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A NEW UNCONDITIONALLY ENERGY-STABLE FINITE DIFFERENCE SCHEME
FOR RIESZ SPACE-FRACTIONAL ALLEN-CAHN EQUATIONS
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Abstract. In this paper, we present a new second-order finite difference scheme for Riesz space-
fractional Allen-Cahn equations. We use a modified Crank-Nicolson finite difference scheme with stabi-
lized terms of third-order numerical accuracy for temporal discretization. The discrete maximum bound
principle, the maximum-norm error estimates, and the discrete energy stability of the proposed scheme
are discussed. It is demonstrated that the proposed scheme is maximum bound principle preserving and
unconditionally energy-stable for any nonnegative stabilization parameter β which satisfies 0≤ β ≤ 1/4.
As far as we know, the proposed fully implicit second-order scheme has never been proved to preserve
the maximum bound principle before except the Allen-Cahn equation with β = 1/12 and β = 0. Finally,
some numerical experiments are performed to verify the theoretical results.
Keywords. Riesz space-fractional Allen-Cahn equation; Error estimate; Energy stability; Finite differ-
ence method; Maximum bound principle.
2020 MSC. 65M06, 65M15, 41A05.

1. INTRODUCTION

In this paper, we consider the finite difference approximation for the following 1D space-
fractional Allen-Cahn equation

∂u(x, t)
∂ t

= ε
2 ∂ αu(x, t)

∂ |x|α
− f (u), x ∈ (a,b), t ∈ (0,T ], (1.1)

u(x,0) = u0(x), x ∈ [a,b], (1.2)

u(a, t) = u(b, t) = 0, t ∈ (0,T ]. (1.3)
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Here the parameter ε > 0, α ∈ (1,2), the nonlinear term f (u) = u3−u presents the polynomial
double well potential, ∂ α

∂ |x|α denotes the Riesz fractional derivative operator, which is defined by

∂ αu(x, t)
∂ |x|α

=− 1
2cos απ

2 Γ(2−α)

d2

dx2

∫
∞

−∞

|x−ξ |1−α u(ξ , t)dξ ,

where

Γ(z) =
∫

∞

0
tz−1e−tdt,z > 0.

In recent years, there has been significant interest in using the diffusive-interface phase-field
approach for modeling the mesoscale morphological pattern formation and interface motion.
One of the very effective mathematical models describing these physical phenomena is the
Allen-Cahn equation introduced in 1979 [1]. Similar to the classical Allen-Cahn equation, the
space-fractional Allen-Cahn equation (1.1)-(1.3) also has the following two intrinsic properties.
One is the maximum bound principle, i.e., if |u0(x)| ≤ 1 for all x ∈ [a,b], then |u(x, t)| ≤ 1
for all x ∈ [a,b] and t ≥ 0. The other is the energy function E(u) is decreasing with time:
E(u(tn))≤ E(u(tm)), ∀tn > tm, where E(u) =

∫ b
a

(
F(u)− 1

2ε2u ∂ α u
∂ |x|α

)
dx and F(u) = 1

4(u
2−1)2.

