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Abstract. This paper is concerned with a nonlinear extensible beam equations in a class of modified
Woinowsky-Krieger models with time delay. We prove the global nonexistence of the solutions. These
results generalize and improve some earlier related results in the literature.
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1. INTRODUCTION

In this paper, we investigate the nonlinear extensible beam equation with time delay and
initial-boundary conditions

(

Uy +Nu—M (HVuH2> AuA+ ) g
+U ’Ml (xal - T)|r71 Uy (-x7t - T) = ‘u|p*l u, ('xat) € Qr,

u(x,0) =ug(x), u (x,0) = uy (x), x € Q, (1.1)
u (x,t—7)=fo(x,t — 1), x€Q,t€(0,7),
_ du _
\ M—m—o,

where Q C R" (n > 1) is a bounded domain with smooth boundary dQ, Qr = Q x (0,T), the
nonlinear term M (s) is defined by

M(s)=1+Bs",y>0,8>0,5>0, (1.2)

and the exponent p of the source term satisfies

2
1§r<p,1<2)/+1<p<°°,n§4;1<2}/+1<p§n+4,n25. (1.3)
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In 1950, Woinowsky-Krieger in [17] investigated the original version of the extensible beam
equation. This model affords a description when the vibration is the dynamic buckling of a
hinged extensible beam under an axial force, while it often depends on the fixing manner and
the distance of the two ends of the beam. For the wide applications of this system, we refer to
[18, 19, 20, 21, 22].

In the eighteenth century, the first equations with delay were considered by brothers Leonard
Euler and Bernoulli. Since 1960, there have been appeared many surveys on the subject. In
the middle of 1990s, robust control of systems with uncertain delay was started and led to the
delay bloom in the beginning of the twenty-first century. Time-delay systems are also named
systems with aftereffect or dead-time, equations with deviating argument, hereditary systems,
or differential-difference equations. They belong to the class of functional differential equa-
tions which are infinite-dimensional, as opposed to ordinary differential equations. Time-delay
often seems in many control systems, either in the state, the control input, or the measurements.
There can be measurement, transport, or communication delays. Control systems often operate
in the presence of delays, primarily due to the time it takes to acquire the information needed
for decision-making, to create control decisions, and to execute these decisions. Sensors, actua-
tors and field networks that are involved in feedback loops usually introduce delays. Delays are
strongly involved in challenging areas of information technologies and communication: stabil-
ity of highspeed communication networks or networked control systems. Models with delay:
Sampled-data control and networked control systems, congestion control in communication net-
works, drilling system model, long line with tunnel diode and model of lasers, vehicular traffic
flows, neural networks, population dynamics and epidemic models (see, [5, 10]).

In recent years, controlling the behavior of solutions for partial differential equations with
delay effects has become an active research area. Generally, delay effects occur in numerous
applications and practical problems such as thermal, economics, biological, chemical and phys-
ical. In many cases, time delay may effects the instability; see, e.g., [1, 2]. The Timoshenko
equation is among the famous wave equation’s model which describe extensible beam theory. It
was introduced in 1921 by Timoshenko [12]. For detailed information on derivation the equa-
tion, we refer to [3, 9]. Datko et al. [2] indicated that a small delay in a boundary control is a
source of instability. In [6], Nicaise and Pignotti studied the equation as follows

us — Au+ aguy (x,t) +au; (x,t —7) =0,

where ag and a are positive real parameters. They obtained that, under the condition 0 < a < ay,
the system is exponentially stable. In the case a > ag, they obtained a sequence of delays that
shows the solution is instable. In [13], Xu et al. obtained the same result similar to the [6]
for the one space dimension by adopting the spectral analysis approach. In [7], Nicaise et al.
studied the wave equation in one space dimension in the case of time-varying delay. In that
work, they showed an exponential stability result under the condition

a<+v1-—day,

where d 1s a constant such that
(1) <d < 1,V > 0.

In [4], Feng studied the following equation

t
un—kAzu—M(HVuHZ) Au—/o g(t—s)Au(s)ds+ wu + tou, (t —7) =0.
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He obtained well-posedness of solutions with |uy| < u, and proved decay results under the
assumption |Up| < W;.
Park [8] investigated the following equation

t
ut,+A2u—M<||Vu||2) Au+6(t)/0 g(t—s)Au(s)ds+aou +aju (t — (1)) =0.

He established decay results under the assumption |a;| < /1 —dag. In recent years, authors
also investigated the related equations; see, e.g., [14, 15, 16].

