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A DERIVATIVE-FREE CUBIC REGULARIZATION METHOD FOR NONLINEAR
SYSTEMS OF EQUATIONS

XIAOJIN HUANG

School of Mathematics and Statistics, Yulin Normal University, Yulin 537000, China

Abstract. We propose a derivative-free cubic regularization method for solving nonlinear systems of
equations without available derivatives. The novel feature of the method is that, based on locally in-
terpolation models, the search direction in each iteration is allowed to be a solution of a model-based
cubic regularization approximation formulated by the special structure of equations that ensures a sig-
nificant improvement. We present a set of wild conditions that the search direction must be satisfied so
that the global convergence of the method for solving the nonlinear equations is guaranteed. The global
convergence and the fast local convergence rate of the proposed method are established, and numerical
experiments are provided to illustrate the reliability of the proposed method.
Keywords. Adaptive cubic regularization; Derivative-free method; Global convergence; Lagrange inter-
polation; Nonlinear programming.

1. INTRODUCTION

In this paper, we consider iterative methods for finding the solutions of the following nonlin-
ear equations

F(x) = 0, (1.1)
where F(x) = ( f1(x), f2(x), . . . , fn(x))> : Rn → Rn, and the Jacobian of F is not available or
requires a prohibitive amount of storage. (1.1) has been extensively investigated as a unified
mathematical model in industrial and applied mathematics; see, e.g., [1, 2, 3, 4, 5] and the ref-
erences therein. Recently, various algorithms have been introduced for solving problem (1.1).
For the algorithms with their fast local superlinear convergence properties, such as, the Gauss-
Newton method, the Newton’s method, the trust region method, and quasi-Newton method, we
refer to [6, 7, 8, 9, 10, 11, 12, 13] and the references therein. However, many real-world appli-
cations which can be modeled as the nonlinear equation have a theoretical and computational
difficulties, that is, the objective functions are of the black-box type so that first order derivatives
are not available [14, 15]. This fact has led to the improvement of derivative-free methods in
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the literautre. In some practical applications, the derivative-free methods are an important task
in order to solve the problem; see, e.g., [12, 16] and the references therein. In [17], Conn et
al. proposed an algorithm for optimizing a nonlinear function without constraints and available
first-order derivatives based on approximating the objective function by a quadratic polynomial
interpolation model and using this model within a trust region framework, and then extended
this algorithm to solve certain constrained optimization problems.

This approach built quadratic functions for individual constraints and combined them into
a penalty function later. This approach is more efficient for constrained derivative-free opti-
mization problems than combining the constraints into a penalty function first and building an
interpolation model for the unconstrained problem. In [18], the global convergence of a trust re-
gion derivative-free method for the solution of nonlinear programming problems was extended
to cover a wide class of derivative-free methods. However, their focus is only on global conver-
gence without the analysis for local rates of convergence. Recently, Zhang et al. [19] took full
advantage of the least-squares problem structure by constructing individual models interpolat-
ing each function to least-squares objective rather than to the objective itself whose approach
is similar to [17]. The algorithm was proved to be locally convergent in [20]. The algorithm
proposed in this paper belongs to model-based derivative-free methods. Adaptive regularized
methods have been recently studied as an alternative to classical globalization techniques for
nonlinear constrained and unconstrained optimization; see, e.g., [21, 22, 23]. To the best of
our knowledge, the use of a cubic overestimator of the objective function as a regularization
technique for the computation of the step was first considered by Griewank [24] as a means for
constructing the affine-invariant variants of the Newton’s method which are globally convergent.

Recently, Cartis, Gould, and Toint [25] considered a similar idea that they proposed an adap-
tive regularization algorithm by using Cubics (ARC) for unconstrained optimization. At each
iteration of the approach, an approximate global minimizer of a local cubic regularization of
the objective function is determined for ensuring a significant improvement in the objective as
long as the Hessian of under mild assumptions. The ARC iterates show excellent global and
fast convergence, see, e.g., [25, 26] for special methods. The goal of this paper is to connect
the approximation technique, the particularly polynomial interpolation, with the adaptive cu-
bic regularization algorithm for solving unconstrained problem (2.1). Taking advantage of the
derivative-free approximation technique, we present an adaptive cubic regularization algorithm,
which is a combination of the adaptive cubic regularization methods and the derivative-free
methods. We first build the corresponding quadratic models to approximate each component
function fi, i = 1, . . . ,n by means of the polynomial interpolation, which is only based on the
objective function values computed at sampling points to form the least-square problem. De-
fine our local cubic model for the polynomial interpolating least-square problem with a cubic
term, called regularization weight. Updating the coefficient of the regularization weight of the
local cubic model at each iteration, an improved step is determined, which is the approximate
global minimizer of the model, and this gives an estimate of the decrease in the cubic model,
accurately predicting the behavior of the interpolating least-square problem along these steps.
The updating of the interpolating radius is connected with the coefficient of the regularization
weight implicitly. The global convergence and the fast local convergence rate of the proposed
algorithm are established under some conditions. All these clearly display that the adaptive
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cubic regularization approach is efficient for (2.1). We finally present some numerical results to
show the effectiveness of the main results.

The outline of the paper is as follows. Section 2 gives basic definitions of the interpolation
models and introduces the derivative-free adaptive cubic regularization algorithm. Section 3
recalls some basic properties of the interpolation models and shows the global convergence of
this new algorithm. The local convergent results are established in Section 4. The numerical
performances of our algorithm are provided in Section 5, the last section.

As a general rule for notations, ‖ · ‖ is the 2-norm for a vector, and the induced 2-norm for a
matrix. xi denotes the ith component of a vector x ∈ Rn. The subscript k denotes an index for a
sequence.

2. PRELIMINARIES

A typical method for solving (1.1) involves solving the following optimization problem

min
x∈Rn

Φ(x) def
=

1
2
‖F(x)‖2 =

1
2

n

∑
i=1

f 2
i (x), (2.1)

where ‖ · ‖ denotes the Euclidian norm.
Now, we construct the local models for our derivative-free adaptive cubic regularization al-

gorithm. Suppose that we have a Λ-poised set Y ⊆B(z;∆) with C1
n+1 ≤ |Y | ≤C2

n+2. For each
i = 1, . . . ,n, let qi(x) ∈P2

n be polynomial interpolating function of fi(x) on Y . Replacing fi(x)
by qi(x) in the objective function, we obtain

Q(x) =
1
2

n

∑
i=1

q2
i (x), (2.2)

which is a polynomial of degree four normally. We define our local cubic model φ(x,s) around
x by

φ(x,s) = Q(x)+gQ(x)>s+
1
2

s>BQ(x)s+
1
3

σ‖s‖3, (2.3)

where gQ(x)= J(x)>q(x) with q(x)= (q1(x),q2(x), . . . ,qn(x))> and J(x)= (∇q1(x),∇q2(x), . . .,
and ∇qn(x))> denotes the Jacobian of q(·). BQ(x) is an approximation to the local Hessian of
Q(x). In particular, let BQ(x) = J(x)>J(x). Here σ > 0 is a cubic parameter. For constructing
this algorithm, we employ (2.3) as an approximation to Q(x) in each iteration of our algorithm.
The cubic term of the model, called regularization weight, is rather closely linked to the size
of the third derivative, and σ performs a double task. Namely, it may account not only for the
discrepancy between (2.2) and its second order Taylor expansion, but also for the difference
between the exact and the approximate Hessian of (2.2). Besides, if the reduction of Φ(x) is de-
sirable, the value of σ is decreased; otherwise it is increased. The global convergence and local
superlinear convergence of the new algorithm are established under reasonable assumptions.