Such two properties are important in the study of the stability of the solution to the Allen-Cahn
equation, and whether they could be inherited in the discrete level is a significant issue in nu-
merical simulations. Tang and Yang [11] discussed the discrete maximum bound principle and
the discrete energy stability of first-order linear implicit-explicit scheme for the Allen-Cahn
equation. Shen et al. [10] analyzed the discrete maximum bound principle of first-order lin-
ear implicit-explicit scheme for the generalized Allen-Cahn equation. For temporal discretiza-
tion, the standard semi-implicit scheme as well as the stabilized semi-implicit scheme were
adopted, while for space discretization, the central finite difference was used for approximat-
ing the diffusion term and the upwind scheme was employed for the advection term. Hou
et al. [4] considered the discrete maximum bound principle, the discrete energy stability and
the error estimates of the second-order Crank-Nicolson finite difference scheme for fractional-
in-space Allen-Cahn equations with Riemann-Liouville fractional derivatives. Liao et al. [7]
presented a second-order and nonuniform time-stepping maximum bound principle preserving
scheme for time-fractional Allen-Cahn equations. Du et al. [2] proposed the first-order and
the second-order maximum bound principle preserving exponential time differencing schemes
for the nonlocal Allen-Cahn equation. To obtain a higher-order scheme for solving the Allen-
Cahn equation, Li et al. [9] proposed a new class of maximum principle preserving numerical
schemes, which consists of a kth-order multistep exponential integrator in time, and a lumped
mass finite-element method in space with piecewise rth-order polynomials and Gauss-Lobatto
quadrature. Zhang et al. [16] proposed high-order (up to fourth) strong stability-preserving
implicit-explicit Runge-Kutta schemes for the time integration of the space-fractional Allen-
Cahn equation and discussed the discrete maximum bound principle and energy stability. Ju
et al. [6] developed and analyzed novel first- and second-order linear numerical schemes for a
class of Allen-Cahn type gradient flows. These schemes combined the generalized scalar aux-
iliary variable approach and the exponential time integrator with a stabilization term, while the
standard central difference stencil was used for discretization of the spatial differential operator.
The authors not only proved their unconditional preservation of the energy dissipation law and
the maximum bound principle in the discrete setting, but also derived their optimal temporal
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error estimates under fixed spatial mesh. Weng et al. [12] considered a nonlocal ternary conser-
vative Allen-Cahn model, where the standard Laplace operator was intentionally replaced with
a spatial convolution term that aims at describing long-range interactions among particles. They
developed a linear energy stable scheme based on the operator splitting method and discussed
the mass conservation, energy stability and global convergence of the new scheme. Zhai et
al. [15] presented a new energy dissipation and maximum bound principle preserving scheme
based on the operator splitting method for solving a nonlocal ternary Allen-Cahn model. The
discrete maximum bound principle and global convergence of the new scheme were analyzed
rigorously. This is the first work to show that the operator splitting method can guarantee the
maximum bound principle for a ternary Allen-Cahn model. Xu et al. [14] presented an uncondi-
tionally energy-stable finite difference scheme for Riesz space-fractional Allen-Cahn equations.
A stabilizing term O(τ(Un+1−Un+1)) was added to the proposed scheme to maintain numeri-
cal stability.

In this work, we present an unconditionally energy-stable second-order finite difference
scheme for the Allen-Cahn equation with Riesz fractional derivative. We can prove that our
scheme is maximum bound principle preserving and the discrete energy is unconditionally
decreasing when the stabilization parameter satisfies 0 ≤ β ≤ 1/4. As far as we know, the
proposed fully implicit second-order scheme has never been proved to preserve the maxi-
mum bound principle before except Allen-Cahn equation [5] with β = 1/12, time-fractional
Allen-Cahn equation [8] with β = 1/12, Riesz space-fractional Allen-Cahn equation [14] with
β = 1/12 and Riesz space-fractional Allen-Cahn equation [13] with β = 0. The proof tech-
niques used in the proof of discrete maximum bound principle are different from those used in
References [5, 8, 13, 14].

The rest of the paper is organized as follows. In Section 2, a stabilized second-order finite
difference scheme will be presented. The discrete maximum bound principle, the maximum-
norm error estimate and the discrete energy stability of the proposed scheme will be discussed
in Sections 3-4, respectively. Finally, some numerical examples are given in the last section to
verify the theoretical results.

