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Abstract. Based on the Avery-Peterson fixed point theorem and Green’s function, we establish the ex-
istence result of at least triple strictly nondecreasing positive solutions to a three-point boundary value
problem of a fractional differential equations with out the concavity or convexity of the unknown func-
tion. An example is also provided to illustrate our main results.
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1. INTRODUCTION

In this paper, we consider the boundary value problem of nonlinear fractional differential
equations

D u(t)+ f(, u(t), u'(t)) =0, t €0, 1], (1.1)
u(0) =u/'(0) = u"(0) =0, u"(1) = Bu"(n), (1.2)

where 3<a <4, >0, 0<n<1with I —Bn%*3 >0 and Dy, denotes the Riemann-
Liouville fractional derivative of order o.

Through this paper, we assume that f : [0, 1] X [0, o) X (eo, 4o0) — [0, +o0) satisfies the
following conditions of Caratheodory type:

(i) f(z, u, v) is Lebesgue measurable with respect to 7 on [0, 1].

(ii) f(z, u, v) is continuous with respect to u and v on [0, o) X (—oo, o).

With the development of the theory of fractional equations and their applications, such as
physics, Bode’s analysis of feedback amplifiers, aerodynamics and polymer rheology, numerous
results on the basic theory of fractional calculus and fractional order differential equations were
established; see, e.g., [2, 4, 5, 6, 9, 10].
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Recently, the solutions or positive solutions of boundary value problems for nonlinear frac-
tional differential equations(FBVPs) with local boundary conditions and nonlocal boundary
conditions were extensively. Liang and Zhang [7] considered positive solutions for the problem
of fractional differential equation

DG, u(t) = f(t, u(t)), t € (0, 1), (1.3)

u(0) =u'(0) =u"(0) =u"(1) =0, (1.4)
where 3 < o <4 and Dg, is the standard Riemann-Liouville fractional derivative. By means of
lower and upper solution method and fixed point theorems, they obtained the existence results
of positive solutions for problem (1.3-1.4).

For the nonlocal case, Liang and Zhang [8] investigated the boundary value problem of frac-
tional differential equation

D u(t)=f(t, ut),1€(0,1),3< <4, (1.5)

u(0) =u'(0) =u"(0) =0, u"(1) = Bu"(n), (1.6)
where 0 < 1 < 1 satisfies 0 < %3 < 1. By using a fixed point theorem in partially or-
dered sets, sufficient conditions for the existence and uniqueness of positive and nondecreasing
solutions were established.

Cabrera et al. [3] discussed the singular boundary value problem (1.5-1.6) under the assump-
tion that f is singular at # = 0. By means of a fixed point theorem in partially ordered metric
spaces, the authors obtained the existence and uniqueness of positive solutions for problem
(1.5-1.6).

Recently, Zhai et al. [11] concerned with the existence and uniqueness of positive solutions
for the following the fractional differential equation

DG u(t) = f(t, u(t) +g(t, u(t), t € (0, 1), 3 < a <4,
subject to the boundary conditions
u(0) =u'(0) =u"(0) =u"(1) =0, or

u(0) =u'(0) =u"(0) =0, u"(1) = pu"(n).
By means of a fixed point theorem of a sum operator, they obtained the existence of a unique
positive solution and constructed an iterative scheme for approximating the solution.

There are also some results concerning with the numerical solution of problem (1.5)-(1.6).
For an example, Zhang et al. [12] extended the reproducing kernel space method and presented
an efficient numerical algorithm to solve problem (1.5)-(1.6). We noticed that in these works
the existence results of positive solutions were all established under the assumption that the
derivative of the unknown function was not involved in the nonlinear term explicitly. The main
reason is that one can not derive the concavity or convexity of the function by the sign of its
fractional derivative. On account of the practical meaning of u/(¢), it is interesting to consider
the BVps of fractional differential equations which the derivative of the unknown function is
involved in the nonlinear term explicitly.

In this paper, by using the careful analysis of the associated Green’s function and defining the
special cone in a suitable Banach space together with the Avery-Peterson fixed point theorem,
we obtain the existence of multiple positive solutions without the concavity or convexity of the
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unknown function. These results complete and extend the previous works on positive solutions
to FBVPS.