We now derive a class of derivative-free algorithm based on the cubic regularization. Through-
out the algorithm stated below, we fix the number of points in the sampling set, i.e., |Yk|= Np,
for all k ≥ 0, where Np ∈ [C1

n+1,C
2
n+2] is an integer constant. We denote the resulting iterations

by xk, where k is the iteration number.
Now, we give the details of the derivative-free algorithm based on the cubic regularization

for the solution of least-squares (2.1).
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Algorithm A. A derivative-free adaptive cubic regularization algorithm.
Step 0. Choose an initial point x0 and σ0 > 0, 0 < ∆0 ≤ 1, and Np ≥C1

n+1 = n+1. Choose
an initial set of interpolation points Y0, where Y0 is Λ-poised in B(x0;∆0) with x0 ∈ Y0. Choose
ε ∈ (0,1) and β > 0, κ∆ > 0, 0 < η1 ≤ η2 < 1, 1 < γ1 < γ2, and γ3 ∈ (0,1). Set k = 0 and j = 0.

Step 1. Construct the polynomial interpolating model Q of Φ on Yk, and obtain the informa-
tion gQ,k

def
= gQ(xk) and BQ,k

def
= BQ(xk) with xk ∈ Yk.

Step 2. If ‖gQ,k‖≤ ε , let ∆
(0)
k = ∆k. Possibly modify Yk as needed to make sure Yk is Λ-poised

in B(xk;∆k), where ∆k = min{∆(0)
k ,β‖gQ,k‖}, and gQ,k is recalculated with the new Yk since Yk

has changed. Determine the corresponding interpolation model. It was shown in [18, Lemma
7.3] that, unless xk is a first-order stationary point, this can be achieved in a finite number of
steps.

Step 3. Compute sk

φk(sk)≤ φk(sc
k), (2.4)

with
sc

k =−α
c
k gQ,k and α

c
k = arg min

α∈R+

φk(−αgQ,k),

where φk(sk) = φ(xk,sk) with φ(·, ·) being defined by (2.3).
Step 4. Let ∆k, j = ∆k. If

∆k, j > κ∆ min{‖sk‖,‖gQ,k‖}, (2.5)

set ∆k, j+1 = γ3∆k, j, update Yk such that Yk is Λ-poised in B(xk;∆k) with ∆k = ∆k, j+1 and xk ∈Yk,
set j = j+1, and go to Step 1.

Step 5. Compute Φ(xk + sk) and ρk, where the ρk is defined by

ρk =
Φ(xk)−Φ(xk + sk)

φk(0)−φk(sk)
. (2.6)

Set

xk+1 =

{
xk + sk, if ρk ≥ η1,

xk, if otherwise,
(2.7)

and

σk+1 ∈


(0,σk], if ρk > η2, [very successful iteration]

[σk,γ1σk], if η1 ≤ ρk ≤ η2, [successful iteration]

[γ1σk,γ2σk], otherwise . [unsuccessful iteration]
(2.8)

Step 6. If ρk ≥ η1, then let ∆k+1 = ∆k, the interpolating points set Yk is updated to take into
consideration the new point xk+1 to form Yk+1 being Λ-poised in B(xk+1;∆k+1) with xk+1 ∈
Yk+1. Set k = k+1, and go to Step 1. Or go to Step 1 directly.

Since finding a global minimizer of the model φk(s) may not be essential in practise (it might
be prohibitively expensive from a computational point of view), we relax this requirement by
letting sk be an approximation to such a minimizer. Initially, we only require that sk ensures that
the decrease in the model is at least as good as that provided by a suitable Cauchy point obtained
by globally minimizing φk(s) along the current negative gradient direction of (2.2) in Step 3.
The issue ∆k ≤ κ∆‖sk‖ can be achieved by Step 4, which is important in the convergent analysis.
The step sk is accepted and new iteration xk+1 is set to be xk + sk whenever the predicted model
decrease φk(0)−φk(sk) is realized by the actual decrease in the objective, Φ(xk)−Φ(xk+1). This
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is measured by computing the ratio ρk in (2.6) and requiring ρk to be greater than a prescribed
positive constant η1. Since the current parameter σk has resulted in a successful step, there is no
pressing reason to increase it. Indeed, there may be benefit in decreasing it if good agreement
between the model and the function is observed. Without loss of generality, we use φk(s) =
φ(xk,s) with φ(·, ·) defined by (2.3) in the following analysis.

3. MODEL PROPERTIES AND GLOBAL CONVERGENCE

In this section, we recall some basic properties of the interpolation models and show the
global convergence for this new algorithm.

The following lemma shows that, under our assumptions of Λ-poisedness (by either defini-
tion) of the sampling set Y , an interpolating polynomial on Y would be at least a local fully
linear model. This lemma follows directly from [27, Theorem 5.4].

Lemma 3.1. Given any ∆ > 0, z ∈ Rn, and Y = {y0,y1, . . . ,yp} ⊆B(z;∆) Λ-poised in B(z;∆)
with C1

n+1 ≤ |Y | ≤C2
n+1, let q(·) ∈P2

n be an interpolating polynomial of f on Y , i.e.,

q(yi) = f (yi), i = 1, . . . , |Y |.

If f : Rn→ R is continuously differentiable and ∇ f is Lipschitz continuous with Lipschitz con-
stant L in an open set containing B(0;∆), then

‖∇ f (z+ s)−∇q(z+ s)‖ ≤ κ̂eg(n,Λ)(‖∇2q‖+L)∆,

and
| f (z+ s)−q(z+ s)| ≤ κ̂e f (n,Λ)(‖∇2q‖+L)∆2,

where κ̂eg and κ̂e f are positive constants depending on n and Λ.

Give a Λ-poised set Y ⊆B(z;∆) with C1
n+1 ≤ |Y | ≤C2

n+2, for each i = 1, . . . ,n. Suppose that
qi(x) ∈P2

n is a polynomial interpolating model of fi(x) on Y . Then, based on above lemma,
there exist positive constants κeg and κe f such that, for any s ∈B(0;∆),

‖∇ fi(z+ s)−∇qi(z+ s)‖ ≤ κeg∆, (3.1)

| fi(z+ s)−qi(z+ s)| ≤ κe f ∆
2,

for all i = 1, . . . ,n, where κe f and κe f are positive constants depending only on n, Λ, F , and
max{‖∇2qi‖, i = 1, . . . ,n}. In particular, κeg and κe f depend either on z nor ∆.

Now, define conv(Lenl(x0)) to be the convex hull of Lenl(x0) with

Lenl(x0) =
⋃

x∈L(x0)

B(x;∆0) and L(x0) = {x ∈ Rn : Φ(x)≤Φ(x0)},

where Φ is defined in (2.1). In this paper, we also need the following two assumptions.

Assumption 3.2. Suppose that F is twice continuously differentiable and the level set L(x0) =
{x ∈ Rn : Φ(x)≤Φ(x0)} is bounded.

Assumption 3.3. There exists a constant κH , which is independent of the iteration number k in
the Algorithm A, such that if qi, i = 1, . . . ,n is the polynomial interpolating model of fi on a
Λ-poised sampling set Yk constructed as in the Algorithm A, then ‖∇2qi‖ ≤ κH , for i = 1, . . . ,n.
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Recall that F is assumed twice continuously differentiable, and none of their first-order or
second-order derivatives is explicitly available. Let ∇F(x) be the Jacobian matrix of F(x).
Then, the gradient ∇Φ(x) and the Hessian matrix ∇2Φ(x) are given respectively by

∇Φ(x) = ∇F(x)>F(x), ∇
2
Φ(x) = ∇F(x)>∇F(x)+

n

∑
i=1

fi(x)∇2 fi(x),

where ∇F(x) = (∇ f1(x),∇ f2(x), . . . ,∇ fn(x))>.
Based on Assumption 3.2 and 3.3, the following lemmas reveal some bound results for the

considered functions, whose proofs are similar to the auxiliary Lemma 3.2 and Lemma 3.3 in
[19]. They are omitted here.