2. FINITE DIFFERENCE APPROXIMATION

We partition the interval (a,b) into a uniform mesh with the space step h = (b−a)/(N +1)
and τ = T/M, where N and M are two positive integers. The set of grid points is denoted by
xi = a+(i−1)h and tn = nτ for 1≤ i≤N+2 and 0≤ n≤M. We use the notations un = u(x, tn)
and un

i = u(xi, tn). Define Vh =
{

v : v = {vi} is a grid function in {xi = a+ ih}N
i=1
}
. For any

v= {vi} ∈Vh, we define its pointwise maximum norm ‖v‖∞ =max1≤i≤N |vi|. We adopt a second
order finite difference approach in [3] to discretize the fractional operator ∂ α

∂ |x|α . Hereinafter, we
denote Dh as the discretization matrix of the fractional operator. It is given by

Dh =−
1

hα


g0 g−1 g−2 · · · g−N+1

g1 g0 g−1
. . . g−N+2

g2 g1 g0
. . . g−N+3

...
...

... . . . ...
gN−1 gN−2 gN−3 . . . g0


N×N

=:− 1
hα

A, (2.1)
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where

g0 =
Γ(α +1)

Γ
(

α

2 +1
)2 > 0, g−k = gk < 0,

+∞

∑
k=−∞

gk = 0, (2.2)

and

gk+1 =

(
1− α +1

α

2 + k+1

)
gk < 0,1 < α < 2. (2.3)

By use of (2.1)-(2.3), it is sufficient to prove that Dh satisfies the following properties. Here we
omit the proof.

Lemma 2.1. The matrix Dh satisfies the following properties:

• Dh is symmetric;
• Dh is negative definite, i.e., UT DhU < 0, for any nonzero U ∈ RN;
• The elements of Dh = (bi j) satisfy

bii =−d < 0, d ≥max
i

∑
j 6=i
|bi j|. (2.4)

Next, we present the following modified Crank-Nicolson finite difference scheme with stabi-
lized term to solve equation (1.1), namely,

Un+1−Un

τ
+

(
Un+1).3 + (Un+1).2Un +Un+1

(
Un
).2

+
(

Un
).3

4

−Un+1 +Un

2
+β

(
Un+1−Un).3 = ε2Dh

(
Un+1 +Un)

2
, (2.5)

where 0 ≤ n ≤ M− 1, 0 ≤ β ≤ 1
4 , and Un represents the vector of numerical solution at nth

level. Hereinafter we define

Un := (Un
1 ,U

n
2 , · · · ,Un

N)
T ,

(Un).2 := ((Un
1 )

2,(Un
2 )

2, · · · ,(Un
N)

2)T ,

(Un).3 := ((Un
1 )

3,(Un
2 )

3, · · · ,(Un
N)

3)T ,

and

UnV n := (Un
1 V n

1 ,U
n
2 V n

2 , · · · ,Un
NV n

N)
T .

3. THE DISCRETE MAXIMUM BOUND PRINCIPLE

In this section, we discuss the discrete maximum bound principle for scheme (2.5). We
find that the following result not only simplifies the proof when the stabilization parameter
β = 0 [13] but also extends the results of β = 0 [13] and β = 1

12 [5, 8, 14] to 0≤ β ≤ 1
4 .

Theorem 3.1. Assume that the initial value satisfies max
x∈[a,b]

|u0(x)| ≤ 1. Then the fully discrete

scheme (2.5) preserves the discrete maximum bound principle provided that the time step size
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satisfies

τ ≤min

{
1
4
,
hαΓ

(
α

2 +1
)2

ε2Γ(α +1)

}
, β =

1
4

;

τ ≤min

{
1

2(1+12β )
,
hαΓ

(
α

2 +1
)2

ε2Γ(α +1)

}
, 0≤ β <

1
4
.