Our main aim in this paper is to follow the work in [22] to establish the global nonexistence
of the solutions for equation (1.1). There is no research, to our best knowledge, related to the
nonlinear extensible beam equation with delay term (12 |u; (x,z — )" u; (x, — 7)). The out-
line of this paper is as follows. In Section 2, we state some assumptions and the transformation.
In Section 3, we prove the global nonexistence results. Section 4 concludes this paper.

2. PRELIMINARIES

In this section, we give some assumptions and the transformation. We show some notations,
functionals and partial results given in [21]. Let [|.||, indicate the norm in L”(€) and (.,.)

present the inner product in L? (Q). We use the following notations

2 2 2
ullgy = [1Vael|” + | Aue]|

H:{ueHz(Q)mHol(Qﬂ—@—OOnaQ},

==

We indicate by C or C; a generic constant that may vary from line to line even in the same for-

mula. Denoting by A; the first eigenvalue of the bi-harmonic operator with boundary condition
1

50 = 9450 = 0, we have Ay |[ul|® < ||Aul|* and A, ||Vu|* < ||Aul)* for all u € H. Similar to

[6], we introduce a new function

z(x,k,t) = us (x,0 —7k), x € Q, ke (0,1).
We see that z satisfies Tz, (x,k,1) + zx (x,k,2) = 0, x € Q, k € (0,1). Therefore, system (1.1)
takes the form
e+ AN2u—M (HVqu) Au+ iy [y g

+pz(or, 1,0) "z L) = [,
17 (x, k1) + 24 (x,k,2) = 0, in Q x (0, 1)
2(x,0,1) = u; (x,1) inQx (0,7
z(x,k,0) = fo(x,—7Tk), x € Q,

u(x,0) =ug (x), u (x,0) =uy (x), x € Q.

We give the following potential functional and Nehari functional

t
§0J), 2.1)

1 2 1 2 B 2942
T() = = |Vae]?+ = | Au]|? 4+ —2— || Vul|?"
(u) 2|| ull +2|| ull +2(y+1)” ull
4

1 1
kO dkdx — —— [Ju|PH! 22
b o] R ke 22)

and

1
10 = |Vl + |ul> +B [Vl 2 +¢ [ [ etk ardx =l @3)
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where { is a positive constant defined to satisfy
Tor < & < t(U)—Wa). 2.4)

We define the energy functional for problem (2.1) as follows

E():_HutH +—||V I+ 5 ||AMH

B 2742 ! r+1
+ Vul|* +—// x, k1) dkdx —
2(y+1) Vel r+1.JaJo l«( ) p+1

1 > p—1 2 2 ( 1 1 > 2942
= 5 P 52 (19l + 4w + - vul P
zHutH 2(p+ ] [Vaue||* + || Aue]| 2+ ped B[ Vul|

+g( ! )// |zxkt)|r+ldkdx—|—lﬁl() (2.5)

r+1 p+1
Using (2.4) and the assumption that y; > u, > 0, we see that

E' (t) = ([.L1 - T(I’C—I— 1) - rfl) HutH:ii o (’C(I’C—{— 1) - rujq) /Q’Z(x,l,t)r—de

< —Cg (HutH:ﬂ + /le(x,l,r)!’“ dx) <0, (2.6)

p+1
p+1

[

for some Cg > 0. Here, we choose u; — ﬁ - r+l > 0 and T(EH) - fﬂ > 0 . From I (u),
we give the stable set W = {u € H|I (1) > 0} U{0} and the unstable set V = {u € |I (u) < 0},
respectively. The depth of the potential well is defined by

d= inf J(u inf  supJ(Au
ueN () uEH\{O}l>% ( )

where ./ is the Nehari manifold 4" ={u € H\ {0} |I (u) = 0}. It follows by [21, Lemma 2.3]

2
that d = 5 +]1) <#> "' where C is the best embedding constant from H into LP*! (Q), that
is, [[ull 11 < Cllullg-

We now state the following lemma.