Lemma 3.4. Under Assumption 3.2, there exist positive constants L0, L1, and L2 such that

‖F(x)‖ ≤ L0,

‖F(x)−F(y)‖ ≤ L1‖x− y‖,
‖∇F(x)‖ ≤ L1,

‖∇F(x)−∇F(y)‖ ≤ L2‖x− y‖,

‖∇2 fi(x)‖ ≤ L2, i = 1, . . . ,n,

for any x,y ∈ conv(Lenl(x0)).

Lemma 3.5. Under Assumptions 3.2 and 3.3, there exist constants κnq and κng, independent of
k, such that if qi, i = 1, . . . ,n is the polynomial interpolating model of fi on a Λ-poised sampling
set Yk constructed as in Algorithm A, then

|qi(y)| ≤ κnq and ‖∇qi(y)‖ ≤ κng, for all i = 1, . . . ,n. (3.2)

In addition, there exists a constant κJ such that

‖J(y)‖ ≤ κJ, (3.3)

where y ∈ Yk, and Yk ⊆ Lenl(x0).

Next, we establish the global convergence of Algorithm A. We need the following lemma to
guarantee a lower bound on the decrease in Φ predicted from the cubic model. It can be obtain
from [26, Lemma 2.1], we omit the proof here.

Lemma 3.6. Let sk be the solution of (2.4). Then

φk(0)−φk(sk)≥
‖gQ,k‖

6
min

 ‖gQ,k‖
‖BQ,k‖

,

√
3

4

√
‖gQ,k‖

σk

 , (3.4)

where gQ,k and BQ,k are defined by the Step 1 of Algorithm A.

For Step 2, we have the following lemma. It was proved in [18, Lemma 5.1].

Lemma 3.7. If ‖∇Φ(xk)‖ 6= 0, the Step 2 in Algorithm A terminates in a finite number of
improvement steps.

Next, we obtain a useful bound on the step. The proof of the following lemma is omitted
since it is similar to the one presented in [26, Lemma 2.2].
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Lemma 3.8. Let Assumptions 3.2 and 3.3 hold, and the step sk satisfy (2.4), then

‖sk‖ ≤ 3

√
‖gQ,k‖

σk
, k ≥ 0. (3.5)

Let us assume that some iterative solver is used on each (major) iteration k to approximately
minimize φk(s) for the Step 3 of Algorithm A. We first express the derivative of the cubic model
φk(s) in (2.3) as

∇sφk(s) = gQ,k +BQ,ks+σk‖s‖s.
Set the termination criterion for its inner iterations i to be

‖∇sφk(sk,i)‖ ≤ κθ min{1,‖sk,i‖} · ‖gQ,k‖, (3.6)

where sk,i are the inner iterates generated by the solver, and κθ is any constant in (0,1). Condi-
tion (3.6) is always satisfied by any minimizer sk,i of φk(s) since ∇sφk(sk,i) = 0. Thus condition
(3.6) can always be achieved by an iterative solver, and the worst that could happen is to iterate
until an exact minimizer of φk(s) is found. We hope in practice to terminate well before this
inevitable outcome. From (3.6), we have the following.

Assumption 3.9. ‖∇sφk(sk)‖ ≤ κθ min{1,‖sk‖} · ‖gQ,k‖, where sk
def
= sk,i with i being the last

inner iteration.

It now remains to show that the loop between Steps 1 and 4 can be finitely terminated. The
following Lemma is similar to the Lemma 4.1 of [28]. For the completeness of this paper, we
list the proof here.

Lemma 3.10. Under the conditions of Lemma 3.5, and Assumption 3.9, for all k ≥ 0,

‖sk‖ ≥
(1−κθ )ε

κ2
J +3n

1
4
√

σkκJκnq
, (3.7)

and there exists a κ(σ)> 0 such that the loop between Steps 1 and 3 terminates in at most⌈
logκ(σk)+ logε

logγ3

⌉
+

, (3.8)

iterations, where dae+ denotes the maximum of zero and the first integer larger than or equal
to a.

Proof. From the algorithm, we see that if it has not terminated, then

‖gQ,k‖> ε. (3.9)

From Assumption 3.9, we see that, for all k ≥ 0,
κθ min{1,‖sk‖} · ‖gQ,k‖ ≥ ‖∇sφk(sk)‖

≥ ‖gQ,k +BQ,ksk +(σk‖sk‖)sk‖
≥ ‖gQ,k‖−‖BQ,ksk +(σk‖sk‖)sk‖.

It follows from (3.9) that
‖BQ,ksk +(σk‖sk‖)sk‖ ≥ ‖gQ,k‖−κθ min{1,‖sk‖} · ‖gQ,k‖

≥ (1−κθ min{1,‖sk‖}) · ‖gQ,k‖
≥ (1−κθ )ε.



8 XIAOJIN HUANG

Taking this bound, and using (3.2), (3.3), and (3.5), we conclude from Lemma 3.4 that

(1−κθ )ε ≤ κ
2
J ‖sk‖+σk‖sk‖2

≤

κ
2
J +σk ·3

√
‖gQ,k‖

σk

‖sk‖

=
(

κ
2
J +3

√
σk‖gQ,k‖

)
‖sk‖

≤
(

κ
2
J +3n

1
4
√

σkκJκnq

)
‖sk‖,

which proves (3.7). Define

µ(σk)
def
=

1−κθ

κ2
J +3n

1
4
√

σkκJκnq
.

Then, we may use this lower bound to deduce that the loop between Steps 1 and 4 terminates
as soon as (2.5) is violated, which must happen if j is large enough to ensure that

∆k, j = γ
j

3∆k ≤ γ
j

3

≤ κ∆ min{µ(σk),1}ε
≤ κ∆ min{‖sk‖,‖gQ,k‖},

where we used ∆k ≤ 1 to have the first inequality, and (3.9) and (3.7) to derive the last inequality.
This implies that j never exceeds⌈

log[κ∆ min{µ(σk),1}]+ logε

logγ3

⌉
+

,

which in turn yields (3.8) with κ(σk)
def
= κ∆ min{µ(σk),1}. �

Since the loop between Steps 1 and 4 always terminates finitely, ∆k ≤ κ∆‖sk‖ holds for all
k ≥ 0.

Next, we give an auxiliary lemma.

Lemma 3.11. Let Assumptions 3.2, 3.3, and 3.9 hold, and√
σk‖gQ,k‖>

216
(1−η2)

√
3

(√
nL0κegκ∆ +L0L2 +L2

1 +κ
2
J
) def
= κLB. (3.10)

Then the iteration k of the Algorithm A is successful with ρk ≥ η2, and

σk+1 ≤ σk, for all k sufficiently large. (3.11)

Proof. From (3.10), we have
√

σk‖gQ,k‖≥ κ2
J ≥‖J(xk)

>J(xk)‖= ‖BQ,k‖. Thus, (3.4) becomes

φk(sk)−φk(0)≤−
√

3
24
‖gQ,k‖

3
2

√
σk

< 0. (3.12)

It then follows from (2.6) and (2.8) that

ρk > η2⇐⇒ rk
def
= Φ(xk + sk)−Φ(xk)−η2[φk(sk)−φk(0)]< 0.

Note that, for k ≥ 0, rk can be rewritten as

rk = Φ(xk + sk)−φk(sk)+(1−η2)[φk(sk)−φk(0)].