Proof. We prove this theorem by induction. First, it follows from the assumption on u0(x) that
||U0||∞ ≤ 1. We now assume that the result holds for n = m i.e., ||Um||∞ ≤ 1. Below, we check
that this upper bound is also true for n = m+1. If ‖Um+1‖∞ = |Um+1

p |, then |Um+1
p | ≥ |Um+1

j |
for all 1≤ j ≤ N. Next, we divide the proof into three cases:
Case I: β = 1

4 .
We rewrite (2.5) as(

1− τ

2

)
Um+1 +

τ

2
(
Um+1).3 + τUm+1

(
Um
).2
− τ

2
ε

2DhUm+1

=
(

1+
τ

2

)
Um +

τ

2
Um
(

Um+1
).2

+
τ

2
ε

2DhUm. (3.1)

The p-th component of (3.1) is[
1− τ

2
+ τ
(
Um

p
)2
]

Um+1
p +

τ

2
(
Um+1

p
)3− τ

2
ε

2
N

∑
j=1

bp jUm+1
j

=
1
2

Um
p +

τ

2
ε

2
N

∑
j=1

bp jUm
j +

1+ τ

2
Um

p +
τ

2
Um

p

(
Um+1

p

)2
. (3.2)

By τ ≤ 1
4 and (2.4), we find that

[
1− τ

2 + τ
(
Um

p
)2
]

Um+1
p , τ

2

(
Um+1

p
)3 and− τ

2ε2
∑

N
j=1 bp jUm+1

j
are nonpositive or nonnegative simultaneously. Then, we have∣∣∣∣∣[1− τ

2
+ τ
(
Um

p
)2
]

Um+1
p +

τ

2
(
Um+1

p
)3− τ

2
ε

2
N

∑
j=1

bp jUm+1
j

∣∣∣∣∣
=
∣∣∣[1− τ

2
+ τ
(
Um

p
)2
]

Um+1
p

∣∣∣+ ∣∣∣τ
2
(
Um+1

p
)3
∣∣∣+ ∣∣∣∣∣τ2ε

2
N

∑
j=1

bp jUm+1
j

∣∣∣∣∣
≥
[
1− τ

2
+ τ
(
Um

p
)2
]∣∣Um+1

p
∣∣+ τ

2

∣∣Um+1
p

∣∣3 . (3.3)

Taking the absolute value of (3.2), using (3.3), τ ≤ hα Γ(α

2 +1)
2

ε2Γ(α+1) , (2.4) and ‖Um‖∞ ≤ 1, we
easily obtain (

1− τ

2

)∣∣Um+1
p

∣∣+ τ
(
Um

p
)2 ∣∣Um+1

p
∣∣+ τ

2

∣∣Um+1
p

∣∣3
≤

∣∣∣∣∣12Um
p +

τ

2
ε

2
N

∑
j=1

bp jUm
j

∣∣∣∣∣+ 1+ τ

2

∣∣Um
p
∣∣+ ∣∣∣∣τ2Um

p

(
Um+1

p

)2
∣∣∣∣

≤1
2
+

1
2

∣∣Um
p
∣∣+ τ

2
+

τ

2

∣∣Um+1
p

∣∣2 , (3.4)
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where we used∣∣∣∣∣12Um
p +

τ

2
ε

2
N

∑
j=1

bp jUm
j

∣∣∣∣∣=
∣∣∣∣∣
(

1
2
+

τ

2
ε

2bpp

)
Um

p +
τ

2
ε

2
∑
j 6=p

bp jUm
j

∣∣∣∣∣
≤
(

1
2
+

τ

2
ε

2bpp

)∣∣Um
p
∣∣+ τ

2
ε

2
∑
j 6=p

∣∣bp j
∣∣ ∣∣Um

j
∣∣

≤1
2
+

τ

2
ε

2bpp +
τ

2
ε

2
∑
j 6=p

∣∣bp j
∣∣

=
1
2
+

τ

2
ε

2

(
∑
j 6=p

∣∣bp j
∣∣−d

)

≤1
2
. (3.5)

It follows from (3.4) that(
1− τ

2

)∣∣Um+1
p

∣∣+ τ
∣∣Um

p
∣∣2 ∣∣Um+1

p
∣∣+ τ

2
(∣∣Um+1

p
∣∣−1

)∣∣Um+1
p

∣∣2 ≤ 1
2
+

τ

2
+

1
2

∣∣Um
p
∣∣ . (3.6)