_p=l
1

Lemma 2.1. Let J (u) <d. Then I (u) <0 if and only if ||u||y; > A, =C ™ r*

1
Proof. T ||ull;; > A = C~ 771, we see from (2.2), (2.3), and the definition of d that

()= 2fp+11> (19?4 1) + (5 s~ 5y ) BVl

C // r+1 1
- — k, dkdx+ ——:1
(r+1 p+1 [2(x;k.5) + p+1 ()

Je p—1 1 \71 o p—1 12

_2(p+1) Cr+l S 2(p4+1)
Therefore, we can obtain 7 (1) < 0 from the fact p > 2y+1 and > 0. Letting I (u) < 0, we
obtain

IN

2 2 1 1 1
lull, + B 1Vul27D < Jluf25h < 7 ulf

—1
which implies that ||u||, > C i = A,. Hence, the proof is completed. O
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To achieve our main result, we give some results proved in [21] which are needed later.

Theorem 2.2. [21] (Local existence). Suppose ug (x) € H and u; (x) € H} (Q). Hence, problem
(2.1) has a unique local solution u = u(x,t) € C([0,T],H) satisfying u; € C ([0,T];H} () N
L1 ([0,7],L"1(Q)) for some T > 0.

Combining Theorem 4.3 and Theorem 5.3 in [21], the global nonexistence when E (0) < d
can be stated as follows.

Theorem 2.3. [21] (Global nonexistence when E (0) < d). Let ug (x) € H and u; (x) € H} (Q)
be given functions. Let E (0) < d and uy € V. Then, the solution u to problem (2.1) blows up in
finite time.

Theorem 2.4. [21] (Global nonexistence when E (0) >d and r =1). Let ug (x) € H and u; (x) €
H} (Q) hold. Suppose that E (0) > 0, I (up) — luo||* < 0 and ||Vuo||* + |Juo||* + 2 (uo,u1) >
%, where ¢ = min{1,C} and C is the best embedding constant from H into H} (Q). Then,
tﬁe solution u to problem (2.1) with r = 1 blows up in finite time.

3. GLOBAL NONEXISTENCE

In this section, we establish the global nonexistence results. Let (#,z) be the solution obtained
in Theorem 2.2, whose maximal existence time is 7,,.

Theorem 3.1. Let (1.2) and (1.3) hold. Suppose the initial data ug (x) € H and u; (x) € H& (Q)
satisfies one of the following conditions

(i) E(0) <0y

(ii) 0 < E (0) < 5 [ouourdx,

where B is a positive constant given in (3.1). Then, the solution (u,z) to problem (2.1) blows
up in finite time.

Proof. (i) The blow-up result for the case E (0) < 0 is a direct conclusion of Theorem 2.3.
E (0) < 0 and (2.5) satisfies I (ug) <0, i.e., ugp € V.

(ii) First, we suppose that the energy E (0) > 0 for all ¢ € [0,7;,). On the other hand, there
exist a o € [0,T;,) such that E (fp) < 0. Tking #o as the initial time, from case (i), we see that
u(t) blows up in finite time, which is a contradiction. We divide the proof of (ii) into two steps
as follows:

Step 1. Show the following claim, which is motivated by [11].

Claim: Assume that ug (x) € H and u; (x) € HJ (Q) hold, and (u,z) is a weak solution to
problem (2.1). We see that there exist positive constants A and B such that

% (/Quutdx—BE (t)) >A (/Quu,dx—BE (t)) forallt € [0,T,,). (3.1)

Proof of the claim. From the first equation of problem (2.1), we see that

d
—/ uu;dx = ||u,|\2+/ Uiy dx
dt Jo Q

2 2 2 2y+2
= Jlue]|* = [ Aul|* = | Vul|* = B || Va7

R Ry R ey
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Adding and subtracting (p+1) (1 —0)E (r) with 8 € (0, 1) in the right hand side of the above
equation, we obtain

d p+1)(1—-0)+2 p+1)(1—-6)—-2
& [ - PENC=OE2 ), 2y PHEDOZOZ2 (2 4 9ug?)

2 2
(p+1)(1-6)-2(y+1) 2(y+1) r—1
+ Vul[77T — / u uudx
(,y_|_1) :B ” || 24 Q| t| t
1)(1—-6 1
r+1 Jo
+1
—(p+ D(1—=0)E (1) +6 |lull77, - (3.2)
Utilizing Young’s inequality with € < 1, we have
r—1 r r+1 r+1
dx| < ——— , 33
m/g|uz| wds| < =l S (33)
o [ eI 2| < e+ (34
T (r+De a a

By using the interpolation inequality for LP-norms, we obtain

r —r
a7 < sl + (1= 5) ) with s = 22— € (0,1, (3.5)

Putting (3.3)-(3.5) into (3.2), we see that

%/Quutdxz (p+1)(12_9)+2||u,||2+(p+l)(12_9)_2||Au||2
+ (P+1>(1—29)—2—8 IVul?+ (P+1)(12(—y321—)2(7+1)ﬁ||Vu||2(y+1)
+(p+lr+1 Z5// Iz (x,k,s)|" dkdx +(e— a- ))H [l
- LU R eyl O [8% (3.6)

—(p+1)(1—-06)E(1).