A DERIVATIVE-FREE CUBIC REGULARIZATION METHOD 9

We then develop the first term on the right-hand side of this expression by using a Taylor ex-
pression of Φ(xk + sk), given that, for k ≥ 0,

Φ(xk + sk)−φk(sk) = ∇Φ(ξ1,k)
>sk−g>Q,ksk−

1
2

s>k BQ,ksk−
1
3

σk‖sk‖3, (3.13)

for some ξ1,k ∈ (xk,xk + sk). Observe that

‖∇Φ(ξ1,k)−gQ,k‖ = ‖F(ξ1,k)
>

∇F(ξ1,k)−q(xk)
>J(xk)‖

= ‖F(ξ1,k)
>

∇F(ξ1,k)−F(xk)
>J(xk)‖

= ‖F(ξ1,k)
>

∇F(ξ1,k)−F(xk)
>J(xk)+F(xk)

>
∇F(xk)

−F(xk)
>

∇F(xk)+F(ξ1,k)
>

∇F(xk)−F(ξ1,k)
>

∇F(xk)‖

=
∥∥∥F(xk)

> (∇F(xk)− J(xk))+F(ξ1,k)
> (

∇F(ξ1,k)−∇F(xk)
)

+
(
F(ξ1,k)−F(xk)

)>
∇F(xk)

∥∥∥
≤

(√
nL0κegκ∆ +L0L2 +L2

1
)
‖sk‖

= κL‖sk‖, (3.14)

where κL
def
=
√

nL0κegκ∆ +L0L2 +L2
1, ‖ξ1,k− xk‖ ≤ ‖sk‖, and the last inequality we used (3.2),

and the fact that Yk is Λ-poised in B(xk;∆k) with xk ∈ Yk and ∆k ≤ κ∆‖sk‖. Thus, the Cauchy-
Schwarz inequality, (3.3), and (3.13) yield that, for k ≥ 0,

Φ(xk + sk)−φk(sk)≤ κL‖sk‖2.

In view of (3.12), (3.13), and (3.14), Lemma 3.8 provides the following upper bound for rk,
namely,

rk ≤
‖gQ,k‖

σk

[
9κL−

√
3(1−η2)

24

√
σk‖gQ,k‖

]
,

which together with (3.10) implies rk < 0. Thus iteration k is successful, and (3.11) follows
from (2.8). This completes the proof. �

We next consider what happens when the number of successful iterations is finite.

Lemma 3.12. Let Assumptions 3.2–3.9 hold. If the number of successful iterations is finite,
then

lim
k→+∞

‖∇Φ(xk)‖= 0. (3.15)

Proof. Let us consider the iterations that come after the last successful iteration. After the last
successful iterate is computed, indexed by, say k0, the construction of the algorithm implies that
xk0+1 = xk0+i

def
= x∗ for all i ≥ 1. Since there are no more successful iterations, i.e., ρk < η1,

for all sufficiently large k ≥ k0 + 1, it follows that σk increases by at least γ1, and σk → ∞, as
k→ ∞, k ≥ k0 + 1. We then note that limk→∞ ‖gQ,k‖ = 0. If ‖gQ,k‖ was bounded away from
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zero, k would be a very successful iteration by Lemma 3.11, which yield a contradiction. From
Lemma 3.8, we also have

‖sk‖ ≤ 3

√
‖gQ,k‖

σk
→ 0, as k→ ∞, k ≥ k0 +1.

Now, for each k ≥ k0 +1, we have

‖∇Φ(xk)−gQ,k‖ ≤
√

nκegL0∆k ≤
√

nκegκ∆L0‖sk‖.
Observe that

‖∇Φ(xk)‖ ≤ ‖∇Φ(xk)−gQ,k‖+‖gQ,k‖.
The two terms on the right-hand side converge to zero from the analysis above, and (3.15)
follows. �

The next lemma gives an upper bound on σk when gQ,k is bounded away from zero. We now
show that if the model gradient ‖gQ,k‖ converges to zero on a subsequence, so does the true
gradient ‖∇Φ(xk)‖.

Lemma 3.13. For any subsequence {k j} such that

liminf
j→+∞

‖gQ,k j‖= 0, (3.16)

it holds that

liminf
j→+∞

‖∇Φ(xk j)‖= 0. (3.17)

Proof. From (3.16) and the mechanism of Step 3, we see that Yk j ⊆B(xk j ;∆k j)⊆B(xk j ;β‖gQ,k j‖)
is Λ-poised for all large j. From Lemmas 3.4 and 3.5, and (3.1), we have

‖∇ fi(xk j)−∇qi(xk j)‖ ≤ κeg∆k j ≤ κegβ‖gQ,k j‖.
As a consequence,

‖∇Φ(xk j)‖ ≤ ‖∇Φ(xk j)−gQ,k j‖+‖gQ,k j‖
≤ (
√

nL0κegβ +1)‖gQ,k j‖,
for all j sufficiently large. Due to ‖gQ,k j‖→ 0, we obtain that (3.17) holds. �

We denote the index of all successful iterations of the Algorithm A by

S
def
= {k ≥ 0 : k successful or very successful in the sense of (2.8)}. (3.18)

Theorem 3.14. Let Assumptions 3.2, 3.3, and 3.9 hold. Then

liminf
k→+∞

‖∇Φ(xk)‖= 0. (3.19)

Proof. If there are finitely many successful iterations, then Lemma 3.12 implies that (3.19)
holds. Now let us assume that infinitely successful iterations occur. Suppose that (3.16) does
not hold, i.e., there exists a ε > 0 such that

‖gQ,k‖> ε, (3.20)

for all large k. We first prove that σk is bounded above, that is,

σk ≤max
{

σ0,
γ2κ2

LB
ε

}
, for all k = 0, . . . , j. (3.21)
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For any k ∈ {0, . . . , j}, due to ‖gQ,k‖> ε , we conclude from Lemma 3.11 the implication

σk ≥
κ2

LB
ε

=⇒ σk+1 ≤ σk. (3.22)

Thus, when σ0 ≤ γ2κ2
LB/ε , (3.22) implies σk ≤ γ2κ2

LB/ε , ∀ k ∈ {0, . . . , j}, where the factor γ2
is introduced for the case when σk is less than κ2

LB/ε and the iteration k is not very successful.
Letting k = 0 in (3.22) gives (3.21) when σ0 ≥ γ2κ2

LB/ε . Next, we derive a contradiction to
(3.21). Since Φ(xk) is bounded below by zero, it follows from the algorithm, (2.6), (3.3), and
(3.20) that

+∞ ≥
∞

∑
k=0

[Φ(xk)−Φ(xk+1)]

≥ ∑
k∈S

[Φ(xk)−Φ(xk+1)]

≥ ∑
k∈S

η1[φk(0)−φk(sk)]

≥ ∑
k∈S

η1ε

6
min

{
ε

κ2
J
,

√
3

4

√
ε

σk

}
.