If
∥∥Um+1

∥∥
∞
> 1, then (3.6) becomes 1− τ

2 + τ
∣∣Um

p
∣∣2 < 1

2 +
τ

2 +
1
2

∣∣Um
p
∣∣ , namely,

−τ
∣∣Um

p
∣∣2 + 1

2

∣∣Um
p
∣∣+ τ− 1

2
> 0,

which contradicts
∣∣Um

p
∣∣ ≤ ‖Um‖

∞
≤ 1 provided that τ ≤ 1

4 . Then the bound
∥∥Um+1

∥∥
∞
≤ 1

holds.
Case II: 1

12 ≤ β < 1
4 .

We rewrite (2.5) as(
1− τ

2

)
Um+1 +

(
1
4
+β

)
τ
(
Um+1).3 +(1

4
+3β

)
τUm+1

(
Um
).2
− τ

2
ε

2DhUm+1

=
(

1+
τ

2

)
Um +

(
3β − 1

4

)
τUm

(
Um+1

).2
+

τ

2
ε

2DhUm +

(
β − 1

4

)
τ (Um).3 . (3.7)

The p-th component of (3.7) is(
1− τ

2

)
Um+1

p +

(
1
4
+3β

)
τ
(
Um

p
)2Um+1

p +

(
1
4
+β

)
τ
(
Um+1

p
)3− τ

2
ε

2
N

∑
j=1

bp jUm+1
j

=
(

1+
τ

2

)
Um

p +
τ

2
ε

2
N

∑
j=1

bp jUm
j +

(
3β − 1

4

)
τUm

p

(
Um+1

p

)2
+

(
β − 1

4

)
τ
(
Um

p
)3

=
1
2

Um
p +

τ

2
ε

2
N

∑
j=1

bp jUm
j︸ ︷︷ ︸+

(
3β − 1

4

)
τUm

p

(
Um+1

p

)2
+

1
4

Um
p +

(
β +

1
4

)
τUm

p

+
1
4

Um
p +

(
1
4
−β

)
τUm

p −
(

1
4
−β

)
τ
(
Um

p
)3

︸ ︷︷ ︸ . (3.8)
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Let

g(x) =
1
4

x+
(

1
4
−β

)
τx−

(
1
4
−β

)
τx3,x ∈ [−1,1].

It is easy to see that g′(x) = 1
4 +

(1
4 −β

)
τ −

(3
4 −3β

)
τx2 and g′(x) ≥ 0 for τ ≤ 1

2−8β
. By

g(1) =−g(−1) = 1
4 , we have |g(x)| ≤ 1

4 , so∣∣∣∣14Um
p +

(
1
4
−β

)
τUm

p −
(

1
4
−β

)
τ
(
Um

p
)3
∣∣∣∣≤ 1

4
. (3.9)

Taking the absolute value of (3.8) and using (3.5), (3.9) and ‖Um‖∞ ≤ 1, we easily obtain(
1− τ

2

)∣∣Um+1
p

∣∣+(1
4
+3β

)
τ
(
Um

p
)2 ∣∣Um+1

p
∣∣+(1

4
+β

)
τ
∣∣Um+1

p
∣∣3

≤ 1
2
+

(
3β − 1

4

)
τ
∣∣Um+1

p
∣∣2 + 1

4

∣∣Um
p
∣∣+βτ +

τ

4
+

1
4
.

If
∥∥Um+1

∥∥
∞
> 1, we find that(

1− τ

2

)
+

(
1
4
+3β

)
τ
∣∣Um

p
∣∣2 +(1

4
+β

)
τ
∣∣Um+1

p
∣∣3

<
3
4
+

(
3β − 1

4

)
τ
∣∣Um+1

p
∣∣3 + 1

4

∣∣Um
p
∣∣+βτ +

τ

4
.

namely,(
1− τ

2

)
+

(
1
4
+3β

)
τ
∣∣Um

p
∣∣2 +(1

2
−2β

)
τ
∣∣Um+1

p
∣∣3 < 3

4
+

1
4

∣∣Um
p
∣∣+βτ +

τ

4
.