2. PRELIMINARIES

Definition 2.1. The Riemann-Liouville fractional integral of order o > 0 of a function u(z) is
given by

I§ u(t) = ﬁ/ot(t — )% Lu(s)ds

provided that the right side is point-wise defined on (0,0).

Definition 2.2. The Riemann-Liouville fractional derivative of order ¢ > 0 of a continuous
function u(r) is given by

DG u(t) = ﬁ <%>n/ot(f — )" u(s)ds

where n = [a] + 1, provided that the right side is point-wise defined on (0, o).
Lemma 2.3. Let o > 0. Then, fractional differential equation D, u(t) = 0 has a solution
u(t) =Cit® '+ Cpt* 2+ . +Cut* ™", CieR, i=1,2, -, n.
Lemma 2.4. Let u(t) be a fractional derivative of order o@ > 0. Then
I8 DS u(t) =u(t) +Crt® '+ Cot* 2+ A Cut® " GGER, i=1,2, -+, n,
where n is the smallest integer greater than or equal to «.

Definition 2.5. The map ¢ is said to be a nonnegative continuous convex functional on a cone
P of a real Banach space E provided that ¢ : P — [0, 4o0) is continuous and

o(tx+(1-1)y) <t9(x) + (1 -1)9(y), x, ye P, 1 €[0,1].

Definition 2.6. The map f is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that 3 : P — [0, +o0) is continuous and

Blx+(1—-1)y) 2tB(x)+(1-1)B(y), x, ye P, 1 €[0,1].

Let 7y, 0 be nonnegative continuous convex functionals on P, ¢ be a nonnegative continuous
concave functional on P, and ¥ be a nonnegative continuous functional on P. Then, for positive
numbers a, b, ¢, and d, we define the following convex sets:

P(y, d) = {x € Ply(x) < d},

P(Y, 9, b, d)={x € Plb < (x), ¥(x) < d},

P(y,0,9,b,¢,d)={xcPb<9(x), 6(x) <c, y(x) <d},
and a closed set

R(y, ¥, a, d) = {x € Pla < y(x), y(x) < d}.

Lemma 2.7. [1] Let P be a cone in Banach space E. Let 7y, 0 be nonnegative continuous
convex functionals on P, ¢ be a nonnegative continuous concave functional on P, and y be a
nonnegative continuous functional on P satisfying

v(Ax) < Ay(x), for0<A <1,
¢(x) < y(x), |lxl| < Iy(x)forx € Py, d), (2.1)
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where P(Yy, d) is the closure of the set P(Y, d). Suppose that T : P(y, d) — P(Y, d) is completely
continuous and there exist positive numbers a, b, c with a < b such that

(S1) {x€P(y, 0, ¢, b, c, d)|¢(x) >Db} #0and ¢(Tx) > Dbforxc P(y, 0, ¢, b, ¢, d);

(S2) (Tx) > b forx € P(y, ¢, b, d) with 6(Tx) > ¢;

(S3) 0ZR(y, v, a, d) and y(Tx) < aforx € R(y, v, a, d) with y(x) = a.

Then T has at least three fixed points x, x5, x3 € P(y, d) such that

Y) <d,i=1,2,3,b<¢(x1); a<y(x), §(x2) <b; y(x3) <a.

3. MAIN RESULTS
Lemma 3.1. Given y(t) € C|0, 1], boundary value problem
“DE u(t)+y(t)=0,1€0, 1], (3.1)
u(0) = u/(0) = "(0) =0, u"(1) = B (1) (32)
is equivalent to
)= [ Gle, pis)as

where

4 (t—s)afl [afl(l_S)OHS_Bzafl( _S)a73
T T(@) + (1—[31]‘“3)1"(03 , 0<s< n, s <t,
1“71(1—s)a73—[3t'x71(n—s)a73

(1-Bn*=3)I(ax) ’

(t—s)‘xfl tocfl(]_s)(x73
M@ T (T pn@ @)

ttxfl(l_s)a73
| ™))

Proof. From the definition and properties of the fractional derivative and integral, we have

t (t_s)OC—l | 5 3 A
u(f)=—/ L —y(s)ds +cit® b eat® E 4 o3t gt
0

I'(a)
The boundary conditions u(0) = /(0) = u”(0) = 0 give ¢, = ¢3 = ¢4 = 0. Considering the
boundary condition u”(1) = Bu’ (1), we have