Hence, σk→ ∞, k ∈S , as k→ ∞. Now, it contradicts (3.21). Hence, (3.16) holds. Then (3.19)
follows from Lemma 3.13. This completes the proof. �

Corollary 3.15. Let Assumptions 3.2, 3.3, and 3.9 hold. Then

lim
k→+∞

‖∇Φ(xk)‖= 0. (3.23)

Proof. If there are finitely many successful iterations, then Lemma 3.12 implies that (3.23)
holds. Now, we assume that S is infinite. Suppose, for the purpose of establishing a contradic-
tion, that there exists a subsequence {ki} ⊆S such that

‖∇Φ(xk)‖ ≥ ε0, (3.24)

for some ε0 > 0, and for all i (we can ignore the other iterates since xk does not change during
such iterations). From Lemma 3.13, we obtain that ‖gQ,k‖ ≥ ε, for some ε > 0, and for all i
sufficiently large. Without loss of generality, we pick ε such that

ε ≤ ε0

2(2+κegβL0)
. (3.25)

The proof of Theorem 3.14 then ensures the existence for each ki in the subsequence of a
first iteration li > ki such that ‖gQ,li‖ ≤ ε . By removing elements from {ki}, without loss of
generality and without a change of notation, we obtain that there exists another subsequence
indexed by {li} such that

‖gQ,k‖ ≥ ε, for ki ≤ k < li, and ‖gQ,k j‖< ε, (3.26)

for sufficiently large i, with inequality (3.24) being retained.
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Let K
def
= {k ∈ S : ki ≤ k < li}, where {ki} and {li} are defined above. Since k ⊆ S , it

follows from (2.6), (2.7), (3.4), Assumptions 3.2–3.9, and (3.26) that

Φ(xk)−Φ(xk+1)≥
η1ε

6
min

 ε

κ2
J
,

√
3

4

√
‖gQ,k‖

σk

 , k ∈K . (3.27)

Since {Φ(xk)} is monotonically decreasing and bounded from below by zero, it is convergent.
Hence, the left-hand side of (3.27) converges to zero as k→ ∞. Thus, (3.27) implies√

‖gQ,k‖
σk

→ 0, k→ ∞, k ∈K .

Due to the limit above, the bound (3.27) asymptotically becomes

Φ(xk)−Φ(xk+1)≥
√

3η1ε

24

√
‖gQ,k‖

σk
, for all k ∈K sufficiently large.

Together with the relation above, Lemma 3.8 and the definition of K provide the bound

Φ(xk)−Φ(xk+1)≥
√

3η1ε

72
‖sk‖, for all ki ≤ k < li, k ∈K , i sufficiently large.

Summing up the inequality above over k with ki ≤ k < li, and employing (2.7) and the triangle
inequality, we obtain

72√
3η1ε

[Φ(xki)−Φ(xli)] ≥
li−1

∑
k=ki,k∈S

‖sk‖

=
li−1

∑
k=ki,k∈S

‖xk− xk+1‖

≥ ‖xki− xli‖, (3.28)

for all i sufficiently large. Since {Φ(xk)} is convergent, {Φ(xki)−Φ(xli)} converges to zero as
i→ ∞. Thus (3.28) implies that ‖xki− xli‖ converges to zero as i→ ∞. Now,

‖∇Φ(xki)‖ ≤ ‖∇Φ(xki)−∇Φ(xli)‖+‖∇Φ(xli)−gQ,li‖+‖gQ,li‖.

The first term of the right-hand side tends to zero because of Lemma 3.4 and is thus bounded by
ε for i sufficiently large. The third term is bounded by ε from (3.26). For the second term, we
use the fact that, from (3.25) and the mechanism of the criticality step (Step 3 of Algorithm A)
at iteration li, the set of interpolation points Yli is Λ-poised in B(xli;∆li), where ∆li ≤ β‖gQ,li‖.
As a consequence, we obtain from these bounds and (3.26) that

‖∇Φ(xki)‖ ≤ (2+κegβL0)ε ≤
1
2

ε0,

for i large enough, which contradicts (3.24). Hence, our initial assumption must be false and
the theorem follows. �
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4. LOCAL CONVERGENCE

In this section, we discuss the local convergence properties of the Algorithm A under some
suitable conditions. In this section, we have the following additional assumptions.

Assumption 4.1. Assume that F(x∗) = 0, where x∗ ∈ Rn is the solution of (2.1).

Assumption 4.2. Assume that ∇F(x∗) is nonsingular.

We begin the discussion with the following lemma.

Lemma 4.3. Under Assumptions 3.2–4.2, we have that

lim
k→∞
‖F(xk)‖= 0, and lim

k→∞
‖gQ,k‖= 0. (4.1)

In addition, there exists constants L3 > 0 and L4 > 0 such that

‖J(xk)−∇F(xk)‖ ≤ L3‖F(xk)‖, (4.2)

and ‖∇2Φ(xk)−BQ,k‖ ≤ L4‖F(xk)‖.

Proof. Assumption 4.2 implies ∇F(xk) is nonsingular for all k sufficiently large. Thus, with
Lemma 3.4, the eigenvalues of ∇F(xk) are bounded. From Corollary 3.15, and Assumption 4.2,
we have λ

Fk
min‖F(xk)‖ ≤ ‖∇F(xk)

>F(xk)‖= ‖∇Φ(xk)‖→ 0, k→ ∞, where λ
Fk
min is the leftmost

absolute eigenvalue of ∇F(xk). It now follows from Lemma 3.5 that

‖gQ,k‖= ‖gQ(xk)‖= ‖J(xk)
>q(xk)‖= ‖J(xk)

>F(xk)‖ ≤ κJ‖F(xk)‖. (4.3)

Hence, we have that (4.1) holds. Now, by (4.2), it follows from the Step 3 of the Algorithm A
that Yk is Λ-poised in B(xk;β‖gQ,k‖). By (3.1), (4.3), Assumptions 3.2, 3.3, and Lemma 3.4,
we have

‖J(xk)−∇F(xk)‖ ≤
√

nκeg∆k

≤
√

nκegβ‖gQ,k‖
≤ nκegβκng‖F(xk)‖
≤ L3‖F(xk)‖,

where L3
def
= nκegβκng and β is defined in the Step 0 of the algorithm. Furthermore, from

Lemma 3.4 and the inequality above, we obtain

‖∇2
Φ(xk)−BQ,k‖

= ‖∇F(xk)
>

∇F(xk)+
n

∑
i=1

fi(xk)∇
2 fi(xk)− J(xk)

>J(xk)‖

≤ ‖∇F(xk)
>

∇F(xk)− J(xk)
>J(xk)‖+

n

∑
i=1
| fi(xk)| · ‖∇2 fi(xk)‖

≤ ‖∇F(xk)
>

∇F(xk)−∇F(xk)
>J(xk)+∇F(xk)

>J(xk)− J(xk)
>J(xk)‖+L2

n

∑
i=1
| fi(xk)|

≤ ‖∇F(xk)‖ · ‖∇F(xk)− J(xk)‖+‖J(xk)‖ · ‖∇F(xk)− J(xk)‖+L2‖F(xk)‖1

≤ L1L3‖F(xk)‖+κJL3‖F(xk)‖+
√

nL2‖F(xk)‖
= L4‖F(xk)‖,
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where L4
def
= L1L3 +κJL3 +

√
nL2 and ‖ · ‖1 denotes the 1-norm, i.e., ‖x‖1

def
=

n
∑

i=1
|xi|. �

To be able to guarantee convergence properties for the proposed algorithm, further require-
ments are needed to be placed on sk. The strongest conditions are, of course, the first and second
order (necessary) optimality conditions that sk satisfies provided it is the (exact) global mini-
mizer of φk(s) over Rn. The choice of sk, however, may be in general prohibitively expensive
from a computational point of view, and thus, for most practical purposes, inefficient. Thus, the
conditions we require on sk in what follows, are some derivations of first- and second- order
optimality when sk is computed in each subspace including gQ,k (not only the previous results
still hold, but we can prove further convergence properties).

In what follows, we require that sk satisfies

g>Q,ksk + s>k BQ,ksk +σk‖sk‖3 = 0, k ≥ 0, (4.4)

and

s>k BQ,ksk +σk‖sk‖3 ≥ 0, k ≥ 0. (4.5)

The next lemma presents some suitable choices for sk that achieve (4.4) and (4.5) from [25].
We omit its proof here.