Using the assumption
∥∥Um+1

∥∥
∞
> 1 again, we get

−
(

1
4
+3β

)
τ
∣∣Um

p
∣∣2 + 1

4

∣∣Um
p
∣∣+(1

4
+3β

)
τ− τ

4
> 0,

which is in contradiction with
∣∣Um

p
∣∣≤ ‖Um‖

∞
≤ 1 provided that τ ≤ 1

2(1+12β ) . It is obvious that∥∥Um+1
∥∥

∞
≤ 1.

Case III: 0≤ β < 1
12 .

Now, we rewrite (3.8) as(
1− τ

2

)
Um+1

p +

(
1
4
+3β

)
τ
(
Um

p
)2Um+1

p +

(
1
4
+β

)
τ
(
Um+1

p
)3− τ

2
ε

2
N

∑
j=1

bp jUm+1
j

=
1
2

Um
p +

τ

2
ε

2
N

∑
j=1

bp jUm
j︸ ︷︷ ︸+

(
3β − 1

4

)
τUm

p

[(
Um+1

p
)2−1

]
+

1
4

Um
p +4βτUm

p

+
1
4

Um
p +

(
1
4
−β

)
τUm

p −
(

1
4
−β

)
τ
(
Um

p
)3

︸ ︷︷ ︸ . (3.10)
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Taking the absolute value of (3.10), then using (3.5), (2.4) and ‖Um‖∞ ≤ 1, we conclude that(
1− τ

2

)∣∣Um+1
p

∣∣+(1
4
+3β

)
τ
(
Um

p
)2 ∣∣Um+1

p
∣∣+(1

4
+β

)
τ
∣∣Um+1

p
∣∣3

≤ 1
2
+

(
1
4
−3β

)
τ

∣∣∣(Um+1
p

)2−1
∣∣∣+ 1

4

∣∣Um
p
∣∣+4βτ +

1
4
.

Suppose
∥∥Um+1

∥∥
∞
> 1. Then(

1− τ

2

)
+

(
1
4
+3β

)
τ
(
Um

p
)2

+

(
1
4
+β

)
τ
∣∣Um+1

p
∣∣3

<
3
4
+

(
1
4
−3β

)
τ

[(
Um+1

p
)2−1

]
+

1
4

∣∣Um
p
∣∣+4βτ.

Furthermore, we have(
1− τ

2

)
+

(
1
4
+3β

)
τ
∣∣Um

p
∣∣2 +(1

4
+β

)
τ
∣∣Um+1

p
∣∣3

<
3
4
+

(
1
4
−3β

)
τ

[∣∣Um+1
p

∣∣3−1
]
+

1
4

∣∣Um
p
∣∣+4βτ,

namely, (
1− τ

2

)
+

(
1
4
+3β

)
τ
∣∣Um

p
∣∣2 +4βτ

∣∣Um+1
p

∣∣3 < 3
4
− τ

4
+

1
4

∣∣Um
p
∣∣+7βτ.

Then we use the assumption
∥∥Um+1

∥∥
∞
> 1 again to get

−
(

1
4
+3β

)
τ
∣∣Um

p
∣∣2 + 1

4

∣∣Um
p
∣∣+(1

4
+3β

)
τ− 1

4
> 0,

which is in contradiction with
∣∣Um

p
∣∣ ≤ ‖Um‖

∞
≤ 1 provided that τ ≤ 1

2(1+12β ) , so we get∥∥Um+1
∥∥

∞
≤ 1. The proof of this theorem is completed. �

Next, we investigate the maximum-norm error estimate based on the discrete maximum
bound principle obtained in Theorem 3.1. We omit the proof of the following theorem, since
the similar result can be found in Theorem 2 in [14].