T o)(1 _llgna—3) (/01(1 _S)a_SY(S)dS—ﬁ/On(n —S)a_3Y(S)dS)~

€1

Thus
t(xfl

)= g —gmasy ) (-9 508 [ =% 50y

t(t—s)%!
—/0 —F(oc) y(s)ds

= /l G(t, s)y(s)ds.
0
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Lemma 3.2. The function G(t,s) satisfies the following properties:

(1)G(t, s) €C([0, 1] x [0, 1]) and G(t, s) > 0 forallt, s € [0, 1] and G(t, s) > 0 for all
t,s€ (0, 1);

(2) G(t, s) is increasing with respect to t;
(3) minp<;<1 G(t, s) > Yomaxy<,<1 G(t, 5) = n*-1G(1, s), s € 10,1].

Proof. (1) It is easy to check that G(¢,s) is continuous. For 0 < s <7, s <, we have

(t _s)a—l ta—l (1 _S)oc—S o Bta—l (n _S)oc—3 1 1— ﬁna—3 B
T T (- B0 ) (a) = Te) D@0 —pnes
Forn <s <1, s <t, we find that

(t _S)oc—l ta—l (1 _S)oc—S (1 _ n)a—3 .
T 0@ @ pre (i) 2o

Thus, G(t, s) € C([0, 1] x [0, 1]) and G(z, s) >0, fort, s € [0,1].
(2) To prove that (2) is true, we begin with

( (l_s)afz + toc72(1_S)a73_ﬁla72(n_s)a73
- T(a-1) (1-Bn*=3)T(a—1) ’

toc72(1_S)(x73_ﬁt(x72(n_s)a73
_ a-3 _ )
IG(1,s) (1=pn* ) (a—1)

(t_s)(xfz t(xfz(l_s)oc73
ot TT(a-1) T (B (a1)’

ta72(1_s)a73
(1-Bn*=3)C(a—1)’

\
ForO0<s<n, s<t,

5G(t,s) _ (t _s)a—z ta—Z(l _S)oc—3 _ Bta—Z(n _S)a—3
o Ta—-1 (=B H(a—1

> e (1B (-9 B =) )
SCE T

> 0.
Forn <s<1, s<t,

aG(I,S) (t—s)‘x*Z toth(l _s)a,3

ot T(a—1) (1-Bn23)(a—1)
> l’OC—2 (_ (1 —ﬁna73)(1 _s)(xfz_i_(l —S)a3>
~Hla—1)(1-pn*?)
> 0.

Thus G(t, s) is increasing with respect to ¢ and

max G(t, s) = G(1, s), s € [0, 1]

0<t<1
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(3) From the expression and monotonicity of function G(z, s) with respect to 7 , we have

SR G Gl () e U G Py

+ —_
. r 1-Bn%=3)r ’
rEzn<11G<t’S) =G(n,s)= nocflgf?s)afa (1=pn*=)I(a)
o =0 ==)a)” n<s<1
and
_aa—1 a3 e
_(1F(so>c) L a (i)—ﬁ alﬁ?r(;; Coesen
0i21 G(t,s) =G(1, 5) = (1—s5)%! (1 —s)g%
<t< - -
F(a) + (1 _Bna—3)r‘(a)7 nN<s 1

Thus, for 0 <s <1,
(Mm=—9)*" n*'(1-9*?-pn*'(n—s*?

Gm,s) __ T(a) (1—Bn* )(a)
G(1, s) C(A=9*t  (1-9)* - B(n—s)*
I'(a) (1=pn*7)(a)
n(1—n)*?
N (=B (@)
I Gk DA C el D
I'(a) (1=pn*)(a)
B nocfl
=m0y
Forn <s <1,
n(xfl(l_s)ocf3
G(n,s) _ (1-pn*)(a) -1
N B B (D G
D)  (1-Bn*7)(a)
Then, we conclude that
. . HOH a—1
nrgrlglG(t’ )2 mm{ I—(1-n)*(1 —ﬁn‘“)’n }G(L L
=n%1G(1, 5) = na_longltaglG(t,s), se o0, 1].