Lemma 4.4. Suppose that sk is the global minimizer of φk(s), for sk ∈Lk, where Lk is a subse-
quence of Rn. Then sk satisfies (4.4) and (4.5). Furthermore, letting Ak denote any orthogonal
matrix whose columns form a basis of Lk, we have that A>k BQ,kAk +σk‖sk‖I is positive semi-
definite, s ∈ Rn. Then sk achieves (4.4) and (4.5).

Cauchy point (2) satisfies (4.4) and (4.5) since it globally minimizes φk over the subsequence
generated by −gQ,k. To improve the properties and performance, it may be necessary to min-
imize φk over (increasingly) larger subspaces (that each contain gQ,k so that (2.4) can still be
achieved). The following lemma gives a lower bound on the model decrease when (4.4) and
(4.5) are satisfied.

Lemma 4.5. If sk satisfies (4.4), then φk(0)−φk(sk)≥ 1
2s>k BQ,ksk.

Requiring that sk satisfies (4.4) may not necessarily implies (3.4), unless sk =−gQ,k. Never-
theless, when minimizing φk globally over successive subspaces, condition (3.4) can be easily
ensured by including gQ,k in each of the subspaces. This is the approach we take in our im-
plementation of the Algorithm A, where the subspaces generated by Lanczos method naturally
include the gradient. Thus, we assume the Cauchy condition (3.4) still holds.

The following theorem shows that all iterations are ultimately very successful provided some
further assumption on the level of resemblance between the approximate interpolating Hessians
BQ,k and the true Hessians ∇2Φ(xk) holds as the iterates converge to a local minimizer.

Theorem 4.6. Let Assumptions 3.2–4.2 hold, and let sk satisfy (4.4) where ∇F(x∗) is nonsin-
gular. Then there exists Rmin > 0 such that

‖sk‖ ≤
κJ

Rmin
‖F(xk)‖, for all k sufficiently large. (4.6)

Furthermore, all iterations are eventually very successful, and σk is bounded from above.
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Proof. Since ∇F(x∗) is nonsingular, then it is ∇F(xk) for all k sufficiently large. From Lemma
3.4, we have that ∇2 fi(xk), i = 1, . . . ,n is bounded from above. Together with the second term
of (3), we obtain that ∇2Φ(xk) is positive definite. In particular, there exists a positive constant
Rmin such that

s>k ∇2Φ(xk)sk

‖sk‖2 > 2Rmin, for all k sufficiently large.

Thus, thanks to Lemma 4.3 and Lemma 3.4, we obtain that, for all sufficiently large k,

2Rmin‖sk‖2 ≤ s>k ∇
2
Φ(xk)sk

= s>k (∇
2
Φ(xk)−BQ,k)sk + s>k BQ,ksk

≤ Rmin‖sk‖2 +‖J(xk)sk‖2.

Moreover, since sk satisfies (4.4), we conclude from Assumptions 3.2 and 3.3 that

‖J(xk)sk‖2 = s>k BQ,ksk ≤−g>Q,ksk ≤ ‖gQ,k‖ · ‖sk‖ ≤ κJ‖F(xk)‖ · ‖sk‖.

With the two relations above, we obtain bound (4.6). To prove iteration k is a very successful
iteration, we need to prove the inequality holds. From the Taylor mean theorem, we have

Φ(xk + sk)−φk(sk)

= Φ(xk)+∇Φ(xk)
>sk +

1
2s>k ∇Φ(ξ2,k)sk

−
(

Q(xk)+g>Q,ksk +
1
2

s>k BQ,ksk ++
1
3

σk‖sk‖3
)

= F(xk)
>(∇F(xk)− J(xk))sk +

1
2

s>k (∇
2
Φ(ξ2,k)−BQ,k)sk−

1
3

σk‖sk‖3,

where ξ2,k ∈ (xk,xk + sk). Observe that the first term of the last equality above can be bounded
as following

F(xk)
>(∇F(xk)− J(xk))sk ≤

√
nκegκ∆‖F(xk)‖ · ‖sk‖2, k ≥ 0. (4.7)

From the second term, we have

‖∇2
Φ(ξ2,k)−BQ,k‖ ≤ ‖∇2

Φ(xk)−∇
2
Φ(ξ2,k)‖+‖∇2

Φ(xk)−BQ,k‖, k ≥ 0.



16 XIAOJIN HUANG

The first term is bounded as following

‖∇2
Φ(xk)−∇

2
Φ(ξ2,k)‖

=

∥∥∥∥∥∇F(xk)
>

∇F(xk)+
n

∑
i=1

fi(xk)∇
2 fi(xk)−∇F(ξ2,k)

>
∇F(ξ2,k)−

n

∑
i=1

fi(ξ2,k)∇
2 fi(ξ2,k)

∥∥∥∥∥
≤ ‖∇F(xk)

>
∇F(xk)−∇F(ξ2,k)

>
∇F(ξ2,k)‖+

∥∥∥∥∥ n

∑
i=1

fi(xk)∇
2 fi(xk)

∥∥∥∥∥+
∥∥∥∥∥ n

∑
i=1

fi(ξ2,k)∇
2 fi(ξ2,k)

∥∥∥∥∥
≤ ‖∇F(xk)

>
∇F(xk)−∇F(xk)

>
∇F(ξ2,k)+∇F(xk)

>
∇F(ξ2,k)−∇F(ξ2,k)

>
∇F(ξ2,k)‖

+L2

n

∑
i=1
| fi(xk)|+L2

n

∑
i=1
| fi(ξ2,k)|

≤ ‖∇F(xk)‖ · ‖∇F(xk)−∇F(ξ2,k)‖+‖∇F(ξ2,k)‖ · ‖∇F(xk)−∇F(ξ2,k)‖

+L2‖F(xk)‖1 +L2

n

∑
i=1
| fi(ξ2,k)− fi(xk)+ fi(xk)|

≤ 2L1L2‖ξ2,k− xk‖+L2‖F(xk)‖1 +L2

n

∑
i=1
| fi(xk)|+L2

n

∑
i=1
| fi(ξ2,k)− fi(xk)|

≤ 2L1L2‖ξ2,k− xk‖+2
√

nL2‖F(xk)‖+nL1L2‖ξ2,k− xk‖
≤ (2+n)L1L2‖ξ2,k− xk‖+2

√
nL2‖F(xk)‖.

Since ξ2,k ∈ (xk,xk + sk), we have ‖ξ2,k− xk‖ ≤ ‖sk‖, which together with (4.6) and Lemma
4.3, gives ‖ξ2,k − xk‖ → 0. This, together with the continuity of fi, i = 1, . . . ,n and Lemma
4.3, implies ‖[∇2Φ(xk)−∇2Φ(ξ2,k)‖ → 0, as k→ ∞. It now follows from the limit above and
Lemma 4.3 that

‖∇2
Φ(ξ2,k)−BQ,k‖→ 0, k→ ∞. (4.8)

Relation (4.4) implies

φk(0)−φk(sk) = −g>Q,ksk− 1
2s>k BQ,ksk− 1

3σk‖sk‖3

= s>k BQ,ksk +σk‖sk‖3− 1
2

s>k BQ,ksk−
1
3

σk‖sk‖3

≥ 1
2

s>k BQ,ksk

≥ 1
2
‖J(xk)sk‖2

≥ 1
2

Rmin‖sk‖2.