Theorem 3.2. Assume that the exact solution u(x, t) is smooth, and the initial value is smooth
and bounded by 1, i.e., max

x∈[a,b]
|u0(x)| ≤ 1. Assume that all the conditions in Theorem 3.1 are

valid. Then, for all 1≤ n≤M, ‖uuun−Un‖∞ ≤C(ε,β ,T )(τ2+h2), where uuun := (un
1,u

n
2, . . . ,u

n
N)

T

represents the vector of exact solution at nth level and C(ε,β ,T ) is a constant which depends
on ε , β , T and the regularity of the exact solution but is independent of h and τ .

4. THE DISCRETE ENERGY STABILITY

In this section, we consider the discrete energy stability for scheme (2.5). Define the follow-
ing discrete energy

Eh(U) =
h
4

N

∑
i=1

(
U2

i −1
)2− hε2

2
UT DhU.
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Theorem 4.1. The scheme (2.5) is unconditionally energy-stable, namely,

Eh(Un+1)≤ Eh(Un), n = 0,1, · · · ,M−1.

Proof. Taking the difference of the discrete energy between two successive time levels, we get

Eh(Un+1)−Eh(Un)

=
h
4

N

∑
i=1

([(
Un+1

i
)2−1

]2
−
[
(Un

i )
2−1

]2
)
− hε2

2

[(
Un+1)T

DhUn+1− (Un)T DhUn
]

=
h
4

N

∑
i=1

[(
Un+1

i
)3

+(Un
i )

3 +Un+1
i (Un

i )
2 +Un

i
(
Un+1

i
)2−2

(
Un+1

i +Un
i
)](

Un+1
i −Un

i
)

− hε2

2
(
Un+1−Un)T

Dh
(
Un+1 +Un) , (4.1)

where we used the symmetry of the matrix Dh. Taking L2 inner product of (2.5) with h(Un+1−
Un)T obtains

h
4

N

∑
i=1

[(
Un+1

i
)3

+(Un
i )

3 +Un+1
i (Un

i )
2 +Un

i
(
Un+1

i
)2−2

(
Un+1

i +Un
i
)](

Un+1
i −Un

i
)

+
h
τ

N

∑
i=1

(
Un+1

i −Un
i
)2

+hβ

N

∑
i=1

(
Un+1

i −Un
i
)4

=
hε2

2
(
Un+1−Un)T

Dh
(
Un+1 +Un) . (4.2)

Thus, by (4.1)-(4.2), we conclude that

Eh(Un+1)−Eh(Un) =−h
τ

N

∑
i=1

(
Un+1

i −Un
i
)2−hβ

N

∑
i=1

(
Un+1

i −Un
i
)4 ≤ 0.

The proof is done. �

5. NUMERICAL EXPERIMENTS

In this section, we provide three numerical examples to validate the theoretical results. The
standard Newton method is used to solve the numerical scheme (2.5).

Example 1.Example 1.Example 1. We consider the 1D Allen-Cahn equation with the initial value

u0(x) = 0.1sin(πx), x ∈ (0,1).

For other corresponding data, we set ε = 1/100.
We mainly test the convergence rate for temporal discretization. Due to no analytical solution

available for this numerical experiment, we define the numerical solution errors in discrete L∞

norm as ‖UM−U2M‖∞. First, fix h= 1/500 and choose (α,β )= (6/5,0),(3/2,1/12),(9/5,1/4).
We display the errors of ‖UM−U2M‖∞ with different τ in Tables 1-3, respectively. We find that
the convergence orders of the errors are very close to 2. These are consistent with the conver-
gence result obtained in Theorem 3.2.