Lemma 3.3. If u(t) is a solution of problem (3.1)-(3.2), then

1| < "(1)].
[max lu(t)] < [max u' ()|

— ‘ /0 " (5)ds

1| < "(1)].
[max u(t)] < [nax |u'(2)]

Proof. The fact that

lu(t)| = u(O)—F/OI u'(s)ds < /01 | (5)|ds

ensures that
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Let the space X = C'[0, 1] be endowed with the norm

= max 4§ max t max ! t }
o = max { max u(o)], max [uf (1)

It is known that X is a Banach space. Define the cone K C X by

K:{ €X:u(t)>0, mi t) > 1), 1) < ’t}.
u u(t) > ,él[lnl,nq”( ) > Yoorggglu( ) [nax u(t)] < [nax ' (1)]

Lemma 3.4. Let T : K — X be the operator defined by

1
(Tu)(t): = [ G, 9)f(s, u(s), u/()ds.
0
Then T : K — K is completely continuous.

Proof. First, we show that the operator 7 is continuous. For any u,, u € K, n=1, 2, ---, with
limy, 40 ||ty — u|| = 0, we have

lim u, =u, lim u,=1u,
n—4-o0 n——+-oo

t € [0, 1]. From the Caratheodory condition of function f, we obtain

lim f(¢, ua(t), u,(t)) = f(t, u(t), u'(t)), t €0, 1].

P
Thus
sup | (1, un(t), up(t)) — f(t, u(t), u'(t))]| =0, n — +oo.
t€lo, 1]
Therefore,

() 0)~ O] = | [ 60, (715, 1), 14(5)) — 1G5, uts), (5))ds

0 a) (1—pne)(a)
1 (1_s)a71 (l—s)a73
+f (_ Na) +(1—Bn“‘3)F(a))ds
1 1 1 Bn%2
- (_F(a+1)+(1—[3n0‘3)F(a)(oc—2_ a—2>)
£t ), (1)) — £, ut), u’<t>>],

[ (_ (1=9)"  (1-5)"—B(r —s>“3>ds

X sup
t€0, 1]
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and
(T un) (1) — (T'u) (1))

T(t—s)%" 2 / /
:|_/0 L2 (1G5 ), 5) (s, (). o (9) s

B0 =) (05 ), 16) s, uls) 1 (5) s

1 1 1 Bn%2
= (F(a)+(1—[3n“3)F(a—1)<a—2+ a—2 )>
F(t, un(t), un (1)) — f(2, u(t), u' (1))

X sup
t€[o, 1]

9

which implies that
|Tu, — Tul| — 0
as n — oo, These ensures that 7" is continuous.

Second, we show that T is completely continuous. Let  C K be bounded. Then there exist
a positive constant Ry > 0 such that ||u|| < R;, u € Q. Denote

R= t,ou(t), u'(t 1.
ogé‘f}’;gg'ﬂ cu(t), u'(t))]+

Then, for u € Q, we have

1
Ty §R/ G(1, s)ds
0

B a—2
- (_ F(oc1+1) +F(a)(1—1/3n0‘—3) (al—z a 0?—2 >)R

and
(Tu) (1)
| /0 %f(s u(s), u’<s>>ds+r<a_ 3 (tla_ima_ﬁ_l)
(=95t uto) s [ n =) B s, o), w51

1 1 1+ﬁna—2
< (F(a) +F(a—1)(1_ﬁna—3) o—2 ) X R.
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Hence 7'(Q) is bounded. For u € Q, 11, t, € [0, 1], one has
|Tu(t2) Tu ( )|
1 15) o— , 1] o ,
< I'(a) </0 (t2— )% f(s, uls), u (S))ds—/o (t— )% (s, uls), u (s))ds)
1y —tf‘ 1

+

g s () (% o .