It now follows from Assumptions 4.1 and 4.2, (4.7), (4.8), and the inequality above that

rk = F(xk)
>(∇F(xk)− J(xk))sk +

1
2

s>k (∇
2
Φ(ξ2,k)−BQ,k)sk−

1
3

σk‖sk‖3

+(1−η2)[φk(sk)−φk(0)]

≤ ‖sk‖2

2

(
2
√

2κegκ∆‖F(xk)‖+‖[∇2
Φ(xk)−∇

2
Φ(ξ2,k)‖− (1−η2)Rmin

)
< 0,
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for all k sufficiently large. Hence, all iterations are eventually very successful. Since σk is not
allowed to increase on the very successful steps of the Algorithm A, and every k sufficiently
large is very successful, σk is bounded from above. �

Lemma 4.7. Let Assumptions 3.2–4.2 hold. Then, for each k ∈S , with S defined in (3.18),
there exists an increasing positive single variable real function L(σk)> 0 with the real variable
σk such that [

1−
(√

nκegκ∆‖F(xk+1)‖+κθ

)]
‖gQ,k+1‖ ≤ L(σk)‖F(xk)‖2, (4.9)

for all sufficiently large k ∈S .

Proof. Letting k ∈S , we have xk+1 = xk + sk. From Assumption 3.9, we have

‖gQ,k+1‖ ≤ ‖gQ,k+1−∇Φ(xk + sk)‖+‖∇Φ(xk + sk)−∇sφk(sk)‖+‖∇sφk(sk)‖

≤ ‖gQ,k+1−∇Φ(xk + sk)‖+‖∇Φ(xk + sk)−∇sφk(sk)‖+κθ min{1,‖sk‖} · ‖gQ,k‖.(4.10)

Since Yk+1 is Λ-poised, we conclude that

‖gQ,k+1−∇Φ(xk + sk)‖ ≤ ‖F(xk+1)‖ · ‖J(xk+1)−∇F(xk+1)‖

≤
√

nκegκ∆‖F(xk+1)‖ · ‖gQ,k+1‖. (4.11)

From Taylor’s theorem and Lemma 4.3, we obtain

‖∇Φ(xk + sk)−∇sφk(sk)‖

≤ ‖∇Φ(xk)−gQ,k‖+
∥∥∥∥∫ 1

0

[
∇

2
Φ(xk +ωsk)−BQ,k

]
skdω

∥∥∥∥+σk‖sk‖2

≤ ‖F(xk)‖ · ‖∇F(xk)− J(xk)‖+σk‖sk‖2 +
∥∥[∇2

Φ(xk)−BQ,k
]

sk
∥∥

+

∥∥∥∥∫ 1

0

[
∇

2
Φ(xk +ωsk)−∇

2
Φ(xk)

]
dω

∥∥∥∥‖sk‖

≤ L3‖F(xk)‖2 +σk‖sk‖2 +L4‖F(xk)‖ · ‖sk‖

+‖sk‖
∫ 1

0

[
(2+n)L1L2‖ωsk‖+2

√
nL2‖F(xk)‖

]
dω

≤ L3‖F(xk)‖2 +σk‖sk‖2 +L4‖F(xk)‖ · ‖sk‖

+
(2+n)L1L2

2
‖sk‖2 +2

√
nL2‖F(xk)‖ · ‖sk‖. (4.12)

From (3.1), Lemma 3.4, and Lemma 4.3, we have

‖gQ,k‖ ≤ ‖gQ,k−∇Φ(xk)‖+‖∇Φ(xk)−∇Φ(xk + sk)‖+‖∇Φ(xk + sk)−gQ,k+1‖+‖gQ,k+1‖

≤ L3‖F(xk)‖2 +L2‖F(xk)‖ · ‖sk‖+L2
1‖sk‖+

√
nκegκ∆‖F(xk+1)‖ · ‖sk‖+‖gQ,k+1‖

which implies that, for all k ≥ 0,

κθ min{1,‖sk‖} · ‖gQ,k‖ ≤ κθ L3‖F(xk)‖2 +κθ L2‖F(xk)‖ · ‖sk‖+κθ L2
1‖sk‖2

+
√

nκθ κegκ∆‖F(xk+1)‖ · ‖sk‖+κθ‖gQ,k+1‖. (4.13)
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Therefore, substituting (4.11), (4.12), (4.13) into (4.10), we obtain that, for all k ≥ 0,

‖gQ,k+1‖ ≤
√

nκegκ∆‖F(xk+1)‖ · ‖gQ,k+1‖+L3‖F(xk)‖2 +σk‖sk‖2 +L4‖F(xk)‖ · ‖sk‖

+
(2+n)L1L2

2
‖sk‖2 +2

√
nL2‖F(xk)‖ · ‖sk‖+κθ L3‖F(xk)‖2 +κθ L2‖F(xk)‖ · ‖sk‖

+κθ L2
1‖sk‖2 +κθ

√
nκegκ∆‖F(xk+1)‖ · ‖sk‖+κθ‖gQ,k+1‖

=
(√

nκegκ∆‖F(xk+1)‖+κθ

)
· ‖gQ,k+1‖+

[
(2+n)L1L2

2
+σk +κθ L2

1

]
‖sk‖2

+
[
L4 +2

√
nL2 +κθ L2

]
‖F(xk)‖ · ‖sk‖+(1+κθ )L3‖F(xk)‖2

+
√

nκθ κegκ∆‖F(xk+1)‖ · ‖sk‖

≤
(√

nκegκ∆‖F(xk+1)‖+κθ

)
· ‖gQ,k+1‖+

[
(2+n)L1L2

2
+σk +κθ L2

1

]
‖sk‖2

+
[
L4 +2

√
nL2 +κθ L2

]
‖F(xk)‖ · ‖sk‖+(1+κθ )L3‖F(xk)‖2

+
√

nκθ κegκ∆ [‖F(xk)‖+L1‖sk‖] · ‖sk‖

=
(√

nκegκ∆‖F(xk+1)‖+κθ

)
‖gQ,k+1‖+

[√
nκθ κegκ∆L1 +

(2+n)L1L2

2
+σk +κθ L2

1

]
‖sk‖2

+
[√

nκθ κegκ∆ +L4 +2
√

nL2 +κθ L2
]
‖F(xk)‖ · ‖sk‖+(1+κθ )L3‖F(xk)‖2

≤
(√

nκegκ∆‖F(xk+1)‖+κθ

)
· ‖gQ,k+1‖

+

√
nκng

Rmin

[√
nκθ κegκ∆L1 +

(2+n)L1L2

2
+σk +κθ L2

1

]
‖F(xk)‖2

+
nκ2

ng

R2
min

[√
nκθ κegκ∆ +L4 +2

√
nL2 +κθ L2

]
‖F(xk)‖2 +(1+κθ )L3‖F(xk)‖2

=
(√

nκegκ∆‖F(xk+1)‖+κθ

)
· ‖gQ,k+1‖+L(σk)‖F(xk)‖2, (4.14)

where L(σk) is defined as following

L(σk) =

√
nκng

Rmin

[√
nκθ κegκ∆L1 +

(2+n)L1L2

2
+σk +κθ L2

1

]
+(1+κθ )L3

+
nκ2

ng

R2
min

[
√

nκθ κegκ∆ +L4 +2
√

nL2 +κθ L2] .

Hence, (4.9) follows from (4.14). �

Corollary 4.8. If the conditions of Theorem 4.6 hold, then

‖F(xk+1)‖
‖F(xk)‖

→ 0, as k→ ∞, (4.15)

and

‖xx+1− x∗‖
‖xk− x∗‖

→ 0, as k→ ∞. (4.16)

Furthermore,

‖xx+1− x∗‖= O(‖xk− x∗‖2), as k→ ∞. (4.17)
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Proof. Since Yk+1 is Λ-poised in B(xk+1;∆k+1), we conclude from (3.1), and the Step 3 of
Algorithm A that

‖∇Φ(xk+1)‖ ≤ ‖gQ,k+1−∇Φ(xk+1)‖+‖gQ,k+1‖

≤
√

nκegβ‖F(xk+1)‖ · ‖gQ,k+1‖+‖gQ,k+1‖

≤
(
1+
√

nκegβ‖F(xk+1)‖
)
‖gQ,k+1‖.