Table 1. The errors of ‖UM−U2M‖∞ with h = 1/500, α = 6/5 and β = 0.
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τ ‖UM−U2M‖∞ (T = 1) Order ‖UM−U2M‖∞ (T = 2) Order
1/10 1.2654e−04 − 3.2620e−04 −
1/20 3.1598e−05 2.0017 8.1483e−05 2.0012
1/40 7.8973e−06 2.0004 2.0366e−05 2.0003
1/80 1.9742e−06 2.0001 5.0913e−06 2.0000

Table 2. The errors of ‖UM−U2M‖∞ with h = 1/500, α = 3/2 and β = 1/12.

τ ‖UM−U2M‖∞ (T = 1) Order ‖UM−U2M‖∞ (T = 2) Order
1/10 1.2597e−04 − 3.2396e−04 −
1/20 3.1519e−05 1.9987 8.1158e−05 1.9969
1/40 7.8853e−06 1.9989 2.0315e−05 1.9981
1/80 1.9722e−06 1.9993 5.0823e−06 1.9990

Table 3. The errors of ‖UM−U2M‖∞ with h = 1/500, α = 9/5 and β = 1/4.

τ ‖UM−U2M‖∞ (T = 1) Order ‖UM−U2M‖∞ (T = 2) Order
1/10 1.2485e−04 − 3.1958e−04 −
1/20 3.1368e−05 1.9928 8.0523e−05 1.9886
1/40 7.8635e−06 1.9960 2.0215e−05 1.9939
1/80 1.9687e−06 1.9979 5.0648e−06 1.9968

Example 2.Example 2.Example 2. We consider the coarsening dynamics governed by the Allen-Cahn equation with
the parameter ε = 1/50 and a random initial data ranging from −0.05 to 0.05. The computa-
tional domain Ω is set to be (0,1)2. And the stabilized parameter β and temporal step size are
chosen to be 1/4 and 1/10, respectively. The different fractional order α = 6/5,3/2,9/5 are
employed to show the validity of our scheme (2.5). As plotted in Fig. 1, it is shown that our
scheme (2.5) preserves the discrete maximum bound principle and energy stability. In Fig. 2,
the evolution of numerical solution is plotted for different fractional order α . It is shown that
the coarsening dynamics process becomes faster when the fractional order α becomes larger,
which is consistent with the existing results. This shows the effectiveness of our scheme.

Exmaple 3.Exmaple 3.Exmaple 3. We consider the different shrinking bubble problem governed by the Allen-Cahn
equation. The stabilized parameter β and temporal step size are the same as in Example 2. Then
we consider the standard shrinking bubble problem with fractional order α = 9/5, parameter
ε = 1/30 and Ω = (−1,1)2. The star shape shrinking bubble problem with α = 9/5, parameter
ε = 1/50 and Ω = (0,1)2. The spatial step sizes are set to 1/50 and 1/100. The initial condition
of standard bubble is a sphere of Radius 0.2 located original point,

u0(x) =

{
1, |x|2 < 0.22,

−1, |x|2 ≥ 0.22.

The star shape is given by

u0(x,y) = tanh

(
0.25+ cos(6θ)−

√
(x−0.5)2 +(y−0.5)2
√

2ε

)
,
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FIGURE 1. The evolutions of maximum norm (top) and energy (bottom) with
α = 6/5,3/2,9/5 (from left to right).

FIGURE 2. The evolutions of numerical solution at t = 8,20,100,400 (from left
to right) with different fractional order α = 6/5,3/2,9/5 (from top to bottom).

where

θ =


arctan

(
y−0.5
x−0.5

)
, x > 0.5,

π + arctan
(

y−0.5
x−0.5

)
, otherwise.
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Several snapshots are presented to display the time evolutions of phase structure at different
time for standard and star shape bubble shrinking problems in Fig. 3 and Fig. 4.

FIGURE 3. Snapshots of standard bubble shrinking problem at time t =
1,20,60,100 (from top to bottom and left to right).

FIGURE 4. Snapshots of star shape bubble shrinking problem at time t =
0,8,20,100 (from top to bottom and left to right).
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