B / )23 £ (s, uls), u'(s))ds>

(1_Bna_2)R X‘ta 1
D(a)(1-pn*=3)(a-2) " 2

a—1
_tl ,

<— 5 —tf

and

[(Tu)'(t2) = (Tu)'(t1)]

—1 " - ! ” a— !
< T(o—1) (/0 (t1 —s) 2f(s, u(s), u (s))ds—/o (ty —s) 2f(s, u(s), u (s))a’s)
t2 _t{x 2 1
B CE = (/0 (1—)%3 (s, uls), o (s))ds

-5 / ) ol /5

(1—Bn* )R
Cla—1)(1-pn*3)(a—-2)

X 132 — 1372

< F(a) Xt =1+
Thus,

| Tu(ty) — Tu(ty)|| — O forty — tp, u € Q.
By means of the Arzela-Ascoli theorem, we claim that 7" is completely continuous. Finally, we

see that
1

min |Tu(r)| = min /0 LG, ) f (s, uls), d(s))ds > /O G(1, $)f (s, u(s), ' (s))ds

n<t<l1 n<t<l1

1
> % max /O Gt )f (s, u(s), 1/ (5))ds = o max (Tu) ().

0<t<1
Considering the definition of the operator 7' together with Lemma 3.3, one can find that

max |Tu(t)| < max |Tu'(t)].
0<t<1 0<t<1

Thus, we conclude that 7 : K — K is a completely continuous operator.
Let the nonnegative continuous concave functional ¢, the nonnegative continuous convex
functionals 7, 0 and the nonnegative continuous functional y be defined on the cone by

y(u) = max [i (1)], 6(u) = y(u) = max |u(t)], ¢(u) = min |u(r)]

0<¢<1 0<r< n<t<li

By Lemmas 3.2 and 3.3, the functionals defined above satisfy that
00(u) < ¢(u) < 6(u) = y(u), [lul <), uck.
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Therefore the condition (2.1) of Lemma 2.7 is satisfied. Assume that there exist constants

0<a, b,dwitha<b<d,c:y£and
()

a((a—2>(1—ﬁn“‘3>+(a—1)(1+Bn“‘2))

b
Vo(-(a—2)(1—ﬁn“3)+a(1—ﬁn“2)))

d>

such that
C(e)(1— B3 (e —2)

) Fey) < T ) + (@ - D+ pne D™
(t, 1, v) €[0,1] x [0, d] x [~d, d,

C(o+1)(1-Bn*3)(@—2)
w( —(@=2)(1-Bne3) +a(l - pne2))
(t, u, v) €[, 1] x [b, b/y) x [~d, d], and

M+ 1)(1 - Bn®)(a—2)
) ) < o ) (1= ) T a1 — B 2)

(t, u, v) €10, 1] x [0, a] x [—d, d]. O

b,

(A2) f(t,u,v) >

Theorem 3.5. Under assumptions (A1) — (A3), problem (1.1)-(1.2) has at least three positive
solutions uy, up, uz satisfying

P _ . . -y
Joax ui(t)| <d,i=1,2,3; b< min s (1)]; @ < max Jus(1)], min, ua(1)] <b, max Jus(r)| <a

Proof. Problem (1.1)-(1.2) has a solution u = u(¢) if and only if u solves the operator equation
1
= [ 6(.5)1(s. u(s), w/(5))ds = (Tw)0).
For u € K(Y, d), we have y(u) = max |u/(t)| < d. From assumption (A} ), we obtain

0<r<1
C(a)(1-Bn*)(a—2) 4
(@=2)(1=pn*73) +(a—1)(1+pn*2) "

ft, u(t), (1)) <

Thus
B t(t_s)oc—z , toc—z
Y(Tu) = foax —/0 Ta—1) f(s, u(s), u (s))ds—i—r(a_ (1= Bna )
1
X (/0 (1—95)*3f(s, u(s ds—ﬁ/ )43 £(s, uls), u/(s))ds)
1 1 1+ Bn%*2
S(F(a)+F(a—1><1—ﬁn“‘3) a=2 )

M@(-pn*e-2 .
(a=2)(1— )+ (a— 1)(1+pn=2) "~
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Hence, T : K(y,d) — K(v,d). The fact that the constant function u(z) = % €K(y,0,9¢,b,c,d)
and ¢ (%) > b imply that

{ueK(y, 8, 0, b, ¢, d|¢(u)>b)} #0.