Moreover, as Theorem 4.6 gives that all iterates are eventually very successful, and σk is
bounded above, say by some σmax, (4.9) holds for all k sufficiently large. Thus[

1−
(√

nκegκ∆‖F(xk+1)‖+κθ

)]
‖gQ,k+1‖ ≤ Lσmax‖F(xk)‖2,

for all k sufficiently large, where Lσmax = L(σmax). Since ∇F(x∗) is nonsingular, then it is
∇F(xk+1) for all k sufficiently large, and there exists a positive constant γ such that ‖∇F(xk+1)

−1‖≤
γ . It follows that

‖F(xk+1)‖
‖F(xk)‖

=
‖∇F(xk+1)

−1∇Φ(xk+1)‖
‖F(xk)‖

≤ γ‖∇Φ(xk+1)‖
‖F(xk)‖

≤
γ (1+

√
nκegβ‖F(xk+1)‖)‖gQ,k+1‖

‖F(xk)‖

≤
γ (1+

√
nκegβ‖F(xk+1)‖)Lσmax‖F(xk)‖2

[1− (
√

nκegκ∆‖F(xk+1)‖+κθ )]‖F(xk)‖

=
γ (1+

√
nκegβ‖F(xk+1)‖)Lσmax

[1− (
√

nκegκ∆‖F(xk+1)‖+κθ )]
‖F(xk)‖ (4.18)

for all k sufficiently large. The right-hand side of (4.18) tends to zero as k→∞ due to ‖F(xk)‖→
0, as k→ ∞, under Assumption 4.2. Thus, (4.15) holds. From the standard Taylor theorem of
F(xk+1) and F(xk) around x∗, and F(x∗) = 0 with full rank ∇F(x∗), we have

F(xk+1) = F(x∗)+∇F(ξ3,k)(xk+1− x∗),

F(xk) = F(x∗)+∇F(ξ4,k)(xk− x∗),

for all k sufficiently large, where ξ3,k ∈ (xk+1,x∗), and ξ4,k ∈ (xk,x∗). From Lemma 3.4 and
Assumption 4.1, we obtain

‖F(xk+1)‖ ≤ L1‖xk+1− x∗‖,
‖F(xk)‖ ≤ L1‖xk− x∗‖.

Thus,
‖F(xk+1)‖
‖xk+1− x∗‖

≤C1,

‖F(xk)‖
‖xk− x∗‖

≤C2,
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where C1 and C2 are some constants. Hence,

lim
k→∞

‖xk+1− x∗‖
‖xk− x∗‖

= lim
k→∞

‖F(xk)‖
‖xk− x∗‖

‖xk+1− x∗‖
‖F(xk+1)‖

‖F(xk+1)‖
‖F(xk)‖

= 0

and (4.16) holds as k→ 0. So, (4.17) follows. �

Corollary 4.8 holds in the case when the stronger conditions of Theorem 4.6 are satisfied.
Particularly, we require the stronger condition Assumption 4.2, then, the limit F(xk)→ 0 is
guaranteed to hold.

5. NUMERICAL RESULTS

In this section, we report the results of the computational experiments performed in order
to assess the effectiveness of the Algorithm A. All of our experiments were performed on a
single processor of a desktop computer with Intel(R) Core (TM) i3-4150U @3.50 GHz. And
all programs are written in Matlab code, and the parameters in Algorithm A are chosen as
follows:

γ1 = 1.5, γ2 = 3, γ3 = 0.1,

η1 = 0.3, η2 = 0.8, σ0 = 1,

∆0 = 0.4, κ∆ = 0.9, β = 0.5.
Now, we test the algorithm with the above parameters. In our algorithm, we terminated the

iteration when
‖gQ,k‖ ≤ 10−5,

or iteration number exceeds 200, and any run exceeding this is flagged as a failure.
The numerical results are listed in the following table. The table shows the names of prob-

lems that are denoted by “name”, the number of its variables, which is denoted by “n”, the
approximate optimal value “‖F‖” at the approximate solution“x∗”, the value of “‖gQ‖” at the
approximate optimal solution “x∗”, and the number of outer iteration which is denoted by “k”.
We compare the text problem with two different sampling points. The left-hand side of table
1 shows the numerical results of sampling points with the natural choice of 2n+ 1, and the
other side shows the numerical results of sampling points with (n+1)(n+2)/2. The set of the
test problems mainly consist of [29]. The remaining problems were collected from a variety of
places during the development of the Algorithm A code. The test problem HS40 is the problem
40 in Hock and Schittkowski [29]. SC206, SC207, and SC208 are the Problems 206, 207, and
208 in Schittkowski [30]. The rest problems are from [29].

We see that, for each n, the outer iteration occurs in the Np = 2n+ 1 column being very
encouraging. We can observe that the number of outer iteration of the sampling set with more
interpolating points is almost less than the other one. It’s reasonable since the latter can ap-
proximate the original problem more accurately with more interpolating points in the sampling
set. The algorithm we propose with Np = 2n+ 1 uses small sampling set that can construct a
quadratic model with less computation numbers while the number of the whole outer iteration
is increasing. In the case of the other sampling set, to construct a quadratic model needs more
computation numbers while the number of the whole outer iteration is less than the former one.
We can’t say which one is better, it depends. And here we show that the proposed algorithm is
effective and promising.
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TABLE 1. Numerical Results

Problem dim 2n+1 (n+1)(n+2)/2
k ‖gQ‖ ‖F‖ k ‖gQ‖ ‖F‖

HS40 4 7 6.779569e-006 1.805985e-005 7 9.606303e-006 2.014731e-005
SC206 2 5 5.964599e-006 4.291315e-007 4 6.877607e-006 7.967604e-007
SC207 2 7 6.513801e-006 3.026469e-006 6 9.848525e-006 1.500385e-006
SC208 2 95 7.838677e-006 5.308939e-006 20 1.808174e-006 8.318998e-007

Ferraris and Tronconi 2 43 4.317743e-006 1.723028e-005 17 9.064597e-006 9.640606e-006
Extended Powell singual function 4 60 3.567228e-006 1.314412e-004 57 8.841074e-006 1.789611e-004
Extended Powell singual function 8 59 5.841614e-006 1.899750e-004 9 8.210961e-006 1.212916e-004

Broyden Tridiagonal function 5 59 6.667181e-006 5.262892e-006 4 5.094843e-006 9.565117e-007
Discrete boundary value function 5 3 5.800534e-007 2.733637e-007 3 1.136031e-006 4.211831e-007
Discrete boundary value function 10 4 3.439812e-007 1.545640e-007 3 3.421256e-007 1.615803e-007
Extended Tridiagonal 1 function 4 11 6.124970e-006 4.606700e-005 8 4.329193e-006 5.105501e-005

Extended BD1 function 4 99 7.001012e-006 9.211647e-006 failure
POWER function (CUTE) 5 4 6.735499e-006 1.087452e-006 4 6.938087e-006 1.119569e-006
Extended Powell function 4 4 2.208470e-007 1.404933e-007 4 3.384554e-007 1.422355e-007

Box three-dimensional function 3 12 1.959474e-007 2.906171e-006 12 1.893713e-007 1.683440e-006
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