By choosing, 6 = £+1)ande<6o mm{l [%] }(&—lwhenr—l i.e.,

s=1),weget(p+1)(1—0)—2(y+1)>0by p>2y+1.1If

gle)=(p+1)(1—-0-2—¢)=(p+1) (1—%) —2—¢fore € (0,8,

then

+1)r8’_1(1—s)
(e :_(p
g (&) r+1

which implies that g (€) is strictly decreasing in the interval (0, ). By limg_,0g(e)=p—1>0
and the continuity of g (&), we see that there exists 6; > 0 such that

g(e)>0forall €(0,6). (3.7

—1 < 0for (0, ),
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For 0 < € < §; < &y, by using (2.6), (3.7), and the embedding inequality ||u||, < Bj ||Vul|,, and
noticing the choice of 0, we can rewrite (3.6)

% ( /Q it — mE (t))

> PEDUZOE2 12 e >~ (p+ 1) (1 - B)E (). (3.8)
where (1—s)
1) (1-2052) -2 '
h(e) = (p+ )< r+l ) e 1 Mforee(o,&)-

2 2B+l
Similar to (3.7), we can derive that there exists &, € (0,0;) such that 2 (g) > 0 for all € € (0,6,).
From Cauchy-Schwarz inequality, (3.8) can be rewritten as

% ( /Q vty — mE (t))

> \/2[(P+1)(1—6)+2]h(8)/guu,dx—(p+1)(1—6)E(t)

=A(g) (/Quutdx—B(S)E(t)), (3.9)
where
A(e)=+/2[(p+1)(1-06)+2]h(e),
By N0 (ph(1-0)
A(e) V2I[(p+ 1) (1=0)+2]h(e)
It follows that
. __ (p+1)B oo, Tim " — 4o
EIL%LB(g)_ (p+3)(17—1)< ’sl—>o+ (r+1)e e

which implies that there exists a sufficiently small &3 € (0, 5,) such that
B(e) < !
~(r+1)e

Therefore, for any fixed sufficiently small & € (0, 3), (3.9) can be rewritten as

which implies (3.1) holds with A = A (&) and B = m. By (3.10) and the above discussion,
we can easily infer that (3.1) also satisfies for the linear damping case (r = 1).
Step 2. Assume that (u,z) is a global solution to problem (2.1). By (3.1) and Gronwall’s

inequality, we have

for any € € (0,83).

/ uuydx — BE (t) > (/ uoudx — BE (O)) A > 0fort >0, (3.11)
Q Q
where the assumption 0 < E (0) < %fg uoudx is used. From 0 < E (t) < E (0),

d, 2
= =2 d
Sl =2 [
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and (3.11), we obtain

t
H”t‘|2:Hu0H2+2//uufdxdr
0JQ

t
> ||u0||2+2/ </ uourdx — BE (0)) At
0 Q

2
= lluoll” +5 (&’—1) (/ uouldx—BE(O)). (3.12)
Q
Moreover, from (2.6) and Holder’s inequality, we have
! t
Jullo = w0+ [ w ()| <luolls+ [l (5) a7
2

r—1 t
< lolly + 121 [ ()],

' AT
r—1 r r+
<uo||, + | Q|20 751 (/0 || s (‘L’)H:ﬂd‘c)

1

r—1 r
< [Juolly + | QT 7 (E(0) = E (1))

r—1 r

1
< luolly + Q=0 17T (E(0)) 7T,

which is a contradiction to (3.12) for ¢ sufficiently large. We use the assumption that (u,z) is a
global solution to problem (2.1) and E (t) > 0. Therefore, T,, < oo and (u,z) blows up in finite
time. Hence, the proof is completed. U

4. CONCLUSION

In this paper, we demonstrated that the existence of finite time blow-up solutions with ar-
bitrary initial energy level (including E (0) > d). To the best of our knowledge, there were
no global nonexistence results for the nonlinear extensible beam equation with time delay and
source terms. We also obtained the global nonexistence of solutions, under sufficient conditions.
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