For u € K(y, 0, ¢, b, ¢, d), we have b < u(t) < L » and W' (r)| < d for 0 <t < 1. From
assumption (Ay), we see
Cla+1)(1-pn*?)(a—2)

b.
W ( — (@=2)(1-Bne3) +a(l - pne2))

f(t, (), u'(1) >

Thus
1
O (Tu) nn<1t11<11/ G(t, s)f(s, u(s), u /(s))dSZYO/O G(1, 8)f(s, u(s), u'(s))ds
(1-9%3—B(n—)"" (1-5)°"
ZYO</0 ( (1-pn*3(e) () Jas

1 (1_S)ocf3 (l—s)afl
| (@ T >‘“)
) Dt D1-pn*H@-2)

0 —(@=2)(1—Bne=2) +a(l—pne2))

B 1 1 1 Bn®—2
_yo(_l“(a+l)+F(a)(1—[3n0‘—3)(a—2_ a—2>)
C(o+1)(1=pn*>)(a—2)

w( — (@=2)(1-Bne3) +a(l - ne2))

b=0>b,

which means ¢(7Tu) > b, Yu € K <}/, 0, ¢, b, ;’ , d) These ensure that condition (S1) of

Lemma 2.7 is satisfied. Secondly, for all u € K(7y, ¢, b, d) with 8(Tu) > c,
b
¢(Tu) = 10(Tu) > yoc = Wy = b.

Thus, condition (S;) of Lemma 2.7 holds. Finally, we show that (S3) also holds. We see that
y(0)=0<aand 0 ¢ R(y,v,a,d). Suppose that u € R(y, Y, a, d) with y(x) = a. Then, by
assumption (A3),

l[/(Tu):(— 1 N 1 < 1 _ﬁna—2>)
Floa+1) T(o)(1-pn*3H\a—-2 a-2
Mo+ D1-pn*H@-2)
—(a=2)(1=Bn* ) +a(l-Bn*2)"
Thus, all conditions of Lemma 2.7 are satisfied. Hence problem (1.1)-(1.2) has at least three
positive solutions uy, up, u3 satisfying maxo<,<i [uj(t)| <d, i=1,2,3, b < minp<,<i |u1(r)|,
a < maxo<;<1 |uz(t)|, minp<;<1 |ua(t)| < b, and maxo<,<1 |us(t)| < a. O
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4. EXAMPLE

In this section, we present an example to illustrate the main theorems. Consider the nonlinear
boundary value problem

Dy u(t)+ f(t, u(r), u'(1)) =0, 1 €0, 1], (4.1)
1
u(0) =u'(0) = u"(0) =0, u"(1) - %”(5) =0, (4.2)
1
where ¢ =3.7, B = %, n=s. % ~ 0.1539 and
1, 1 LA A
et (ut1) ( ) 0<u<7
Flt ) = ﬂ26+5<u+ ) "100°" (000" V=1
y Uy iet+4096—}— 1 Sil’l( 1% ) u>7
n2 5 100 1000/’

We choose positive constants a = 1, b =5, d = 1000 and check that the nonlinear term
f(t, u, v) satisfies
C(a)(1-Bn*)(a—2)
1 t,u,v) <

WU 1) < (o ) (1 e ) 4 (o 1)1+ B ?)
[0, 1] x [0, 1000] x [—1000, 1000];
C(a+1)(1-Bn*)(a—2)

}’0(— (a—2)(1—-Bn%3)+a(l _ﬁna—2>>
[0.5, 1] x [5, 28.2805] x [—1000, 1000];
C(a+1)(1-Bn*>)(a—-2)

B) S ) < = g ) T all - pna?)
0, 1] % [0, 1] x [—1000, 1000].

d ~900.50, (¢, u, v) €

(2) f(t, u,v)> b =~229.6301, (t, u, v) €

a ~ 7.0550, (t, u, v) €

Then all assumptions of Theorem 3.5 are satisfied. Thus problem (4.1)-(4.2) has at least
three positive solutions u;(z), ux(r), us(t) satisfying maxo<,< [u(r)| < 1000, i =1,2,3,5 <
minl/zgtgl ]ul(t)|, 1< maxp<;<i |u2(t)], minl/zg,gl |u2(t)] < 5, and maxp<;<i ’ug(t)’ <1.

Remark 4.1. Note that the first order derivative of function u(z) is involved in the nonlinear
term of the problem (4.1-4.2) explicitly. The earlier results for positive solutions of this kind of
fractional differential equations (see, e.g., [3, 7, 8, 12]) are not applicable to this problem.
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