaptive normalized
reward mechanism into the update step of the value network, which can improve the stability
and performance of the value network, thereby improving the performance of the whole algo-
rithm. The Beta distribution in the range of (−1,1) was used to initialize the neural network,
which helps the neural network to converge faster and accelerate the training of the neural net-
work. In this paper, the effectiveness of the algorithm was verified in four environments, and the
experimental results were provided to compare with the traditional SAC algorithm. AN-SAC
demonstrates good performance in processing tasks and tends to be more stable in the training
process.
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